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1 Origins: Online Paging Revisited

We’ve finished our discussion of models of data and now conclude the course with two lectures
on novel ways of proving relative approximation guarantees. This lecture is about resource
augmentation, where the idea to compare a protagonist (like your algorithm) that is endowed
with “extra resources” to an all-powerful opponent that is handicapped by “less resources”.
Subject to this, we use standard worst-case analysis (with no model of the data).

Resource augmentation was perhaps first used by Sleator and Tarjan [?] in the context
of online paging, a problem that we discussed at length in Lecture #2.1 Recall the proof the
the LRU (Least Recently Used) algorithm, among others, is a k-competitive online algorithm
for the paging problem.

Proof: Consider an arbitrary request sequence σ. We can break σ in blocks σ1, σ2, . . . , σb

where σ1 is defined as maximal prefix of σ in which only k distinct pages are requested; σ2

starts immediately after and is defined to be maximal subject to only k distinct pages being
requested (ignoring what was requested in σ1); and so on.

The first important point is that LRU faults at most k times within a single block — at
most one per page requested in the block. The reason is that once a page is brought into
the cache, it won’t be evicted until k other distinct pages get referenced, which can’t happen
until the following block. Thus LRU incurs at most bk page faults, where b is the number of
blocks. See Figure ??(a).

Second, we claim that an optimal offline algorithm must incur at least b− 1 page faults.
To see this, consider the first block plus the first request of the second block. Since σ1 is
maximal, this represents requests for k + 1 distinct page requests, and no algorithm can
serve them all without a page fault. Similarly, suppose the first request of σ2 is the page p.
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1The actual phrase “resource augmentation” is from [?].
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After-wards, the cache can only contain k− 1 pages other than p. But by maximality of σ2,
the rest of σ2 and the first request of σ3 contain requests for k distinct pages other than p;
these cannot all be served without incurring another page fault. And so on, resulting in at
least b− 1 cache misses. See Figure ??(a). The theorem follows. �

More generally, suppose the optimal offline algorithm has a cache with size only h ≤ k.
Then, the third paragraph of the proof immediately shows that in each “shifted block” the
optimal algorithm incurs at least k− (h−1) = k−h+1 page faults (there are k requests for
pages other than p in the shifted block and only h− 1 such pages in the cache at its start).
Thus:

Theorem 1.1 (Resource Augmentation Bound for LRU [?]) The competitive ratio of
the LRU algorithm for online paging is at most k/(k − h + 1) against an offline adversary
with a cache of size h ≤ k.

For example, if h ≈ k
2
, then LRU is 2-competitive, a seemingly far stronger guarantee than

our original (tight) k-competitive upper bound.

2 Interpretations

2.1 A Two-Step Approach to System Design

Some obvious questions are: what does the guarantee in Theorem 1.1 mean? Should you
be impressed by a resource augmentation guarantee like this? The concern is that the
comparisons is “apples vs. oranges” — sure the offline algorithm knows all of the future
requests, but it’s artificially hobbled by a small cache.

The first justification is not mathematical but nevertheless useful in many contexts. If
we adopt the philosophy that the point of rigorous guarantees for algorithms is to give good
advice about how to solve problems and build systems, then resource augmentation bounds
offer a compelling two-step approach.

1. The first step is to estimate the amount of resources (e.g., cache size) that guarantees
acceptable performance (e.g., page fault rate) assuming an optimal algorithm.2 It is
presumably simpler to solve this problem than to reason simultaneously about the
cache size and paging algorithm design decisions.

2. The second step is to scale up the resources to realize the resource augmentation
bound — for example, to double the cache size and invoke Theorem 1.1 to guarantee
acceptable performance under (say) the LRU algorithm.

2As discussed in Lecture #3, when proving approximation bounds, we have in mind the problem instances
where the “optimal performance” is actually good in some absolute sense!
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2.2 Loosely Competitive Online Algorithms

The second interpretation of Theorem 1.1 is mathematical and less well known. Young [?]
proved (a generalization of) the following guarantee, which we state informally now and
make precise in due time.

Informal Theorem [?]: For every request sequence σ, the LRU algorithm is O(1)-competitive
on σ for most cache sizes k.

This is a compelling guarantee because we don’t expect “real data” to be adversarially
tailored to the cache size — typically it will be independent of the cache size.3

There is simple and accurate intuition behind this informal theorem, as follows. Consider
a request sequence σ and a cache size k. One case is that the number of page faults of LRU
is roughly the same (within a factor of 2, say) with the cache sizes k and 2k. In that case,
Theorem 1.1 immediately implies that LRU has a good competitive ratio (in the traditional
sense) when the cache size is k. In the second case, LRU’s performance is changing rapidly
if one supplements the cache with extra pages. But since there is a bound on the maximum
fluctuation of LRU’s performance (between no page faults and faulting every time step), its
performance can only change rapidly for bounded number of different cache sizes.

More precisely, fix a request sequence σ and let b be a parameter. Let cost(A, k, z) denote
the number of page faults incurred by the paging algorithm A with a cache size of k on the
input z. Theorem 1.1 and the previous paragraph imply that, for every cache size k, either:

cost(LRU, k + b, σ) <
1

2
· cost(LRU, k, σ) (1)

or

cost(LRU, k, σ) ≤ 2 · k + b

b + 1
· cost(OPT, k, σ), (2)

where we are invoking Theorem 1.1 with k+b and k playing the roles of k and h, respectively.
Call a cache size k bad if (1) holds. Consider the set of bad cache sizes (Figure ??); for

every such size, adding b extra pages to the cache decreases the cost of LRU on σ by at least
a factor of 2. If there are at least ` bad cache sizes between 1 and k− b for some k, then we
can find at least `/b bad cache sizes in this interval that are each at least b apart (the worst
case is when bad cache sizes appear in clusters of b consecutive sizes). In this case,

cost(LRU, k, σ) < 2−`/b · cost(LRU, 1, σ). (3)

(Note that we are also using the fact that cost(LRU, t, σ) is nondecreasing in t, which you
should prove as an easy exercise.)

Thus, once
` ≥ b · log2

1
ε
, (4)

we have
cost(LRU, k, σ) ≤ ε · |σ|,

3In highly optimized applications the request sequence might depend on the cache size, but in a helpful,
rather than harmful, way.
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where |σ| is the length of the request sequence σ. Young [?] makes the compelling argument
that if ε is sufficiently small (less than the access time to fast memory, say), then LRU’s
performance is good in an absolute sense and we could care less about its competitive ratio.

Here is the precise statement of Young’s theorem.

Theorem 2.1 (LRU is Loosely Competitive [?]) For every ε, δ > 0 and positive inte-
ger n, for every request sequence σ, for all but a δ fraction of the cache sizes k in {1, 2, . . . , n},
the LRU algorithm satisfies either:

(1) cost(LRU, k, σ) = O(1
δ
log 1

ε
) · cost(OPT, k, σ); or

(2) cost(LRU, k, σ) ≤ ε · |σ|.

Theorem 2.1 says that, for a fixed request sequence σ, very cache size k falls into one of
three cases. In the first case, LRU with cache size k is competitive with OPT in the usual
(non-resource augmentation) sense. In the second case, LRU has excellent performance in
an absolute case. In the third case neither of these two goods events occurs, but fortunately
this occurs for only a δ fraction of the possible cache sizes.

We have essentially already proved Theorem 2.1. We want δn bad cache sizes between 1
and some number t to force the condition that cost(LRU, k, σ) ≤ ε|σ| for all cache sizes
k ≥ t, so we take ` = δn; using (4), this forces b = δn/ log2 ε−1. Then, for all but ` = δn
cache sizes k, either cost(LRU, k, σ) ≤ ε · |σ| or (by (2)) the LRU algorithm has competitive
ratio

2(k + b)

b + 1
≤ 2(n + b)

b + 1
= Θ

(
1

δ
log

1

ε

)
.

In [?] this guarantee is phrased as: LRU is (ε, δ)-loosely O(1
δ
log 1

ε
)-competitive.

3 Resource Augmentation in Selfish Routing

3.1 A Motivating Example

Our next example of a resource augmentation guarantee is for selfish routing, and it is due
to Roughgarden and Tardos [?]. In selfish routing, we consider a directed flow network
G = (V, E), with r units of traffic traveling from a source s to a sink t. Each edge e of the
network has a flow-dependent cost function ce(x). For example, in the network in Figure ??,
the top edge has a constant cost function c(x) = 1, while the cost to traffic on bottom edge
equals the amount of flow x on the edge.

The key approximation concept in selfish routing networks is the price of anarchy, which
as usual is defined as the ratio between a realizable protagonist and a hypothetical bench-
mark. The optimal solution is the fractional s-t flow that routes the r units of traffic to
minimize the cost

∑
e ce(fe)fe, where fe denotes the amount of flow on edge e. For exam-

ple, in Figure ??, the optimal flow splits traffic evenly between the two paths, for a cost of
1
2
· 1 + 1

2
· 1

2
= 3

4
.
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In the equilibrium flow, all traffic is routed on shortest paths, where the length of a
path P is the flow-dependent quantity

∑
e∈P ce(fe). The optimal flow in Figure ?? is not an

equilibrium flow: traffic on the top path is not routed on a shortest path, and hence would
want to revise its route. In the only equilibrium flow in Figure ??, all traffic uses the bottom
path for an overall cost of 0 · 1 + 1 · 1 = 1.

The price of anarchy of a selfish routing network is defined as the ratio between the
cost of an equilibrium flow and an optimal flow.4 In the network in Figure ??, the price of
anarchy is 4/3.

An interesting research goal is to identify selfish routing networks in which is price of
anarchy is close to 1 — this indicates that the decentralized optimization performed by
selfish network users performs almost as well as centralized and coordinated optimization.
Unfortunately, with general (nonlinear) cost functions, the price of anarchy can be arbitrarily
large. To see this, replace the cost function on the bottom edge in Figure ?? by c(x) = xd

for d large. The equilibrium flow remains the same, with all selfish traffic using the bottom
edge for an overall cost of 1. The optimal flow improves with d, however: splitting the traffic
1−ε on the bottom edge and ε on the top yields a flow with cost ε+(1−ε)d+1. As d ↑ ∞ and
ε ↓ 0 appropriately, this cost tends to zero, and hence the price of anarchy tends to infinity.

3.2 A Resource Augmentation Guarantee

Despite the negative example above, a very general resource augmentation guarantee holds
in selfish routing networks.

Theorem 3.1 ([?]) For every network G with continuous and nondecreasing cost functions,
for every traffic rate r and δ > 0,

equilibrium flow cost at traffic rate r ≤ 1

δ
· optimal flow cost at traffic rate (1 + δ)r.

For example, consider the network in Figure ?? with r = δ = 1. We know that the
equilibrium flow cost at traffic rate 1 is 1. The optimal flow can route one unit cheaply (as
we’ve seen), but then the network is “clogged up” and it has no choice but to incur one unit
of cost on the second unit of flow (the best it can do is route it on the top edge). Thus the
cost of an optimal flow at double the traffic exceeds that of the original equilibrium flow.

Before proving Theorem 3.1 we mention two corollaries. First, the theorem can reformu-
late to hew more closely to the spirit of “resource augmentation”, as follows: the cost of an
equilibrium flow in a network with faster links compares favorable with that of an optimal
flow in the original network. For example, the δ = 1 case corresponds to augmenting a
cost function c(x) to the cost function c(x/2)/2. For the cost function 1/(u − x), which is
a natural model of an edge with capacity u, this transformation yields 1/(2u − x), which
corresponds to doubling the edge capacity. The proofs of these statements are fairly easy
and mechanical, and we leave them as exercises.

4We won’t prove it, but it turns out that the equilibrium flow cost is uniquely defined in every selfish
routing network with continuous and nondecreasing edge cost functions.

5



Second, Theorem 3.1 leads to a “loose competitiveness” analogous to Theorem 2.1, which
roughly states that, in every network, the price of anarchy is much better for “most” traffic
rates than for a worst-case traffic rate [?]. You are asked to provide the details in HW #3.

Proof of Theorem 3.1: Fix G, r, and δ. Let f denote an equilibrium flow at traffic rate r
and f ∗ an optimal flow at rate r(1 + δ). The key trick is replace, for the sake of analysis,
each cost function ce(x) (Figure ??(a)) by the larger cost function ĉe(x) = max{ce(x), ce(fe)}
(Figure ??(b)). With the artificial cost functions ĉe, edge costs are always as large as if the
equilibrium flow f has already been routed in the network.

Recall that in an equilibrium flow, all traffic is routed on paths with the minimum length.
In f , call this common length L. Then the overall cost of f is r · L.

As for the optimal flow f ∗, first consider its cost with the artificial cost functions ĉe.
With these cost functions, even before any flow has been routed, every s-t path has cost at
least L. Since f ∗ routes at least (1 + δ)r units flow on paths with (artificial) cost at least L,
its total (artificial) cost with respect to the ĉe’s is at least (1 + δ)rL.

We can complete the proof by showing that the artificial cost of f ∗ (with respect to the
ĉe’s) exceeds its real cost (with respect to the ce’s) by at most rL, the equilibrium flow cost.
This follows from summing over an edge-by-edge bound:

ĉe(f
∗
e )f ∗e − ce(f

∗
e )f ∗e ≤ ce(fe)fe. (5)

To see why (5) holds, simply note that c̄e(x) − ce(x) is zero for x ≥ fe and bounded above
by ce(fe) for x < fe. Pictorially, the error is the shaded region in Figure ??(b), and the
worst-case width and height of this region are fe and ce(fe), respectively. �

4 Resource Augmentation in Scheduling

Resource augmentation bounds have found the widest number of applications in scheduling
problems, and we conclude with a paradigmatic analysis of Kalyanasundaram and Pruhs [?].

4.1 The Model

Consider a single machine and jobs that arrive online. Each job has a release data rj, at
which time the algorithm becomes aware of it, and a processing time pj, which the amount
of time the job needs from the machine before it is complete. We assume that preemption
is allowed, meaning that a job can be stopped mid-execution and restarted from the same
point (with no loss) at a subsequent time.

We consider the natural objective of minimizing the total flow (or response) time:∑
jobs j

(Cj − rj) ,

where Cj denotes the completion time of job j. A folklore result is that this is an easy
problem: the shortest remaining processing time (SRPT) algorithm, which always works on
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the job that is closest to completion (preempting jobs as needed), is an optimal algorithm.
We leave the proof as an easy exercise. Thus an online greedy algorithm is guaranteed to
solve the problem optimally.

The problem becomes difficult if we insist on a non-clairvoyant scheduling algorithm,
meaning one that is unaware of the processing times pj. It is easy to imagine real-world
scenarios where this constraint it important. However, it is known that no non-clairvoyant
online algorithm has a good competitive ratio with respect to the optimal algorithm SRPT.
Also, the algorithms that have non-trivial (but still bad) competitive ratios for the problem
tend to be unnatural. These discouraging facts suggest that a resource augmentation analysis
might be more useful and illuminating.

We compare the total flow time of the SRPT algorithm with a unit-speed machine to
that of a non-clairvoyant algorithm with a machine with speed 1 + ε (so that a job with
processing time pj needs pj/(1 + ε) units of machine time to complete). We will prove the
following resource augmentation guarantee.

Theorem 4.1 ([?]) There is a simple non-clairvoyant scheduling algorithm that, for every
ε > 0, is (1 + 1

ε
)-competitive in the above sense.

4.2 The Balance Algorithm

The “simple algorithm” of Theorem 4.1 is called the Balance Algorithm, and it works as
follows. Observe that the Balance Algorithm is non-clairvoyant.

Input: an online sequence of jobs with unknown processing times.

1. For every job j seen so far, keep track of its weight w(j), defined as the amount of j’s
processing time that’s been complete so far.

2. At every time t, process all of the uncompleted jobs that have the minimum value of
w(j). If there is a tie among multiple jobs, process them all in parallel (i.e., round-robin
with an arbitrarily fast rotation among them).

Figure 1: The Balance Algorithm.

We will give a “time step-by time step” analysis. Call a job active at time t if it has been
released (t ≥ rj) but not completed (t < Cj). We show the following:

# of active jobs at time t
under Balance (speed 1+ε)

≤
(
1 +

1

ε

)
× # of active jobs at time t

under SRPT (unit speed)
(6)

Note that if k jobs are active at a time t, then their marginal contribution at this time to
the eventual flow time is k dt. Thus, integrating (6) over time implies Theorem 4.1.

Since the total flow time is the integral (over t) of the number of active jobs at time t, we
can now see more clearly why SRPT is a good idea — it decreases the number of uncompleted
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jobs in the system as fast as possible. This also shows why the Balance Algorithm is not
optimal — it might hedge its bets by processing a number of jobs in parallel, most of which
have big processing times, rather than quickly disposing of a job that has a small processing
time.

4.3 The Analysis

We now prove (6), in several steps. Fix an arbitrary input, value of ε, and time t. Let X
and Y denote the active jobs at time t under the Balance Algorithm with a (1 + ε)-speed
machine and SRPT under a unit-speed machine, respectively. Our goal is to show that
|X| ≤ (1 + 1

ε
)|Y |.

The high-level idea is an exchange argument — since Balance never idles unnecessarily,
whatever time is should have using to complete jobs of X were used instead on other jobs,
which are presumably in Y — but the details are non-trivial and require several ideas. For
example, it does not seem easy to directly charge uncompleted work in X to the jobs of Y —
perhaps instead of working on something in X the Balance algorithm was working on a job
that was completed by both Balance and SRPT by time t (i.e., a job in neither X or nor Y ).
Addressing this problems appears to require considering cascaded sequences of exchanges;
we next introduce a combinatorial object to reason (indirectly) about such sequences.

Exchange Trees. Rename the jobs of X \ Y as {1, 2, . . . , k}, with

t ≥ r1 ≥ r2 ≥ · · · ≥ rk ≥ 0. (7)

For each fixed i ∈ X \ Y we define a breadth-first-search-esque exchange tree Ti. Nodes will
correspond to jobs (which may or may not be in X \Y ). Level 0 of Ti is the job i. Proceeding
inductively, there is an edge from a job j`−1 at level `− 1 to a job j` at level ` if and only if:
(i) the jobj` does not appear in any previous levels; and (ii) j` was processed by the Balance
algorithm instead of j`−1 at some time at which j`1 was active (at or before time t).

Example 4.2 Consider the schedule shown in Figure ??(a). At time 0 jobs 1 and 2 are
released, and both have very large processing times. These are processed in parallel until jobs
3 and 4 are released simultaneously; at this point the Balance Algorithm preempts the first
two jobs and starts processing the second two jobs in parallel. Jobs 3 and 4 have equal and
short processing times, so both complete quickly and then the Balance Algorithm resumes
processing jobs 1 and 2 in parallel. Then the job i is released. The Balance Algorithm works
solely on job i until its has been processed as much as the first two jobs; at that point, it
processing all three remaining jobs (1, 2, and i) in parallel. This is the state of the system
at time t.

What does the exchange tree Ti look like? At level 0 is the job i. Jobs 1 and 2 are in
level 1, because when the Balance Algorithm is processing 1, 2, and i in parallel at the end
of the schedule, jobs 1 and 2 are taking time away from job i. Jobs 3 and 4 never directly
interfere with job i, so they are not at level 1 of the tree Ti. Jobs 3 and 4 preempted jobs 1

8



and 2, however, so both appear in level 2 of Ti with all arcs between {1, 2} and {3, 4} present.
See Figure ??(b).

There are four main steps in proving the bound (6). Define the lifetime of a job j as
the interval [rj, min{Cj, tt}], where the completion time Cj is with respect to the Balance
Algorithm.

Step 1. We first claim that the edge a → b appears in Ti only if the lifetimes of jobs a
and b overlap. This is by definition: for this edge to exist, job b must be processed (and
hence active) by the Balance Algorithm at a time s ≤ t at which a is active. It follows that
for every directed path in Ti, the union of the lifetimes of the corresponding jobs is a single
interval (i.e., it is connected, with no gaps). The same is true for the union of all of the
lifetimes of jobs in Ti (it is true for each root-leaf path, and hence for their union).

Step 2. Let [si, t] denote the union of lifetimes of all jobs in Ti. Note that si is simply the
earliest release date of a job in Ti. We claim that, conversely, every job processed by the
Balance Algorithm in the interval [si, t] appears in Ti. This follows from an easy proof by
contradiction. If j /∈ Ti and is processed at time s ∈ [si, t], then s is pre-empting some job
of Ti — by the definition of [si, t], s is during the lifetime of some job of Ti. But then j ∈ Ti

by the definition of an exchange tree.

Step 3. In this step we make use of the fact that the Balance Algorithm has a faster
machine than SRPT. It is essentially a counting argument.

The Balance Algorithm never idles when there is an active job. Steps 1 and 2 imply
that the Balance Algorithm works continually throughout the interval [si, t], and solely on
jobs of Ti. A total of (1 + ε)(t− si) units of work are completed on these jobs. Let W1 and
W2 denote the amount of this work devoted to jobs of (X \ Y ) ∩ Ti and of (X ∪ Y )c ∩ Ti,
respectively.

Now consider the work accomplished by SRPT during [si, t]. Since it completes all jobs
of Ti outside of Y by time t, it spends at least as much on these jobs as does the Balance
Algorithm during [si, t] (namely, W1 +W2). Since SRPT only has a unit-speed machine, the
total amount of work it spends on any jobs in the interval [si, t] is at most t− si. Thus, the
Balance Algorithm must spend at least

[(1 + ε)(t− si)−W1 −W2]− [(t− si)−W1 −W − 2] = ε(t− si)

more work on jobs of Y ∩Ti than does SRPT in the interval [si, t]. Using w(j) to denote the
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weight of job j at time t, we have∑
j∈Y ∩Ti

w(j) ≥ ε(t− si)

≥ ε ·W1

= ε
∑

j∈(X\Y )∩Ti

w(j)

≥
i∑

j=1

w(j), (8)

where in the final inequality we use the fact that all of the jobs {1, 2, . . . , i − 1} appear in
(level 1 of) the exchange tree Ti. (Proof: by (7), every job of {1, 2, . . . , i− 1} appears at the
same time or later than job i, and the Balance Algorithm always immediately switches to a
job that just arrived.)

Now, inequality (8) holds for every job i = 1, 2, . . . , k of X \ Y . This means that,
inductively for each job i = 1, 2, . . . , k, we can “charge” εw(i) units of work to the work done
by the Balance Algorithm on the jobs of Y ∩Ti in [s, ti]. Formally, that (8) holds for every i
means that there exist nonnegative “charges” g(i, j) satisfying the following properties:

(P1)
∑

j∈Y g(i, j) = εw(j) for every job i = 1, 2, . . . , k;

(P2)
∑k

i=1 g(i, j) ≤ w(j) for every job j ∈ Y ; and

(P3) g(i, j) > 0 only if j ∈ Y ∩ Ti.

Step 4. The fourth step uses properties of the Balance Algorithm. The key claim is: for
every job i = 1, 2, . . . , k of X \ Y and for every job j ∈ Ti in the corresponding exchange
tree, the weight w(i) of i at time t is at least that w(j) of j at time t.

First, for intuition, consider a job j at level 1 of Ti. This means that at some point s
during i’s lifetime, job j was processed by the Balance Algorithm instead of job i. By the
definition of the algorithm (Figure 1), this means that j’s weight was at most that of i at
time s. The Balance Algorithm maintains this inequality as an invariant at least until job i
completes (if j’s weight catches up with that of i, they are processed at the same rate). Since
i /∈ X it cannot complete before time t, so w(j) ≤ w(i) (at time t).

The general argument is by induction on the level ` of the exchange tree Ti. The base
case of ` = 0 is trivial. For the inductive step, consider a job j` in the `th level of Ti, with
i, j1, . . . , j`−1, j` denoting the jobs on the i-j` path of Ti. The inductive hypothesis implies
that, for all h ≤ `− 1 and s ≤ t, the weight of jh at time s is at most w(i), the weight of i
at time t. Since the edge j`−1 → j` appears in Ti, j` is processed at some point during the
lifetime of j`−1; let s∗ be the earliest such time. By the definition of the Balance Algorithm,
the weight of j` is at most that of j`−1 at time s∗. By Step 1, the union of the lifetimes
of i, j1, . . . , j`−1 is an interval that includes [s∗, t] (since j`−1 is active at time s∗). Thus
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whenever j` is processed during this interval, its weight is bounded above by that of some
job in {i, j1, . . . , j`−1} at that time. Thus j`’s weight remains bounded above by w(i) up
until time t.

Proof of Theorem 4.1. The proof of (6), and hence of Theorem 4.1, follows easily from
Steps 3 and 4. We can write

|X \ Y | = k =
k∑

i=1

εw(i)

εw(i)

=
1

ε

k∑
i=1

∑
j∈Y ∩Ti

g(i, j)

w(i)
(9)

≤ 1

ε

k∑
i=1

∑
j∈Y ∩Ti

g(i, j)

w(j)
(10)

≤ 1

ε

∑
j∈Y

1

w(j)

k∑
i=1

g(i, j)︸ ︷︷ ︸
≤w(j) by (P2)

≤ |Y |
ε

,

where (9) follows from properties (P1) and (P3) of the g(i, j)’s and (10) follows from the
fact that all jobs of Ti have weight at most w(i) (Step 4). Thus

|X| ≤ |X \ Y |+ |Y | ≤
(

1 +
1

ε

)
· |Y |,

which completes the proof.
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