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1 Network Cost-Sharing Games

1.1 Lecture Themes

The externality caused by a player in a game is the difference between its own objective
function value and its contribution to the social objective function value. The models we’ve
looked at thus far have negative externalities, meaning that players cause more harm to the
system then they realize (or choose to care about). In a routing game, for example, a player
does not take into account the additional cost its presence causes for the other players using
the edges in its path.

There are also important applications that exhibit positive externalities. You usually
join a campus organization or a social network to derive personal benefit from it, but your
presence (hopefully) also enriches the experience of other people in the same group. As
a player, you’re generally bummed to see new players show up in a game with negative
externalities, and excited for the windfalls of new players in a game with positive externalities.
The first theme of this lecture is the study of positive externalities, in a concrete model of
network formation.

In the model we study, there will generally be multiple pure Nash equilibria. We’re
used to that, from routing and location games, but here different equilibria can have wildly
different costs. This motivates confining attention to a subset of “reasonable” Nash equilibria
that hopefully possesses two properties: first, better worst-case inefficiency bounds should
hold for the subset than for all equilibria; second, there should be a plausible narrative as to
why equilibria in the subset are more worthy of study than the others. No fully satisfactory
approach to this problem is known in the model we study, but we’ll cover two partially
successful approaches.
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1.2 The Model

A network cost-sharing game takes place in a graph G = (V,E), which can be directed or
undirected, and each edge e ∈ E carries a fixed cost γe ≥ 0. There are k players. Player i has
a source vertex si ∈ V and a sink vertex ti ∈ V , and its strategy set is the si-ti paths of the
graph. Outcomes of the game correspond to path vectors (P1, . . . , Pk), with the semantics
that the subnetwork (V,∪k

i=1Pi) gets formed.
We think of γe as the fixed cost of building the edge e — laying down high-speed Internet

fiber to a neighborhood, for example — and this cost is independent of the number of players
that use the edge. Players’ costs are defined edge-by-edge, like in routing games. If fe ≥ 1
players use an edge e in their chosen paths, then they are jointly responsible for the edge’s
fixed cost γe. In this lecture, we assume that this cost is split equally amongst the players.
That is, in the language of cost-minimization games (Lecture 13), the cost Ci(P) of player i
in the outcome P is

Ci(P) =
∑
e∈Pi

γe

fe

, (1)

where fe = |{j : e ∈ Pj}| is the number of players that choose a path that includes e. The
global objective is simply to minimize the total cost of the formed network:

cost(P) =
∑

e∈E : fe≥1

γe. (2)

Note that, analogous to routing games, the objective function (2) can equally well be written
as the sum

∑k
i=1Ci(P) of the players’ costs.

Remark 1.1 This is a very stylized game-theoretic model of how a network might form.
Many such models have been studied, but it is quite difficult to capture observed properties
of real-world networks with an analytically tractable model. See Jackson [5] for a textbook
treatment of network formation games.

1.3 Example: VHS or Betamax

Let’s build our intuition for network cost-sharing games through a couple of examples. The
first example demonstrates how tragic miscoordination can occur in games with positive
externalities.

Consider the simple network in Figure 1, with k players with a common source s and
sink t. One can interpret an edge as the adoption of a particular technology. For example,
back in the 1980s, there were two new technologies enabling home movie rentals. Betamax
was lauded by technology geeks as the better one — corresponding to the lower-cost edge
in Figure 1 — and VHS was the other one. VHS grabbed a larger market share early on.
Since coordinating on a single technology proved the primary driver in consumers’ decisions
— have the better technology is little consolation for being unable to rent anything from
your corner store — Betamax was eventually driven to extinction.
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Figure 1: VHS or Betamax. The price of anarchy in a network cost-sharing game can be as
large as the number k of players.

The optimal solution in Figure 1 is for all players to pick the upper edge, for a total cost
of 1 + ε. This is also a Nash equilibrium. Unfortunately, there is a second Nash equilibrium,
in which all players pick the lower edge. Since the cost of k is split equally, each player
pays 1. If a player deviated unilaterally to the upper edge, it would pay the full cost 1 + ε
of that edge and thus suffer a higher cost. This example shows that the price of anarchy
in network cost-sharing games can be as high as k, the number of players. (For a matching
upper bound, see the Exercises.)

The VHS or Beta example is exasperating. We proposed a reasonable network model
capturing positive externalities, and the price of anarchy — which helped us reason about
several models already — is distracted by a manifestly unreasonable Nash equilibrium and
yields no useful information. Can we salvage our approach by focusing only on the “reason-
able” equilibria? We’ll return to this question after considering another important example.

1.4 Example: Opting Out

Consider the network cost-sharing game shown in Figure 2. The k players have distinct
sources s1, . . . , sk but a common destination t. They have the option of meeting at the
rendezvous point v and continuing together to t, incurring a joint cost of 1 + ε. Each player
can also “opt out,” meaning take the direct si-t path solo. (Insert your own joke about public
transportation in California here.) Player i incurs a cost of 1/i for its opt-out strategy.

The optimal solution is clear: if all players travel through the rendezvous point, the overall
cost is 1 + ε. Unfortunately, this is not a Nash equilibrium: player k would pay slightly less
by switching to its opt-out strategy (which is a dominant strategy for this player). Given
that player k does not use the rendezvous in a Nash equilibrium, player k−1 does not either
— it would have to pay at least (1+ ε)/(k−1) with player k absent, and its opt-out strategy
is cheaper. Iterating this argument, there is no Nash equilibrium in which any player travels
through v. Meanwhile, the outcome in which all players opt out is a Nash equilibrium.1

The cost of this (unique) Nash equilibrium is the kth Harmonic number
∑k

i=1
1
i
, which lies

between ln k and ln k + 1.
The price of anarchy in the opt-out example isHk, which is much smaller than in the VHS

1We just performed a procedure called the iterated deletion of dominated strategies. When a unique
outcome survives this procedure, it is the unique Nash equilibrium.
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Figure 2: Opting out. There can be a unique Nash equilibrium with cost Hk times that of
an optimal outcome.

or Betamax example, but it is also a much more compelling example. This inefficiency is not
the result of multiple or unreasonable equilibria, and it captures the observable phenomenon
that games with positive externalities can suffer efficiency loss from underparticipation.

2 The Price of Stability

The two examples in the previous section limit our ambitions: we cannot hope to prove
anything interesting about worst-case Nash equilibria of network cost-sharing games, and
even when there is a unique Nash equilibrium, it can cost Hk times that of an optimal
solution. This section proves the following guarantee on some Nash equilibrium of every
network cost-sharing game.

Theorem 2.1 (Price of Stability of Network Cost-Sharing Games [1]) In every net-
work cost-sharing game with k players, there exists a pure Nash equilibrium with cost at
most Hk times that of an optimal outcome.

The theorem asserts in particular that every network cost-sharing game possesses at least
one pure Nash equilibrium, which is already a non-trivial fact. The opt-out example shows
that the factor of Hk cannot be replaced by anything smaller.

The price of stability is the “optimistic” version of the price of anarchy, defined as the
ratio between the cost of the best Nash equilibrium and that of an optimal outcome. Thus
Theorem 2.1 asserts that the price of stability in every network cost-sharing game is at most
Hk. In terms of Figure 3, we are working with the entire set of pure Nash equilibria, but
arguing only about one of them, rather than about all of them. This is the first occasion
we’ve argued about anything other than the worst of a set of equilibria.

A bound on the price of stability, which only ensures that one equilibrium is approx-
imately optimal, provides a significantly weaker guarantee than a bound on the price of
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Figure 3: The best Nash equilibrium may be a strong NE, or not.

anarchy. It is well motivated in games where there is a third party that can propose an
initial outcome — “default behavior” for the players. It’s easy to find examples in real life
where an institution or society effectively proposes one equilibrium out of many — even just
in choosing which side of the road everybody drives on. For a computer science example,
consider the problem of designing the default values of user-defined parameters of software
or a network protocol. One sensible approach is to set default parameters so that users are
not incentivized to change them and, subject to this, to optimize performance. The price
of stability quantifies the necessary degradation in solution quality caused by restricting
solutions to be equilibria.

Proof of Theorem 2.1: The proof of Theorem 2.1 goes through Rosenthal’s potential function,
introduced in Lecture 13. Recall the definition that we gave for atomic selfish routing games

Φ(P) =
∑
e∈E

fe∑
i=1

ce(i),

where ce denotes the per-player cost incurred on edge e. Network cost-sharing games have
exactly the same form as atomic selfish routing games — each of k players picks an si-ti
path in a network, and the player cost (1) is a sum of the edge costs, each of which depends
only on the number of players using it — with the per-player cost of an edge e with fe users
being γe/fe. Positive externalities are reflected by decreasing per-player cost functions, in
contrast to the nondecreasing cost functions that were appropriate in routing games. Thus
the potential function specializes to

Φ(P) =
∑
e∈E

fe∑
i=1

γe

i
=

∑
e∈E

γe

fe∑
i=1

1

i
(3)

in a network cost-sharing game.
In Lecture 13, we proved that the outcome that minimizes the potential function Φ is a

Nash equilibrium, and we noted at the time that the proof worked for any cost functions,
nondecreasing or not. That is, the strategic players are inadvertently striving to minimize Φ.
This argument proves that every network cost-sharing game has a pure Nash equilibrium —
the outcome that minimizes (3). For instance, in the VHS or Betamax example, the low-cost
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Nash equilibrium minimizes (3) while the high-cost Nash equilibrium does not. While the
minimizer of the potential function need not be the lowest-cost Nash equilibrium (see the
Problems), we can prove that it has cost at most Hk times that of an optimal outcome.

The key observation is that the potential function in (3), whose numerical value we
don’t care about per se, approximates well the objective function (2) that we do care about.
Precisely, since γe ≤ γe

∑fe

i=1
1
i
≤ γe · Hk for every i ∈ {1, 2, . . . , k}, we have

cost(P) ≤ Φ(P) ≤ Hk · cost(P) (4)

for every outcome P. The inequalities (4) state that Nash equilibria are effectively trying to
minimize an approximately correct function Φ, so it makes sense that one such equilibrium
should approximately minimize the correct objective function.

To be precise, let P minimize Φ (a Nash equilibrium) and let P∗ be an outcome of
minimum cost. We have

cost(P) ≤ Φ(P)

≤ Φ(P∗)

≤ Hk · cost(P∗),

where the first and last inequalities follow from (4) and the middle inequality follows from
the choice of P as the minimizer of Φ. This completes the proof of Theorem 2.1. �

Open Question 1 (POS in Undirected Networks) In the VHS or Betamax example,
it doesn’t matter whether the network is directed or undirected. The opt-out example, on
the other hand, makes crucial use of a directed network (see the Exercises). An interesting
open question is whether or not the price of stability of every undirected network cost-sharing
game is bounded above by a constant; see [2] for the latest progress.

3 Strong Nash Equilibria and Their POA

This section gives an alternative approach to eluding the bad Nash equilibrium of the VHS or
Betamax example and proving meaningful bounds on the inefficiency of equilibria in network
cost-sharing games. The plan is to once again argue about all (i.e., worst-case) equilibria,
but to first identify a strict subset of the pure Nash equilibria that we care about.

In general, when studying the inefficiency of equilibria in a class of games, one should
zoom out (i.e., enlarge the set of equilibria) as much as possible subject to the existence
of meaningful POA bounds. We zoomed out in games with negative externalities, such as
routing and location games. The POA of pure Nash equilibria is close to 1 in these games,
so we focused on extending worst-case bounds to ever-larger sets of equilibria. This lecture,
where worst-case Nash equilibria can be highly suboptimal, we need to zoom in to recover
interesting inefficiency bounds. In terms of Figure 3, we aim to bound the cost of all Nash
equilibria that fall into the smaller set.
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To motivate the subclass of Nash equilibria that we study, let’s return to the VHS or
Betamax example. The high-cost Nash equilibrium is an equilibrium because a player that
deviates unilaterally would pay the full cost 1 + ε of the upper edge. What if a coalition of
two players deviated jointly to the upper edge? Each deviating player would be responsible
for a cost of only ≈ 1

2
, so this would be a profitable deviation. Thus the high-cost Nash

equilibrium does not persist when coalitional deviations are allowed.

Definition 3.1 (Strong Nash Equilibrium) Let s be an outcome of a cost-minimization
game.

(a) Strategies s′A ∈
∏

i∈A Si are a beneficial deviation for a subset A of players if

Ci(s
′
A, s−A) ≤ Ci(s)

for every player i ∈ A, with the inequality holding strictly for at least one player of A.

(b) The outcome s is a strong Nash equilibrium if there is no coalition of players with a
beneficial deviation.

Nash equilibria can be thought of as strong Nash equilibria in which only singleton coalitions
are allowed. Every strong Nash equilibrium is thus a Nash equilibrium — that is, the former
concept is an equilibrium refinement of the latter.

To get a better feel for strong Nash equilibria, let’s return to our two examples. As
noted above, the high-cost Nash equilibrium of the VHS or Betamax example is not strong.
The low-case Nash equilibrium is strong. In fact, since a coalition of the entire player set is
allowed, intuition might suggest that strong Nash equilibria have to be optimal. This is the
case when all players share the same source and destination (see the Exercises), but not in
general. In the opt-out example, the same argument that proves that the outcome in which
everybody “opt outs” is the unique Nash equilibrium also proves that it is a strong Nash
equilibrium. Thus, the opt-out example has a strong Nash equilibrium with cost Hk times
that of the minimum-cost outcome. Our next result states that no worse example is possible.

Theorem 3.2 (POA of Strong Nash Equilibria in Network Cost-Sharing Games [4])
In every network cost-sharing game with k players, every strong Nash equilibrium has cost
at most Hk times that of an optimal outcome.

The guarantee in Theorem 3.2 differs from that in Theorem 2.1 in two ways. On the positive
side, the guarantee holds for every strong Nash equilibrium, as opposed to just one Nash
equilibrium. If it were the case that every network cost-sharing game has at least one
strong Nash equilibrium, then Theorem 3.2 would be a strictly stronger statement than
Theorem 2.1. The second difference, however, is that Theorem 3.2 does not assert existence,
and for good reason (see Figure 4 below). These two differences render Theorems 2.1 and 3.2
incomparable guarantees.

Proof of Theorem 3.2: The proof bears some resemblance to our previous POA analyses,
but has a couple of extra ideas. One nice feature is that — perhaps unsurprisingly given
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the bound that we’re trying to prove — the proof uses Rosenthal’s potential function in an
interesting way. Our previous POA analyses for classes of potential games (selfish routing,
location games) did not make use of the potential function.

The first step in our previous POA analyses was to invoke the Nash equilibrium hypothesis
once per player to generate upper bounds on players’ equilibrium costs. Here, we’re making
a strong hypothesis — we begin by letting P be an arbitrary strong Nash equilibrium rather
than an arbitrary Nash equilibrium — and aspire to a stronger conclusion. After all, what
we’re trying to prove is false for arbitrary Nash equilibria (as in the VHS or Betamax
example).

The natural place to start is with the most powerful coalition Ak = {1, 2, . . . , k} of all k
players. Why doesn’t this coalition collectively switch to the optimal outcome P∗? It must
be that for some player i, Ci(P) ≤ Ci(P

∗).2 Rename the players so that this is player k.
We want an upper bound on the equilibrium cost of every player, not just that of player k.

To ensure that we get an upper bound for a new player, we next invoke the strong Nash
equilibrium hypothesis for the coalition Ak−1 = {1, 2, . . . , k − 1} — why don’t these k − 1
players collectively deviate to P∗Ak−1

? There must be a player i ∈ {1, 2, . . . , k − 1} with
Ci(P) ≤ Ci(P

∗
Ak−1

, Pk). We rename the players of Ak−1 so that this is true for player k − 1
and continue.

Iterating the argument yields a renaming of the players as {1, 2, . . . , k} such that, for
every i,

Ci(P) ≤ Ci(P
∗
Ai
,P−Ai

), (5)

where Ai = {1, 2, . . . , i}. Now that we have an upper bound on the equilibrium cost of every
player, we can sum (5) over the players to obtain

cost(P) =
k∑

i=1

Ci(P)

≤
k∑

i=1

Ci(P
∗
Ai
,P−Ai

) (6)

≤
k∑

i=1

Ci(P
∗
Ai

). (7)

Inequality (6) is immediate from (5). Inequality (7) follows from the fact that network cost-
sharing games have positive externalities — deleting players only decreases the number fe of
players using a given edge and hence only increases the cost share of each remaining player
on each edge. The motivation for the second inequality is to simplify our upper bound on
the equilibrium cost to the point that it becomes a telescoping sum (cf., the location game
analysis in Lecture 14).

Next we use the fact that network cost-sharing games are potential games. Recalling
the definition (3) of the potential function Φ, we see that the decrease in potential function

2This inequality is strict if at least one other player is better off, but we won’t need this stronger statement.
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value from deleting a player is exactly the cost incurred by that player. Formally:

Ci(P
∗
Ai

) =
∑
e∈P ∗

i

γe

f i
e

= Φ(P∗Ai
)− Φ(P∗Ai−1

), (8)

where f i
e denotes the number of players of Ai that use a path in P∗ that includes edge e.

This equation is the special case of the Rosenthal potential function condition (see Lecture
14) in which a player deviates to the empty-set strategy.

Combining (7) with (8), we obtain

cost(P) ≤
k∑

i=1

[
Φ(P∗Ai

)− Φ(P∗Ai−1
)
]

= Φ(P∗)

≤ Hk · cost(P∗),

where the inequality follows from our earlier observation (4) that the potential function Φ
can only overestimate the cost of an outcome by an Hk factor. This completes the proof of
Theorem 3.2. �

4 Epilogue

Network cost-sharing games can have “unreasonable” bad Nash equilibria, and this motivates
the search for a subset of Nash equilibria with two properties: better worst-case bounds than
for arbitrary Nash equilibria, and a plausible narrative justifying restricting the analysis to
this subset. Both of our two solutions — best-case Nash equilibria and worst-case strong
Nash equilibria — meet the first criterion, admitting an approximation bound of Hk rather
than k. The justification for focusing on best-case Nash equilibria is strongest in settings
where a third party can propose an equilibrium, although there is additional experimental
evidence that potential function optimizers (as in Theorem 2.1) are more likely to be played
than other Nash equilibria [3]. Worst-case bounds for strong Nash equilibria are attractive
when such equilibria exist, as it is plausible that such equilibria are more likely to persist
than regular Nash equilibria. While strong Nash equilibria are guaranteed to exist in classes
of network cost-sharing games with sufficiently simple network structure [4], they do not,
unfortunately, exist in general. Figure 4 gives a concrete example; we leave verifying the
non-existence of strong Nash equilibria as an exercise.
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Figure 4: A network cost-sharing game with no strong Nash equilibrium.

[2] V. Bilò, M. Flammini, and L. Moscardelli. The price of stability for undirected broadcast
network design with fair cost allocation is constant. In Proceedings of the 54rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 638–647, 2013.

[3] R. Chen and Y. Chen. The potential of social identity for equilibrium selection. American
Economic Review, 101(6):2562–2589, 2011.

[4] A. Epstein, M. Feldman, and Y. Mansour. Strong equilibrium in cost sharing connection
games. Games and Economic Behavior, 67(1):51–68, 2009.

[5] M. O. Jackson. Social and Economic Networks. Princeton, 2008.

10


