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1 The Story So Far

Last time, we introduced the Vickrey auction and proved that it enjoys three desirable and
different guarantees:

(1) [strong incentive guarantees] DSIC. That is, truthful bidding should be a dominant
strategy (and never leads to negative utility).

Don’t forget the two reasons we’re after the DSIC guarantee. First, such an auction is
easy to play for bidders — just play the obvious dominant strategy. Second, assuming
only that bidders will play a dominant strategy when they have one, we can confidently
predict the outcome of the auction.

(2) [strong performance guarantees] Social surplus maximization. That is, assuming
truthful bids (which is justified by (1)), the allocation of goods to bidders should
maximize

∑n
i=1 vixi, where xi the amount of stuff allocated to bidder i.

(3) [computational efficiency] The auction can be implemented in polynomial (indeed,
linear) time.

To extend these guarantees beyond single-item auctions to more complex problems, like
the sponsored search auctions introduced last lecture, we advocated a two-step design ap-
proach.

Step 1: Assume, without justification, that bidders bid truthfully. Then, how should we
assign bidders to slots so that the above properties (2) and (3) hold?

Step 2: Given our answer to Step 1, how should we set selling prices so that the above
property (1) holds?
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For instance, in sponsored search auctions, the first step can be implemented using a
simple greedy algorithm (assign the jth highest bidder the jth best slot). But what about
the second step?

This lecture states and proves Myerson’s Lemma, a powerful and general tool for imple-
menting Step 2. This lemma applies to sponsored search auctions as a special case, and we’ll
also see further applications later.

2 Single-Parameter Environments

A good level of abstraction at which to state Myerson’s Lemma is single-parameter environ-
ments. Such an environment has some number n of bidders. Each bidder i has a private
valuation vi, its value “per unit of stuff” that it gets. Finally, there is a feasible set X. Each
element of X is an n-vector (x1, x2, . . . , xn), where xi denotes the “amount of stuff” given to
bidder i. For example:

• In a single-item auction, X is the set of 0-1 vectors that have at most one 1 (i.e.,∑n
i=1 xi ≤ 1).

• With k identical goods and the constraint the each customer gets at most one, the
feasible set is the 0-1 vectors satisfying

∑n
i=1 xi ≤ k.

• In sponsored search, X is the set of n-vectors corresponding to assignments of bidders
to slots, where each slot is assigned at most one bidder and each bidder is assigned at
most one slot. If bidder i is assigned to slot j, then the component xi equals the CTR
αj of its slot.

3 Allocation and Payment Rules

Recall that a sealed-bid auction has to make two choices: who wins and who pays what.
These two decisions are formalized via an allocation rule and a payment rule, respectively.
That is, a sealed-bid auction has three steps:

(1) Collect bids b = (b1, . . . , bn)

(2) [allocation rule] Choose a feasible allocation x(b) ∈ X ⊆ Rn as a function of the
bids.

(3) [payment rule] Choose payments p(b) ∈ Rn as a function of the bids.

We continue to use a quasilinear utility model, so, in an auction with allocation and
payment rules x and p, respectively, bidder i has utility

ui(b) = vi · xi(b)− pi(b)

on the bid profile (i.e., bid vector) b.
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In lecture, we will focus on payment rules that satisfy

pi(b) ∈ [0, bi · xi(b)] (1)

for every i and b. The constraint that pi(b) ≥ 0 is equivalent to prohibiting the seller from
paying the bidders. The constraint that pi(b) ≤ bi · xi(b) ensures that a truthtelling bidder
receives nonnegative utility (do you see why?).

There are applications where it makes sense to relax one or both of these restrictions on
payments, but we won’t cover any in these lectures.

4 Statement of Myerson’s Lemma

We now come to two important definitions. Both articulate a property of allocation rules.

Definition 4.1 (Implementable Allocation Rule) An allocation rule x for a single-parameter
environment is implementable if there is a payment rule p such the sealed-bid auction (x,p)
is DSIC.

That is, the implementable allocation rules are those that extend to DSIC mechanisms.
Equivalently, the projection of DSIC mechanisms onto their allocation rules is the set of
implementable rules. If our aim is to design a DSIC mechanism, we must confine ourselves
to implementable allocation rules — they form our “design space.” In this terminology,
we can rephrase the cliffhanger from the end of last lecture as: is the surplus-maximizing
allocation rule for sponsored search, which assigns the jth highest bidder to the jth best
slot, implementable?

For instance, consider a single-item auction. Is the allocation rule that awards the good
to the highest bidder implementable? Sure — we’ve already constructed a payment rule,
the second-price rule, that renders it DSIC. What about the allocation rule that awards the
good to the second-highest bidder? Here, the answer is not clear: we haven’t seen a payment
rule that extends it to a DSIC mechanism, but it also seems tricky to argue that no payment
rule could conceivably work.

Definition 4.2 (Monotone Allocation Rule) An allocation rule x for a single-parameter
environment is monotone if for every bidder i and bids b−i by the other bidders, the alloca-
tion xi(z,b−i) to i is nondecreasing in its bid z.

That is, in a monotone allocation rule, bidding higher can only get you more stuff.
For example, the single-item auction allocation rule that awards the good to the highest

bidder is monotone: if you’re the winner and you raise your bid (keeping other bids constant),
you continue to win. By contrast, awarding the good to the second-highest bidder is a non-
monotone allocation rule: if you’re the winner and raise your bid high enough, you lose.

The surplus-maximizing allocation rule for sponsored search, with the jth highest bidder
awarded the jth slot, is monotone. The reason is that raising your bid can only increase
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your position in the sorted order of bids, which can only net you a higher slot, which can
only increase the click-through-rate of your slot.

We state Myerson’s Lemma in three parts; each is conceptually interesting and will be
useful in later applications.

Theorem 4.3 (Myerson’s Lemma [2]) Fix a single-parameter environment.

(a) An allocation rule x is implementable if and only if it is monotone.

(b) If x is monotone, then there is a unique payment rule such that the sealed-bid mecha-
nism (x,p) is DSIC [assuming the normalization that bi = 0 implies pi(b) = 0].

(c) The payment rule in (b) is given by an explicit formula (see (6), below).

Myerson’s Lemma is the foundation on which we’ll build most of our mechanism design
theory. Part (a) states that Definitions 4.1 and 4.2 define exactly the same class of allocation
rules. This equivalence is incredibly powerful: Definition 4.1 describes our design goal but
is unwieldy to work with and verify, while Definition 4.2 is far more “operational.” Usually,
it’s not difficult to check whether or not an allocation rule is monotone. Part (b) states that,
when an allocation rule is implementable, there is no ambiguity in how to assign payments
to achieve the DSIC property — there is only one way to do it. (Assuming bidding zero
guarantees zero payment; note this follows from our standing assumption (1).) Moreover,
there is a relatively simple and explicit formula for this payment rule (part (c)), a property
we apply to sponsored search auctions below and to revenue-maximization auction design in
future lectures.

5 Proof of Myerson’s Lemma (Theorem 4.3)

Consider an allocation rule x, which may or may not be monotone. Suppose there is a
payment rule p such that (x,p) is a DSIC mechanism — what could p look like? The plan
of this proof is to cleverly invoke the stringent DSIC constraint to whittle the possibilities
for p down to a single candidate. We will establish all three parts of the theorem in one fell
swoop.

Recall the DSIC condition: for every bidder i, every possible private valuation bi, every
set of bids b−i by the other players, it must be that i’s utility is maximized by bidding
truthfully. For now, fix i and b−i arbitrarily. As shorthand, write x(z) and p(z) for the
allocation xi(z,b−i) and payment pi(z,b−i) of i when it bids z, respectively. Figure 1 gives
two examples of what the function x might look like.

We invoke the DSIC constraint via a simple but clever swapping trick. Suppose (x,p)
is DSIC, and consider any 0 ≤ y < z. Because bidder i might well have private valuation z
and can submit the false bid y if it wants, DSIC demands that

z · x(z)− p(z)︸ ︷︷ ︸
utility of bidding z

≥ z · x(y)− p(y)︸ ︷︷ ︸
utility of bidding y

(2)
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Figure 1: Examples of allocation curves x(·).

Similarly, since bidder i might well have the private valuation y and could submit the false
bid z, (x,p) must satisfy

y · x(y)− p(y)︸ ︷︷ ︸
utility of bidding y

≥ y · x(z)− p(z)︸ ︷︷ ︸
utility of bidding z

(3)

Myerson’s Lemma is, in effect, trying to solve for the payment rule p given the alloca-
tion rule x. Rearranging inequalities (2) and (3) yields the following “payment difference
sandwich,” bounding p(y)− p(z) from below and above:

z · [x(y)− x(z)] ≤ p(y)− p(z) ≤ y · [x(y)− x(z)] (4)

The payment difference sandwich already implies one major component of Myerson’s
Lemma — do you see why?

Thus, we can assume for the rest of the proof that x is monotone. We will be slightly
informal in the following argument, but will cover all of the major ideas of the proof.

In (4), fix z and let y tends to z from above. We focus primarily on the case where x
is piecewise constant, as in Figure 1. In this case, x is flat except for a finite number of
“jumps”. Taking the limit y ↓ z in (4), the left- and right-hand sides become 0 if there is no
jump in x at z. If there is a jump of magnitude h at z, then the left- and right-hand sides
both tend to z · h. This implies the following constraint on p, for every z:

jump in p at z = z · jump in x at z (5)

Thus, assuming the normalization p(0) = 0, we’ve derived the following payment formula,
for every bidder i, bids b−i by other bidders, and bid bi by i:

pi(bi,b−i) =
∑̀
j=1

zj · jump in xi(·,b−i) at zj, (6)

where z1, . . . , z` are the breakpoints of the allocation function xi(·,b−i) in the range [0, bi]
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A similar argument applies when x is a monotone function that is not necessarily piecewise
constant. For instance, suppose that x is differentiable. Dividing the payment difference
sandwich (4) by y − z and taking the limit as y ↓ z yields the constraint

p′(z) = z · x′(z)

and, assuming p(0) = 0, the payment formula

pi(bi,b−i) =

∫ bi

0

z · d
dz
xi(z,b−i)dz (7)

for every bidder i, bid bi, and bids b−i by the others.
We reiterate that the payment formula in (6) is the only payment rule with a chance

of extending the given piecewise constant allocation rule x into a DSIC mechanism. Thus,
for every allocation rule x, there is at most one payment rule p such that (x,p) is DSIC
(cf., part (b) of Theorem 4.3). But the proof is not complete — we still have to check that
this payment rule works provided x is monotone! Indeed, we already know that even this
payment rule fails when x is not monotone.

We give a proof by picture that, when x is monotone and piecewise constant and p is
defined by (6), then (x,p) is a DSIC mechanism. The same argument works more generally
for monotone allocation rules that are not piecewise constant, with payments defined as
in (7). This will complete the proof of all three parts of Myerson’s Lemma.

Figures 2(a)–(i) depict the utility of a bidder when it bids truthfully, overbids, and
underbids, respectively. The allocation curve x(z) and the private valuation v of the bidder
is the same in all three cases. Recall that the bidder’s utility when it bids b is v · x(b) −
p(b). We depict the first term v · x(b) as a shaded rectangle of width v and height x(b)
(Figures 2(a)–(c)). Using the formula (6), we see that the payment p(b) can be represented
as the shaded area to the left of the allocation curve in the range [0, b] (Figures 2(d)-(f)).
The bidder’s utility is the difference between these two terms (Figures 2(g)-(i)). When the
bidder bids truthfully, its utility is precisely the area under the allocation curve in the range
[0, v] (Figure 2(g)).1 When the bidder overbids, its utility is this same area, minus the area
above the allocation curve in the range [v, b] (Figure 2(h)). When the bidder underbids, its
utility is a subset of the area under the allocation curve in the range [0, v] (Figure 2(i)).
Since the bidder’s utility is the largest in the first case, the proof is complete.

6 Applying the Payment Formula: Sponsored Search

Solved

Myerson’s payment formula (6) is easy to understand and apply in many applications. For
starters, consider a single-item auction with the allocation rule that allocates the good to

1In this case, the social surplus contributed by this bidder (v · x(v)) naturally splits into its utility (or
“consumer surplus”), the area under the curve, and the seller revenue, the area above the curve (in the range
[0, v]).
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Figure 2: Proof by picture that the payment rule in (6), coupled with the given monotone and
piecewise constant allocation rule, yields a DSIC mechanism. The three columns consider
the cases of truthful bidding, overbidding, and underbidding, respectively. The three rows
show the surplus v ·x(b), the payment p(b), and the utility v ·x(b)−p(b), respectively. In (h),
the solid region represents positive utility and the lined region represents negative utility.
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the highest bidder. Fixing i and b−i, the function xi(·,b−i) is 0 up to B = maxj 6=i bj and 1
thereafter. The formula (6) is either 0 (if bi < B) or, if bi > B, there is a single breakpoint
(a jump of 1 at B) and the payment is pi(bi,b−i) = B. Thus, Myerson’s Lemma regenerates
the Vickrey auction as a special case.

Now let’s return to sponsored search auctions. Recall from last lecture that we have
k slots with click-through-rates (CTRs) α1 ≥ α2 ≥ · · · ≥ αk. Let x(b) be the allocation
rule that assigns the jth highest bidder to the jth highest slot, for j = 1, 2, . . . , k. We’ve
noted previously that this rule is surplus-maximizing (assuming truthful bids) and monotone.
Applying Myerson’s Lemma, we can derive a unique payment rule p such that (x,p) is DSIC.
To describe it, consider a bid profile b; we can re-index the bidders so that b1 ≥ b2 ≥ · · · ≥ bn.
For intuition, focus on the first bidder and imagine increasing its bid from 0 to b1, holding
the other bids fixed. The allocation xi(z,b−i) ranges from 0 to α1 as z ranges from 0 to b1,
with a jump of αj − αj+1 at the point where z becomes the jth highest bid in the profile
(z,b−i), namely bj+1. Thus, in general, Myerson’s payment formula specializes to

pi(b) =
k∑
j=i

bj+1(αj − αj+1) (8)

for the ith highest bidder (where αk+1 = 0).
Recall our assumption that bidders don’t care about impressions (i.e., having their link

shown), except inasmuch as it leads to a click. This motivates charging bidders per click,
rather than per impression. The per-click payment for bidder/slot i is simply that in (8),
scaled by 1

αi
:

pi(b) =
k∑
j=i

bj+1
αj − αj+1

αi
. (9)

Observe that the formula in (9) has the pleasing interpretation that, when its link its clicked,
an advertiser pays a suitable convex combination of the lower bids.

By historical accident, the sponsored search auctions used in real life are based on the
“Generalized Second Price (GSP)” auction [1, 3], which is a simpler (and perhaps incorrectly
implemented) version of the DSIC auction above. The per-click payment in GSP is simply the
next lowest bid. Since Myerson’s Lemma implies that the payment rule in (9) is the unique
one that yields the DSIC property, we can immediately conclude that the GSP auction is
not DSIC. It still has a number of nice properties, however, and is “partially equivalent” to
the DSIC auction in a precise sense. The Problems ask you to explore this equivalence in
detail.

References

[1] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet advertising and the Generalized
Second-Price Auction: Selling billions of dollars worth of keywords. American Economic
Review, 97(1):242–259, 2007.

8



[2] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73,
1981.

[3] H. R. Varian. Position auctions. International Journal of Industrial Organization,
25(6):1163–1178, 2007.

9


