
CS369N: Beyond Worst-Case Analysis
Lecture #7: Smoothed Analysis∗

Tim Roughgarden†

November 30, 2009

1 Context

This lecture is last on flexible and robust models of “non-worst-case data”. The idea is
again to assume that there is some “random aspect” to the data, while stopping well short
of average-case analysis. Recall our critique of the latter: it encourages overfitting a brittle
algorithmic solution to an overly specific data model.

Thus far, we’ve seen two data models that assume only that there is “sufficient random-
ness” in the data and make no other commitments.

1. In Lecture #4 we studied semirandom graph models, where nature goes first and
randomly plants a solution (like a bisection or a clique), while an adversary goes second
and is allowed to perturb nature’s choice subject to preserving the planted solution.
Recall that in the motivating problems, completely random instances were easy or
intuitively meaningless.

2. In Lecture #6 we studied pseudorandom data. Here, an adversary could choose a
distribution on the data subject to a lower bound on the “minimum randomness” of
the data. In the motivating applications (hashing and related problems), random data
was unrealistic and overly easy.

Smoothed analysis has the same flavor, with the nature and an adversary reversing roles
relative to a semirandom model: an adversary first picks an input, which is subsequently
perturbed randomly by nature. This model inherits the attractive robustness of the above
two data models, and has the additional advantage that it has a natural interpretation as a
model of “problem formation”. To explain, consider a truism that seems downbeat at first:
inaccuracies are inevitable in a problem formulation. For example, when solving a linear

∗ c©2009, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

programming problem, there is arguably the “ground truth” version, which is what you
would solve if you could perfectly estimate all of the relevant quantities (costs, inventories,
future demands, etc.) and then the (probably inaccurate) version that you wind up solving.
The latter linear program can be viewed as a perturbed version of the former one. It might
be hard to justify any assumptions about the real linear program, but whatever it is, it might
be uncontroversial to assume that you instead solve a perturbed version of it. Smoothed
analysis is a direct translation of this idea.

2 Basic Definitions

Consider a cost measure cost(A, z) for algorithms A and inputs z. In most of the smoothed
analysis applications so far, cost is the running time of A on z. For a fixed input size n and
measure σ of perturbation magnitude, the standard definition of the smoothed complexity of
A is

sup
inputs z of size n

{
Er(σ)[cost(A, z + σr(σ))]

}
, (1)

where “z + r(σ)” denotes the input obtained from z under the perturbation r(σ). For
example, z could be an element of [−1, 1]n, and r(σ) a spherical Gaussian with directional
standard deviation σ. Observe that as perturbation size σ goes to 0, this measure tends
to worst-case analysis. As the perturbation size goes to infinity, the perturbation dwarfs
the original input and the measure tends to average-case analysis (under the perturbation
distribution). Thus smoothed complexity is an interpolation between the two extremes of
worst- and average-case analysis.

We say that an algorithm has polynomial smoothed complexity if its smoothed complex-
ity (1) is a polynomial function of both n and 1/σ. In this case, the algorithm runs in
expected polynomial running time as long as the perturbations have magnitude at least
inverse polynomial in the input size.

3 Smoothed Analysis of Local Search for the TSP

3.1 The 2-OPT Heuristic

Recall that a local search algorithm for an optimization problem maintains a feasible solution,
and iteratively improves that solution via “local moves” as long as is possible, terminating
with a locally optimal solution. Local search heuristics are common in practice, in many
different application domains. For many such heuristics, the worst-case running time is
exponential while the empirical performance on “real-world data” is quite fast. Discrepancies
such as this cry out for a theoretical explanation, and provide an opportunity for smoothed
analysis.1

1Another issue with a local search heuristic, that we ignore in this lecture, is that it terminates at a locally
optimal solution that could be much worse than a globally optimal one. Here, the gap between theory and

2

We illustrate the smoothed analysis of local search heuristics with a relatively simple
example: the 2-OPT heuristic for the Traveling Salesman Problem (TSP) in the plane with
the `1 metric. The input is n points in the square [0, 1]× [0, 1]. The goal is to define a tour
(i.e., an n-cycle) v1, . . . , vn to minimize

n∑
i=1

‖vi+1 − vi‖1, (2)

where vn+1 is understood to be v1 and ‖x‖1 denotes the `1 norm |x1| + |x2|. This problem
is NP -hard. It does admit a polynomial-time approximation scheme [?], but it is slow and
local search is a common way to attack the problem in practice.

We focus on the 2-OPT local search heuristic. Here, the allowable local moves are
swaps: given a tour, one removes two edges, leaving two connected components, and then
reconnects the components in the unique way that yields a new tour (Figure ??). Such a
swap is improving if it yields a tour with strictly smaller objective function value (2). Since
there are only O(n2) possible swaps from a given tour, each iteration of the algorithm can
be implemented in polynomial time. In the worst case, however, this local search algorithm
might require an exponential number of iterations before finding a locally optimal solution [?].
In contrast, the algorithm has polynomial smoothed complexity.

Theorem 3.1 ([?]) The smoothed complexity of the 2-OPT heuristic for the TSP in the
plane with the `1 metric is polynomial. In particular, the expected number of iterations is
O(σ−1n6 log n).2

Theorem 3.1 is underspecified until we describe the perturbation model, which happily
accommodates a range of distributions. As usual, the adversary goes first and chooses an
arbitrary set of n points p1, . . . , pn in [0, 1] × [0, 1], which are then randomly perturbed by
nature. We assume only that the noise δi added to pi has a distribution given by a density
function fi satisfying fi(x) ≤ 1/σ everywhere. In particular, this forces the support of fi

to have area at least σ.3 We also assume that pi + δi lies in the square [0, 1] × [0, 1] with
probability 1.

3.2 The High-Level Plan

Most smoothed analyses have two conceptual parts. First, one identifies a sufficient condition
on the data under which the given algorithm has good performance. Second, one shows that
the sufficient condition is likely to hold for perturbed data. Generally the sufficient condition
and the consequent algorithm performance are parameterized, and this parameter can be

practice is not as embarrassing — on real data, local search algorithms can produce pretty lousy solutions.
Generally one invokes a local search algorithm many times (either with random starting points or a more
clever preprocessing step) and returns the best of all locally optimal solutions found.

2Better upper bounds are possible via a more complicated analysis [?].
3Cf., the diffuse adversaries of Lecture #2 and the block sources of Lecture #6.

3

interpreted as a “condition number” of the input.4 Thus the essence of a smoothed analysis
is showing that a perturbed instance is likely to have a “good condition number”.

For Theorem 3.1, our sufficient condition is that every swap that ever gets used by the
local search algorithm results in a significantly improved tour. Precisely, consider a local
move that begins with some tour, removes the edges (u, v), (x, y), and replaces them with
the edge (u, x), (v, y) (as in Figure ??). Note that the decrease in the TSP objective under
this swap is

‖u− v‖1 + ‖x− y‖1 − ‖u− x‖1 − ‖v − y‖1, (3)

and is independent of what the rest of the tour is. We call the swap ε-bad if (3) is strictly
between 0 and ε. We prove Theorem 3.1 by lower bounding the probability that there are
no bad ε-swaps (as a function of ε) and upper bounding the number of iterations when this
condition is satisfied. In terms of the previous paragraph, the parameter ε is playing the role
of a condition number of the input.

3.3 Proof of Theorem 3.1

The key lemma is an upper bound on the probability that there is an ε-bad swap.

Lemma 3.2 For every perturbed instance and ε > 0, the probability (over the perturbation)
that there is ε-bad swap is O(εσ−1n4).

Proof: Since there are O(n4) potential swaps, we can prove a bound of O(ε/σ) for a fixed
swap and then apply the Union Bound. Fix a swap, say of (u, v), (x, y) with (u, x), (v, y).
Each of u, v, x, y is of the form pi + δi for an adversarially fixed point pi and a random
perturbation δi. We prove the probability bound using only the random perturbation of the
point y, conditioned on an arbitrary fixed value of u, v, x.

The expression in (3) splits into two separate sums S1 and S2, one for each of the coor-
dinates. Call (S1, S2) a bad pair if S1 + S2 ∈ (0, ε). Since |S1|, |S2| ≤ 4 — each of u, v, x, y
lies in the square — the Lebesgue measure (i.e., area) of the set of bad pairs is O(ε).

With u, v, x fixed, consider varying the first coordinate y1 of y between 0 and 1. The
sum S1 takes on a given value for at most three distinct values of y1 (depending on whether
y1 is less than both v1 and x1, greater than both of them, or strictly in between them), and
similarly for S2 and y2. Thus any given pair (S1, S2) arises from at most 9 different choices
of y. Thus the Lebesgue measure of the set of values of y that result in a bad pair is O(ε).
Since in our perturbation model the density of y at any given point is at most 1/σ, the
probability that y takes on a value resulting in a bad pair is O(ε/σ). �

We now show that Lemma 3.2 implies Theorem 3.1. First, note that since all points lie in
the square [0, 1]× [0, 1], every tour has length (2) at most 2n (and at least 0). Thus, if there
are no ε-bad swaps, then the local search algorithm must terminate within 2n

ε
iterations.

4In numerical analysis, the condition number of a problem has a very precise meaning, which is roughly
the worst-case fluctuation in the output as a function of perturbations to the input. Here we use the term
much more loosely.

4

Also, the worst-case number of iterations of the algorithm is at most the number of different
tours, which is upper bounded by n!. Using these observations and Lemma 3.2, we have

E[# of iterations] =
N !∑

M=1

Pr[# of iterations ≥ M]

≤
N !∑

M=1

Pr

[
there is a

2n

M
-bad swap

]

≤
N !∑

M=1

O

(
n5

Mσ

)
= O

(
σ−1n6 log n

)
,

where the final step uses the estimate ln(n!) = O(n log n) for the harmonic series 1 + 1
2

+
· · ·+ 1

n!
.

4 Smoothed Analysis of the Perceptron Algorithm

4.1 Smoothed Analysis of the Simplex Method

Recall the simplex algorithm for linear programming, which has exponential worst-case run-
ning time but is almost always very fast in practice. The “killer application” of smoothed
analysis is the result that the simplex algorithm has polynomial smoothed complexity [?].
Recall that an implementation of the simplex method requires a choice of a pivot rule —
which dictates which polytope vertex to go to next, when there are multiple adjacent vertices
with better objective function values — and the result of Spielman and Teng [?] concerns
the “shadow pivot rule” [?]. This is the same pivot rule that was analyzed in the average-
case analyses of the simplex method in the 1980s (e.g. [?]). The idea is to project the
high-dimensional feasible region onto a plane (the “shadow”), where running the simplex
algorithm is easy. Every vertex in the projection is a vertex of the original polytope, though
some of the former’s vertices will be sucked into the interior of the shadow. It is non-trivial
but feasible to project in a way that ensures that the optimal solution appears as a vertex in
the shadow. In terms of the high-level plan in Section 3.2, a sufficient condition for a poly-
nomial running time is the that the number of vertices of the shadow is only polynomial.
The hard work in [?] is to prove that this sufficient condition holds for perturbed inputs.

4.2 From Linear Programming to Containing Halfspaces

The original analysis of Spielman and Teng [?] has been improved and simplified [?, ?] but
remains too technical to cover here. We instead discuss a nice but weaker guarantee of Blum
and Dunagan [?] for a different algorithm that can be used to solve linear programs, called
the perceptron algorithm. To motivate the algorithm, we discuss how linear programming
reduces to finding a single halfspace that contains a given set of points on the sphere.

5

Consider a linear program of the form

max cT y

subject to
Ay ≤ b.

We consider only the feasibility version of this linear program, meaning for a target objective
function value c∗ we search for a feasible solution to the linear system

cT y ≥ c∗

Ay ≤ b.

These two problems are polynomial-time equivalent in the standard sense (just binary search
over all the choices for c∗), but this reduction isn’t really kosher in the context of smoothed
complexity — since the constraint cT y ≥ c∗ is being imposed by an outer algorithm loop,
there’s no justification for perturbing it.

Given a linear system as above, it can be reduced to solving a linear system of the form
Xw < 0, where X is a constraint matrix and w is the vector of decision variables, with
the additional constraint that each row xi lies on the sphere (‖x‖2 = 1). The idea of the
reduction is to introduce a dummy variable set to 1 in order to “homogenize” the right-hand
side (c∗, b) and then rescale all the constraints; we leave the details as an exercise.5 In other
words, we seek a vector w such that w · xi < 0 for every i, which is the same as seeking a
halfspace (for which w is the normal vector) that contains all of the xi’s. For the rest of this
lecture, we focus on this version of the problem.

4.3 The Perceptron Algorithm

The perceptron algorithm is traditionally used for classification. The input is n points
in Rd, rescaled to lie on the d-sphere, and a label bi ∈ {−1, +1} for each. The goal is to
find a halfspace that puts all of the “+1 points” on one side and the “-1 points” on the
other side (Figure ??). This “halfspace separation” problem is equivalent to the “halfspace
containment” problem derived in the previous section (just replace the “+1 points” with the
corresponding antipodal points). The algorithm itself is extremely simple. The motivation
for the mail step is that it makes the candidate solution w “more correct” on xi, by increasing
wt · xi by bixi · xi = ‖xi‖2

2 = 1. Of course, this update could screw up the classification of
other xi’s, and we need to prove that the procedure eventually terminates.

Theorem 4.1 ([?]) If there is a unit vector w∗ such that sgn(w∗ · xi) = bi for every i,
then the Perceptron algorithm terminates with a feasible solution wt in at most 1/gamma2

iterations, where
γ = min

i
|w∗ · xi|. (4)

5In fact, this introduces an extra technical constraint that the dummy variable has to be non-zero. We
ignore this detail throughout the lecture but it is not hard to accommodate, see Blum and Dunagan [?].

6

Input: n points on the sphere x1, . . . , xn with labels b1, . . . , bn ∈ {−1, +1}.

1. Initialize t to 1 and w1 to the all-zero vector.

2. While there is a point xi such that sgn(w ·xi) 6= bi, increment t and set wt = wt−1+bixi.

Figure 1: The Perceptron Algorithm.

Geometrically, the parameter γ is the cosine of the smallest angle that a point xi with the
separating halfspace defined by w∗ (Figure ??).6 In classification problems, this is often called
the margin. It can be viewed as a condition number in the sense discussed in Section 3.2.
Since Theorem 4.1 applies to every feasible unit vector w∗, one typically thinks of w∗ as the
solution that maximizes the margin γ and gives the tightest upper bound.

Obviously, the bound in Theorem 4.1 is not so good when the margin γ is tiny, and it
is known that the perceptron algorithm can require an exponential number of iterations to
converge. The hope is that perturbed instances have reasonably large margins, in which case
Theorem 4.1 will imply a good upper bound on the smoothed complexity of the perceptron
algorithm.

Proof of Theorem 4.1: We first claim an upper bound on the rate of growth of the norm of
the vector w: for every iteration t,

‖wt+1‖2 ≤ ‖wt‖2 + 1. (5)

For the proof, let xi be the point chosen in iteration t and write

‖wt+1‖2 = ‖wt + bixi‖2 = ‖wt‖2 + ‖x1‖2 + 2bi(wt · xi) ≤ ‖wt‖2 + 1,

where in the inequality we use the facts that xi lies on the sphere and that bi(wt · xi) ≤ 0
(since sgn(wt · xi) 6= bi).

Second, we claim a lower bound on the rate of growth of the projection of the vector w
onto the assumed feasible solution w∗: for every t,

wt+1 · w∗ ≥ wt · w∗ + γ, (6)

where γ is defined as in (4). For the proof, let xi be the point chosen in iteration t and write

wt+1 · w∗ = (wt + bixi) · w∗ = wt · w∗ + bi(xi · w∗) ≥ wt + γ,

where in the inequality we use the definition of γ and the fact that sgn(xi · w∗) = bi.
Inequalities (5) and (6) imply that, after t iterations,

√
t ≥ ‖wt+1‖ = ‖wt+1‖‖w∗‖ ≥ wt+1 · w∗ ≥ tγ;

recall that w∗ is a unit vector. This implies that the iteration count t never exceeds 1/γ2. �

6This is also the formal definition of γ when the xi’s are not unit vectors, as will be the case in Section 4.4.
This corresponds to normalizing (4) by ‖xi‖.

7

4.4 The Condition Number of Perturbed Instances

We now outline the argument why perturbed instances have large margins, and hence the
perceptron algorithm has good smoothed complexity. The proof essentially boils down to
some basic properties of high-dimensional Gaussians, as previously seen in Lecture #4 when
we discussed learning mixtures of Gaussians. We will be similarly hand-wavey in this lecture,
though all of the intuitions are accurate and can be made precise, with some work.

An annoying technical issue that pervades smoothed and average-case analyses of linear
programming is dealing with infeasible inputs. The polynomial smoothed complexity of the
simplex method [?] is valid regardless of whether or not a perturbation results in a feasible
instance (with infeasible instances detected as such). As stated, the perceptron algorithm
will not converge on an infeasible instance and so we cannot hope for an analogously strong
result for it. We avoid this issue by defining a perturbation model that only yields feasible
instances.

Precisely, we first allow an adversary to choose points x1, . . . , xn on the sphere in Rd and
a unit vector w∗. Then, nature adds a random perturbation to each xi. We assume that each
perturbation is a spherical Gaussian with directional standard deviation σ, although other
distributions will also work fine.7 Finally, we define the label bi of the perturbed version x̂i

of xi as sgn(w∗ · x̂i). That is, we label the x̂i’s so that w∗ is a feasible solution.
What is the margin (4) of such a perturbed instance? For convenience, we assume that

the dimension d is large (polynomial in n) so that we can rely on concentration bounds for
high-dimensional Gaussians (although the results hold in any dimension). We also assume
that σ is small (at most 1/d, say). Now consider a single perturbed point x̂i = xi + δi. We
want to lower bound the magnitude of the cosine of the angle between x̂i and w∗, which is

|w∗ · (xi + δi)|
‖xi + δi‖

. (7)

The denominator is close to 1 as long as the directional standard deviation σ is small. In
more detail, we have

‖xi + δi‖2 = ‖xi‖2︸ ︷︷ ︸
=1

+‖δi‖2 + 2(xi · δi). (8)

Recall from Lecture #4 (Counterintuitive Fact #1) that high-dimensional spherical Gaus-
sians are well approximated by the uniform distribution on a suitable sphere; here, this
translates to ‖δi‖2 being sharply concentrated around dσ2. Also, xi · δi — the projection
length of the spherical Gaussian δi along the fixed unit vector (direction) xi — is distributed
like a one-dimensional Gaussian with zero mean and standard deviation σ. The magnitude
of this projection length is thus concentrated around σ. Thus, the expression (8) is very
close to 1 with high probability. By the same reasoning, in the numerator of (7), |w∗ · δi|
is concentrated around σ. Finally, the perturbed margin (7) is minimized when w∗ · xi = 0
(this is intuitive but a little technical to make rigorous).

7This perturbation knocks the points off of the sphere, but not by much if σ is small. We will be thinking
of σ as much less than 1/

√
d, where d is number of dimensions.

8

Summarizing, the denominator in (7) lies in [1
2
, 2] (say) with very high probability, and in

the worst case the numerator in (7) is distributed like the absolute value of a Gaussian with
standard deviation σ. It follows that, for every ε > 0, the probability that (7) is more than ε
is O(ε/σ). By a Union Bound, the probability that (4) is more than ε for any point xi —
i.e., the probability that the margin (4) is more than ε — is O(nε/σ). Applying Theorem 4.1
shows that the perceptron algorithm has good smoothed complexity in the following sense.

Theorem 4.2 ([?]) For every ε > 0, the perceptron algorithm halts on a perturbed instance
within

O

(
n2

σ2ε2

)
iterations with probability at least 1− ε.

Unlike Theorem 3.1 (and also unlike the analysis of the simplex method in [?]), the quadratic
dependence on 1

ε
in the guarantee of Theorem 4.2 precludes concluding that the expected

running time of the perceptron algorithm is polynomial on a perturbed instance. (Mimicking
the proof of Theorem 3.1 yields a bound proportional to the square root of the worst-case
number of iterations.) Thus Theorem 4.2 shows only the weaker but still interesting fact
that the perceptron algorithm has polynomial smoothed complexity with high probability.

9

