
Algorithms: Design
and Analysis, Part II

Local Search

Principles of Local

Search



Neighborhoods

Let X = set of candidate solutions to a problem.

Examples: Cuts of a graph, TSP tours, CSP variable assignments

Key ingredient: Neighborhoods

- For each x ∈ X , specify which y ∈ X are its “neighbors”

Examples: x , y are neighboring cuts ⇐⇒ Differ by moving one
vertex

x , y are neighboring variable assignments ⇐⇒ Differ in the value
of a single variable

x , y are neighboring TSP tours ⇐⇒ Differ by 2 edges
u

w

v

x

u

w

v

x

Tim Roughgarden



A Generic Local Search Algorithm

(1) Let x = some initial solution.

(2) While the current solution x has a superior neighboring
solution y :

Set x := y

(3) Return the final (locally optimal) solution x

Tim Roughgarden



FAQ

Question: How to pick initial solution x?

Answer #1: Use a random solution.
⇒ Run many independent trials of local search, return the best locally
optimal solution found.

Answer #2: Use your best heuristics
(i.e., use local search as a postprocessing step to make your solution even
better).

Question #2: If there are superior neighboring y , which to choose?

Possible answers: (1) Choose at random, (2) biggest improvement, (3)
more complex heuristics.

Question #3: How to define neighborhoods?

Note bigger neighborhoods ⇒ slower to verify local optimality, but fewer
(bad) local optima

Answer: Find “sweet spot” between solution quality and efficient

searchability. Tim Roughgarden



FAQ II

Question: Is local search guaranteed to terminate (eventually)?

Answer: If X is finite and every local step improves some objective
function, then yes.

Question: Is local search guaranteed to converge quickly?

Answer: Usually not. [though it often does in practice] (see
“smoothed analysis”)

Question: Are locally optimal solutions generally good
approximations to globally optimal ones?

Answer: No. [To mitigate, run randomized local search many
times, remember the best locally optimal solution found]

Tim Roughgarden


