Greedy Algorithms

% Application: Optimal
Caching

Algorithms: Design
and Analysis, Part I



The Caching Problem

Small fast memory (the cache).
Big slow memory.
Process sequence of “page requests”.

On a “fault” (that is, a cache miss), need to evict something from
cache to make room — but what?

Tim Roughgarden



Example

Cache: [3B] <] 4]

e f

Request sequence: cdefab

= 4 page faults
- 2 were inevitable (e & f)
- 2 consequences of poor eviction choices (should have
evicted ¢ & d instead of a & b)

Tim Roughgarden



The Optimal Caching Algorithm

Theorem: The “furthest-in-future” algorithm is
optimal (i.e., minimizes the number of cache misses).

Why useful?
1. Serves as guideline for practical algorithms (e.g., Least
Recently Used (LRU) should do well provided data exhibits
locality of reference).

2. Serves as idealized benchmark for caching algorithms.

Proof: Tricky exchange argument. Open question: Find a simple
proof!

Tim Roughgarden



