Huffman Codes

f

Algorithms: Design
and Analysis, Part I

A Greedy Algorithm



Codes as Trees

Input: Probability p; for each character i € ¥.

Output: Binary tree (with leaves <+ symbols of ¥) minimizing the
average encoding length:

L(T)=">_ pildepth of i in T]
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Building a Tree

Question: What's a principled approach for building a tree with
leaves <> symbols of X7

Natural but suboptimal idea: Top-down/divide+conquer.

- Partition X into X1, ¥5 each with =50% of total frequency.

- Recursively compute T for X1, T, for X5, return:

Huffman's (optimal) idea: Build tree bottom-up using successive
mergers.
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A Greedy Approach

Question: Which pair of symbols is “safe” to merge?

Observation: Final encoding length of i € ¥ = # of mergers its

subtree endures.

[Each merger increases encoding length of participating symbols by
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Greedy heuristic: In first iteration, merge the two symbols with the

smallest frequencies.
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How to Recurse?

Suppose: 1st iteration of algorithm merges symbols a & b.
Idea: Replace symbols a, b by a new “meta-symbol” ab.

Question: What should be the frequency p,p of this meta-symbol?
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Example
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Huffman's Algorithm

(Given frequencies p; as input)
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Let a, b € ¥ have the smallest frequencies.

Let X' = X with a, b replaced by new symbol ab.

Define pap = pa + pb.

Recursively compute T’ (for the alphabet ')

Extend T’ (with leaves <+ ¥') to a tree T with leaves <+ X by
splitting leaf ab into two leaves a & b.

/
/r
/
@

If |X| = 2 return

Return T
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