
Algorithms: Design
and Analysis, Part II

Exact Algorithms for
NP-Complete Problems

Smarter Search for
Vertex Cover



The Vertex Cover Problem

Given: An undirected graph G = (V ,E ).

Goal: Compute a minimum-cardinality vertex cover (a set S ⊆ V
that includes at least one endpoint of each edge of E ).

Suppose: Given a positive integer k as input, we want to check
whether or not there is a vertex cover with size ≤ k . [Think of k
as “small”]

Note: Could try all possibilities, would take ≈
(n
k

)
= Θ(nk) time.

Question: Can we do better?

Tim Roughgarden



A Substructure Lemma

Substructure Lemma: Consider graph G , edge (u, v) ∈ G , integer k ≥ 1.
Let Gu = G with u and its incident edges deleted (similarly, Gv ). Then G
has a vertex cover of size k ⇐⇒ Gu or Gv (or both) has a vertex cover
of size (k − 1)

Proof: (⇐) Suppose Gu (say) has a vertex cover S of size k − 1. Write E
= Eu (inside Gu) ∪ Fu (incident to u)

Guu

Fu

Eu

Since S has an endpoint of each edge of Eu, S ∪ {u} is a vertex cover (of
size k) of G .

(⇒) Let S = a vertex cover of G of size k . Since (u, v) an edge of G , at

least one of u, v (say u) is in S . Since no edges of Eu incident on u,

S − {u} must be a vertex cover (of size k − 1) of Gu. QED!

Tim Roughgarden



A Search Algorithm

[Given undirected graph G = (V ,E ), integer k]

[Ignore base cases]

(1) Pick an arbitrary edge (u, v) ∈ E .

(2) Recursively search for a vertex cover S of size (k − 1) in Gu

(G with u + its incident edges deleted).
If found, return S ∪ {u}.

(3) Recursively search for a vertex cover S of size (k − 1) in Gv .
If found, return S ∪ {v}.

(4) FAIL. [G has no vertex cover with size k]

Tim Roughgarden



Analysis of Search Algorithm

Correctness: Straightforward induction, using the substructure
lemma to justify the inductive step.

Running time: Total number of recursive calls is O(2k) [branching
factor ≤ 2, recursion depth ≤ k] (formally, proof by induction on
k)

- Also, O(m) work per recursive call (not counting work done by
recursive subcalls)

Polynomial-time as long as k = O(log n)

⇒ Running time = O(2km)

Remains feasible even when k ≈ 20

Way better than Θ(nk)!

Tim Roughgarden


