All-Pairs Shortest
% Paths (APSP)

Algorithms: Design Johnson’s Algorithm

and Analysis, Part I

Example

Note: Adding s does not add any new u-v paths for any u,v € G.

Key insight: Define vertex weight p, := length of a shortest s-v
path.

Tim Roughgarden

Example (con'd)

Recall: For each edge e = (u, V), define ¢, = ce + pu — pv.

Note: After reweighting, all edge lengths nonnegative! = Can
compute all (reweighted) shortest paths via n Dijkstra

computations! [No need for Bellman-Ford]
Tim Roughgarden

Johnson’s Algorithm

Input: Directed graph G = (V, E), general edge lengths c..
(1) Form G’ by adding a new vertex s and a new edge (s, v) with

length 0 for each v € G.

(2) Run Bellman-Ford on G’ with source vertex s. [If B-F detects a
negative-cost cycle in G’ , halt + report this.]

(3) For each v € G, define p, = length of a shortest s — v path in G'.
For each edge e = (u,v) € G, define ¢, = ce + p, — pv-

(4) For each vertex u of G: Run Dijkstra's algorithm in G, with edge
lengths {c.}, with source vertex u, to compute the shortest-path
distance d’(u, v) for each v € G.

(5) For each pair u,v € G, return the shortest-path distance
d(u,v) :=d'(u,v) — pu+ pv

Tim Roughgarden

Analysis of Johnson's Algorithm

Running time: O(n) + O(mn) + O(m) + O(nmlogn) + O(n?)

N

Step (1), form G’ Step (2), run BF Step (3), form ¢’ Step (4), n Dijkstra Step (5), O(1) work per u-v pair

= O(mnlog n). [Much better than Floyd-Warshall for sparse
graphs!]

Correctness: Assuming c, > 0 for all edges e (see next slide for
proof), correctness follows from last video's quiz.

[Reweighting doesn’t change the shortest u-v path, it just adds
(pu — pv) to its length]

Tim Roughgarden

Correctness of Johnson's Algorithm

Claim: For every edge e = (u, v) of G, the reweighted length
¢l = Ce + pu — pv is nonnegative.

()= (D)
\'f,/, v/
™
G — ol
P)
— ™
(s)
N

Proof: Fix an edge (u,v). By construction,
pu = length of a shortest s-u path in G’
py, = length of a shortest s-v path in G’
Let P = a shortest s-u path in G’ (with length p,
)
= P+ (u,v) = an s-v path with length p, + c,
= Shortest s-v path only shorter, so p, < p, + cu
= CL,“/ =Cuw + Pu—PpPv > Q\\QEDl///

Tim Roughgarden

