
Algorithms: Design
and Analysis, Part II

Huffman Codes

A Greedy Algorithm

Codes as Trees

Input: Probability pi for each character i ∈ Σ.

Output: Binary tree (with leaves ↔ symbols of Σ) minimizing the
average encoding length:

L(T) =
∑
i∈Σ

pi [depth of i in T]

1

A

B

C D

0

0

0 1

1

Tim Roughgarden

Building a Tree

Question: What’s a principled approach for building a tree with
leaves ↔ symbols of Σ?

Natural but suboptimal idea: Top-down/divide+conquer.
- Partition Σ into Σ1,Σ2 each with ≈50% of total frequency.
- Recursively compute T1 for Σ1, T2 for Σ2, return:

T1 T2

Huffman’s (optimal) idea: Build tree bottom-up using successive
mergers.

A B C D

A B
C D

B

C D

A

A
B

C D

Tim Roughgarden

A Greedy Approach

Question: Which pair of symbols is “safe” to merge?

Observation: Final encoding length of i ∈ Σ = # of mergers its
subtree endures.
[Each merger increases encoding length of participating symbols by
1]

1

A B C D

A B
C D

B

C D

A

A
B

C D

0 1

0

0

1

1

0
0

0

1

1

Greedy heuristic: In first iteration, merge the two symbols with the
smallest frequencies.

Tim Roughgarden

How to Recurse?

Suppose: 1st iteration of algorithm merges symbols a & b.

Idea: Replace symbols a, b by a new “meta-symbol” ab.

Question: What should be the frequency pab of this meta-symbol?
A) max{pa, pb}
B) min{pa, pb}
C) pa + pb since ab is a proxy for “a or b” (intuitively)

D) pa − pb

Tim Roughgarden

Example

A B C D

A B

A

A B C D

C D

A

B

0

0

1

1

A

B

C D

60 25 10 5

DC

60 25 15

60

CB D

40

0 1

0

0

1

1

1
0

pD = 5%

pA = 60%

pB = 25%

pC = 10%

Tim Roughgarden

Huffman’s Algorithm

(Given frequencies pi as input)

If |Σ| = 2 return
1

A B

0

Let a, b ∈ Σ have the smallest frequencies.
Let Σ′ = Σ with a, b replaced by new symbol ab.
Define pab = pa + pb.
Recursively compute T ′ (for the alphabet Σ′)
Extend T ′ (with leaves ↔ Σ′) to a tree T with leaves ↔ Σ by

splitting leaf ab into two leaves a & b.

10

ab

a b

T ′

T

Return T
Tim Roughgarden

