Huffman Codes

f

Algorithms: Design
and Analysis, Part I

Correctness Proof

Correctness of Huffman's Algorithm

Theorem: Huffman's algorithm computes a binary
tree (with leaves <> symbols of ¥) that minimizes the average
encoding length

L(T) = pildepth of leaf i in T].
i€ex
Proof: By induction on n = |X|. (Can assume n > 2.)

When n = 2, algorithm outputs the optimal tree.

(Needs 1 bit per symbol) &
0 1

Fix input with n = |X| > 2.

Algorithm solves smaller subproblems (for
Y') optimally.

Tim Roughgarden

Inductive Step

Let ¥’ = X with a, b (symbols with smallest frequencies) replaced
by meta-symbol ab. Define p,p, = ps + pp.

Recall: Exact correspondence between:

Trees for &
that have a,b
as siblings

KXap

Important: For every such pair 7" and T, L(T) — L(T’) is (after
cancellation)

p. [a's depth in T] +pp [b's depth in T] -p., [ab’s depth in T'] =
\ —

Each is one more than

= pa(d+1)+ pp(d+1) — (pa+ pp)d = ps+ pp, Independent of T, T'!

Tim Roughgarden

Proof of Theorem

Inductive hypothesis: Huffman's algorithm computes a tree T
that minimizes L(T’) for ¥'.

Upshot of last slide: Corresponding tree T minimizes L(T) for ¥
over all trees in X,

Key lemma: There is an optimal tree
(for X) in Xsp. [i.e., a & b were “safe” to merge]

Intuition: Can make an optimal tree better by pushing a & b as
deep as possible (since a, b have smallest frequencies).

Tim Roughgarden

Proof of Key Lemma

By exchange argument. Let T* be any tree that minimizes L(T)
for . Let x, y be siblings at the deepest level of T*.

The exchange: Obtain T from T* by swapping a <+ x, b+ y
T* O T

-

“ % o b
A

§)) (\,;\ ;7,/
@) _ o 0O y
s

b T

Note: T € X,p (by choice of x, y).

To finish: Will show that L(T) < L(T*)
[= T also optimal, completes proof]

e v

Reason:)
L(T*)—=L(T) = (px—pa) [x'sdepthin T* - a'sdepthin T%

(py — pp) [y's depth in T* -\b's depth in T*]
g~ QED! \

> 0 since a, b have smallest frequencies > 0 by choice of x, y

v +

Notes on Running Time

Naive implementation: O(n?) time, where n = |X|.

Speed ups: - Use a heap! [to perform repeated minimum
computations]

- Use keys = frequencies

- After extracting the two smallest-frequency symbols, re-Insert the
new meta-symbol [new key = sum of the 2 old ones]

= lterative, O(nlog n) implementation.

Even faster: Sorting + O(n) additional work.
- Manage (meta-)symbols using two queues.

Tim Roughgarden

