
Algorithms: Design
and Analysis, Part II

Approximation Algorithms
for NP-Complete Problems

A Greedy Knapsack

Heuristic



Strategies for NP-Complete Problems

(1) Identify computationally tractable special cases.

Example: Knapsack instances with small capacity [i.e., knapsack
capacity W = polynomial in number of items n]

(2) Heuristics → today

- Pretty good greedy heuristic
- Excellent dynamic programming heuristic

}
→ For Knapsack

(3) Exponential time but better than brute-force search

Example: O(nW )-time dynamic programming vs. O(2n)
brute-force search.

Ideally: Should provide a performance guarantee (i.e., “almost

correct”) for all (or at least many) instances.

Tim Roughgarden



Knapsack Revisited

Input: n items. Each has a positive value vi and a size wi . Also,
knapsack capacity is W .

Output: A subset S ⊆ {1, 2, . . . , n} that

Maximizes
∑

i∈S vi
Subject to

∑
i∈S wi ≤W

Tim Roughgarden



A Greedy Heuristic

Motivation: Ideal items have big value, small size.

Step 1: Sort and reindex item so that
v1
w1
≥ v2

w2
≥ . . . ≥ vn

wn
[i.e., nondecreasing “bang-per-buck”]

Step 2: Pack items in this order until one doesn’t fit, then halt.

Example:

v1 = 2 w1 = 1
W=5 v2 = 4 w2 = 3

v3 = 3 w3 = 3
⇒ Greedy gives {1, 2} [also optimal]

Tim Roughgarden



Quiz

Consider a Knapsack instance with W = 1000 and
v1 = 2 w1 = 1
v2 = 1000 w2 = 1000

Question: What is the value of the greedy solution and the optimal
solution, respectively?

A) 2 and 1000 C) 1000 and 1002
B) 2 and 1002 D) 1002 and 1002

Tim Roughgarden



A Refined Greedy Heuristic

Upshot: Greedy solution can be arbitrarily bad relative to an
optimal solution.

Fix: Add:

Step 3: Return either the Step 2 solution, or the maximum
valuable item, whichever is better.

Theorem: Value of the 3-step greedy solution is always ≥ 50%·
value of an optimal solution. [Also, runs in O(n log n) time]

[i.e., a “1
2 -approximation algorithm”]

Tim Roughgarden


