Exact Algorithms for
% NP-Complete Problems

A Dynamic Programming

Algorithms: Design Algorithm for TSP
and Analysis, Part I

The Subproblems

Moral of last video: To enforce constraint that each vertex visited
exactly once, need to remember the identities of vertices visited in
a subproblem.

Subproblems: For every destination j € {1,2,...,n}, every subset
S C{1,2,...,n} that contains 1 and j, let

Lsj = minimum length of a path from 1 to j that visits precisely
the vertices of S [exactly once each]

Tim Roughgarden

Optimal Substructure

Optimal Substructure Lemma: Let P be a shortest path from 1 to
J that visits the vertices S (assume |S| > 2) [exactly once each]. If
last hop of P is (k,j), then P’ is a shortest path from 1 to k that

visits every vertex of S — {j} exactly once. [Proof =

straightforward “cut+paste”]
O— -
1)/

Corresponding recurrence:

Lsj= minkes kzi{ls— {1k + Chi}
[“size” of subproblem = |S]]

Tim Roughgarden

A Dynamic Programming Algorithm

Let A = 2-D array, indexed by subsets S C {1,2,...,n} that contain 1
and destinations j € {1,2,...,n}

Base case:
A[S,1] = 0if S={1}
’ ~+00 otherwise [no way to avoid visiting vertex (twice)]
For m=2,3,...,n[m = subproblem size]
For each set S C {1,2,...,n} of size m that contains 1

Foreachje€S,j#1
A[S,j] = minkes k£ {A[S — {Jj}, k] + ¢} [same as recurrence]
Return minj—, ,{ A[{1,2,...,n},j] + ¢1 }
e

min cost from 1 to j visiting everybody once cost of final hop of tour

Running time: O(n 2") O(n) =0(n?2")
/ e

choices of j - choices of S = # of subproblems work per subproblem

Tim Roughgarden

