
Algorithms: Design
and Analysis, Part II

Minimum
Spanning Trees

Problem Definition

Overview

Informal Goal: Connect a bunch of points together as cheaply as
possible.

Applications: Clustering (more later), networking.

Blazingly Fast Greedy Algorithms:

- Prim’s Algorithm [1957; also Dijkstra 1959, Jarnik 1930]

- Kruskal’s algorithm [1956]

⇒ O(m log n) time (using suitable data structures)

of vertices

of edges

Tim Roughgarden

Problem Definition

vertices edges

Input: Undirected graph G = (V , E) and a cost ce for each edge
e ∈ E .

- Assume adjacency list representation (see Part I for details)
- OK if edge costs are negative

Output: minimum cost tree T ⊆ E that spans all vertices .

i.e., sum of edge costs

I.e.: (1) T has no cycles, (2) the subgraph (V ,T) is connected
(i.e., contains path between each pair of vertices).

the MST

(disallowed)

2

1

4

5

3

not a spanning tree

a b

c d

Tim Roughgarden

Standing Assumptions

Assumption #1: Input graph G is connected.

- Else no spanning trees.

- Easy to check in preprocessing (e.g., depth-first search).

Assumption #2: Edge costs are distinct.

- Prim + Kruskal remain correct with ties (which can be broken
arbitrarily).

- Correctness proof a bit more annoying (will skip).

Tim Roughgarden

