
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

WIS in Path Graphs:

A Linear-Time Algorithm

The Story So Far

Upshot: If we knew whether or not vn is in the max-weight IS,
then could recursively compute the max-weight IS of G ′ or G ′′ and
be done.

Proposed algorithm:
- Recursively compute S1 = max-weight IS of G ′

- Recursively compute S2 = max-weight IS of G ′′

- Return S1 or S2 ∪ {vn}, whichever is better.

Good news: Correct. [Optional exercise - prove formally by
induction]

Bad news: Exponential time.

Tim Roughgarden

The $64,000 Question

Important question: How many distinct subproblems ever get
solved by this algorithm?
A) Θ(1)

B) Θ(n)

C) Θ(n2)

D) Θ(2n)

Only 1 for each “prefix” of the graph!

[Recursion only plucks vertices off from the right]

Tim Roughgarden

Eliminating Redundancy

Obvious fix: The first time you solve a subproblem cache its
solution in a global table for O(1)-time lookup later on.
[“memoization”]

Even better: Reformulate as a bottom-up iterative algorithm. Let
Gi = 1st i vertices of G .

Plan: Populate array A left to right with A[i] = value of
max-weight IS of Gi .

Initialization: A[0] = 0,A[1] = w1

Main loop: For i = 2, 3, . . . , n:

A[i] = max{ A[i − 1] , A[i − 2] + wi }

Case 1 - max-wt IS of Gi−1 Case 2 - max-wt IS of Gi−2 + {vn}

Run time: Obviously O(n), Correctness: Same as recursive version.

Tim Roughgarden

