
Algorithms: Design
and Analysis, Part II

Exact Algorithms for
NP-Complete Problems

The Traveling

Salesman Problem



The Traveling Salesman Problem

Input: A complete undirected graph with nonnegative edge costs.

Output: A minimum-cost tour (i.e., a cycle that visits every vertex
exactly once).

4

1

2

5

OPT = 13

6

3

Brute-force search: Takes ≈ n! time
[tractable only for n ≈ 12, 13]

Dynamic Programming: Will obtain O(n22n) running time
[tractable for n close to 30]

Tim Roughgarden



A Optimal Substructure Lemma?

Idea: Copy the format of the Bellman-Ford algorithm.

Proposed subproblems: For every edge budget i ∈ {0, 1, . . . , n},
destination j ∈ {1, 2, . . . , n}, let
Lij = length of a shortest path from 1 to j that uses at most i
edges.

Question: What prevents using these subproblems to obtain a
polynomial-time algorithm for TSP?
A) There is a super-polynomial number of subproblems

B) Can’t efficiently compute solutions to bigger subproblems
from smaller ones

C) Solving all subproblems doesn’t solve original problem

D) Nothing!

Tim Roughgarden



A Optimal Substructure Lemma II?

Proposed subproblems: For every edge budget i ∈ {0, 1, . . . , n},
destination j ∈ {1, 2, . . . , n}, let
Lij = length of shortest path from 1 to j that uses exactly i edges.

Question: What prevents using these subproblems to obtain a
polynomial-time algorithm for TSP?
A) There is a super-polynomial number of subproblems

B) Can’t efficiently compute solutions to bigger subproblems
from smaller ones

C) Solving these subproblems doesn’t solve original problem

D) Nothing!

Tim Roughgarden



A Optimal Substructure Lemma III?

Proposed subproblems: For every edge budget i ∈ {0, 1, . . . , n},
destination j ∈ {1, 2, . . . , n}, let
Lij = length of shortest path from 1 to j with exactly i edges and
no repeated vertices

Question: What prevents using these subproblems to obtain a
polynomial-time algorithm for TSP?
A) There is a super-polynomial number of subproblems

B) Can’t efficiently compute solutions to bigger subproblems
from smaller ones

C) Solving these subproblems doesn’t solve original problem

D) Nothing!

Tim Roughgarden



A Optimal Substructure Lemma III? (con’d)

Hope: Use the following recurrence: Lij = mink 6=1,j{ Li−1,k + ckj }

shortest path from 1 to k, (i − 1) edges no repeated vertices cost of final hop

already here?

1

k j

what if j

Problem: What if j already appears on the shortest 1→ k path
with (i − 1) edges and no repeated vertices?
⇒ Concatenating (kij) yields a second visit to j (not allowed)

Upshot: To enforce constraint that each vertex visited exactly
once, need to remember the identities of vertices visited in
subproblem.

Tim Roughgarden


