
Algorithms: Design
and Analysis, Part II

Advanced
Union-Find

Path Compression: The

Hopcroft-Ullman Analysis

Hopcroft-Ullman Theorem

Theorem: [Hopcroft-Ullman 73] With Union by Rank and path
compression, m UNION+FIND operations take O(m log∗ n) time,
where log∗ n = the number of times you need to apply log to n
before the result is ≤ 1.

[Will focus on interesting case where m = Ω(n)]

Tim Roughgarden

Measuring Progress

Intuition: Installing shortcuts should significantly speed up
subsequent FINDs+UNIONs.

Question: How to track this progress and quantify the benefit?

Idea: Consider a non-root object x . Recall: rank[x] frozen

Progress measure: rank[parent[x]] - rank[x]

Path compression increases this progress measure: If x has old
parent p, new parent p′ 6= p, then rank[p′]>rank[p].

3

 ranks increase

0

1

2

3

0 0

1

0
1

2

0 0

1

7 7

x

p

p′

6

4

1

5

2 3

6 5

4

1 2 3

Tim Roughgarden

Proof Setup

16 65536

Rank blocks: {0}, {1}, {2, 3, 4}, {5, . . . , 24 }, {17, 18, . . . , 216 },
{65537, . . . , 265536}, . . . , {. . . , n}
Note: There are O(log∗ n) different rank blocks.

Semantics: Traversal x → parent(x) is “fast progress” ⇐⇒
rank[parent[x]] in larger block than rank[x]

Definition: At a given point in time, call object x good if
(1) x or x ’s parent is a root OR

(2) rank[parent[x]] in larger block than rank[x]

x is bad otherwise.

Tim Roughgarden

Proof of Hopcroft-Ullman

Point: Every FIND visits only O(log∗ n) good nodes [2 + # of
rank blocks = O(log∗ n)]

Upshot: Total work done during m operations = O(m log∗ n)
(visits to good objects) + total # of visits to bad nodes (need to
bound globally by separate argument)

Consider: A rank block {k + 1, k + 2, . . . , 2k}.
Note: When a bad node is visited

x

its parent is changed to one with strictly larger rank ⇒ Can only
happen 2k times before x becomes good (forevermore).

Tim Roughgarden

Proof of Hopcroft-Ullman II

Total work: O(m log∗ n) + O(# visits to bad nodes).

≤ n for each of O(log∗ n) rank blocks

Consider: A rank block {k + 1, k + 2, . . . , 2k}.
Last slide: For each object x with final rank in this block, # visits

to x while x is bad is ≤ 2k .

Rank Lemma: Total number of objects x with final rank in this

rank block is
∑2k

i=k+1 n/2i ≤ n/2k .

≤ n visits to bad objects in this rank block.

Recall: Only O(log∗ n) rank blocks.

Total work: O((m + n) log∗ n).
Tim Roughgarden

