
Algorithms: Design
and Analysis, Part II

Minimum
Spanning Trees

Implementing

Kruskal’s Algorithm

via Union-Find



Kruskal’s MST Algorithm

- Sort edges in order of increasing cost. (O(m log n), recall
m = O(n2) assuming nonparallel edges)
- T = ∅

- For i = 1 to m (O(m) iterations)
- If T ∪ {i} has no cycles (O(n) time to check for cycle [Use

BFS or DFS in the graph (V ,T ) which contains ≤ n − 1 edges])
- Add i to T

- Return T

Running time of straightforward implementation: (m = # of
edges, n = # of vertices) O(m log n) + O(mn) = O(mn)

Plan: Data structure for O(1)-time cycle checks ⇒ O(m log n)
time.

Tim Roughgarden



The Union-Find Data Structure

Raison d’être of union-find data structure: Maintain partition of a
set of objects.
FIND(X ): Return name of group that X belongs to.
UNION(Ci ,Cj): Fuse groups Ci ,Cj into a single one.

C4

C1 C3

C2

Why useful for Kruskal’s algorithm: Objects = vertices
- Groups = Connected components w.r.t. chosen edges T .
- Adding new edge (u, v) to T ⇐⇒ Fusing connected
components of u, v .

Tim Roughgarden



Union-Find Basics

Motivation: O(1)-time cycle checks in Kruskal’s algorithm.

Idea #1: - Maintain one linked structure per connected component
of (V ,T ).
- Each component has an arbitrary leader vertex.

leaders

u

v

w

x

y

z

Invariant: Each vertex points to the leader of its component
[“name” of a component inherited from leader vertex]

Key point: Given edge (u, v), can check if u & v already in same
component in O(1) time. [if and only if leader pointers of u, v
match, i.e., FIND(u)=FIND(v)] ⇒ O(1)-time cycle checks!

Tim Roughgarden



Maintaining the Invariant

Note: When new edge (u, v) added to T , connected components
of u & v merge.

Question: How many leader pointer updates are needed to restore
the invariant in the worst case?
A) Θ(1)

B) Θ(log n)

C) Θ(n) (e.g., when merging two components with n/2 vertices

each)

D) Θ(m)

Tim Roughgarden



Maintaining the Invariant (con’d)

Idea #2: When two components merge, have smaller one inherit
the leader of the larger one. [Easy to maintain a size field in each
component to facilitate this]

Question: How many leader pointer updates are now required to
restore the invariant in the worst case?
A) Θ(1)

B) Θ(log n)

C) Θ(n) (for same reason as before, i.e., when merging two

components with n/2 vertices each)

D) Θ(m)

Tim Roughgarden



Updating Leader Pointers

But: How many times does a single vertex v have its leader
pointer updated over the course of Kruskal’s algorithm?

A) Θ(1)

B) Θ(log n)

C) Θ(n)

D) Θ(m)

Reason: Every time v ’s leader pointer gets updated, population of
its component at least doubles ⇒ Can only happen ≤ log2 n times.

Tim Roughgarden



Running Time of Fast Implementation

Scorecard:

O(m log n) time for sorting

O(m) times for cycle checks [O(1) per iteration]

O(n log n) time overall for leader pointer updates

O(m log n) total (Matching Prim’s algorithm)

Tim Roughgarden


