
Algorithms: Design
and Analysis, Part II

Advanced
Union-Find

Union by Rank -

Analysis



Properties of Ranks

Recall: Lazy Unions.

Invariant (for now): rank[x ] = max # of hops from a leaf to x .
[Note maxx rank[x ] ≈ worst-case running time of FIND.]

Union by Rank: Make old root with smaller rank child of the root
with the larger rank.
[Choose new root arbitrarily in case of a tie, and add 1 to its rank.]

2

+ =

0

0 0

0

0

0

1

1

1 1

2

Immediate from Invariant/Rank Maintenance:
(1) For all objects x , rank[x ] only goes up over time

(2) Only ranks of roots can go up
[once x a non-root, rank[x ] frozen forevermore]

(3) Ranks strictly increase along a path to the root

Tim Roughgarden



Rank Lemma

Rank Lemma: Consider an arbitrary sequence of UNION (+FIND)
operations. For every r ∈ {0, 1, 2, . . .}, there are at most n/2r

objects with rank r .

Corollary: Max rank always ≤ log2 n

Corollary: Worst-case running time of FIND, UNION is O(log n).
[With Union by Rank.]

Tim Roughgarden



Proof of Rank Lemma

Claim 1: If x , y have the same rank r , then their subtrees (objects
from which can reach x , y) are disjoint.

x y

Claim 2: The subtree of a rank-r object has size ≥ 2r .
[Note Claim 1 + Claim 2 imply the Rank Lemma.]

Proof of Claim 1: Will show contrapositive. Suppose subtrees of
x , y have object z in common ⇒ ∃ paths z → x , z → y
⇒ One of x , y is an ancestor of the other
⇒ The ancestor has strictly larger rank. [By property (3)]
QED (Claim 1)

Tim Roughgarden



Proof of Claim 2

Rank r ⇒ Subtree size ≥ 2r

Base case: Initially all ranks = 0, all subtree sizes = 1

Inductive step: Nothing to prove unless the rank of some object
changes (subtree sizes only go up).

Interesting case: UNION(x , y), with s1=FIND(x), s2=FIND(y),
and rank[s1]=rank[s2]=r ⇒ s2’s new rank = r + 1
⇒ s2’s new subtree size = s2’s old subtree size + s1’s old subtree
size (each at least 2r by the inductive hypothesis) ≥ 2r+1. QED!

s1’s old subtree

s1

s2

s2’s old subtree

Tim Roughgarden


