
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

Optimal Binary Search

Trees: Problem Definition



A Multiplicity of Search Trees

Recall: For a given set of keys, there are lots of valid search trees.

keys> x

tree property

y

x z y

x

z x

y

z

[say x < y < z]

T1 T2

x

keys< x

the search

Question: What is the “best” search tree for a given set of keys?

A good answer: A balanced search tree, like a red-black tree.
(Recall Part I)
⇒ Worst-case search time = Θ(height) = Θ(log n)

Tim Roughgarden



Exploiting Non-Uniformity

Question: Suppose we have keys x < y < z and we know that:
80% of searches are for x

10% of searches are for y

10% of searches are for z

What is the average search time (i.e., number of nodes looked at)
in the trees:

and

x

z

y

y

x z

0.8 · 2 + 0.1 · 1 + 0.1 · 2 = 1.9

0.8 · 1 + 0.1 · 2 + 0.1 · 3 = 1.3

respectively?

A) 2 and 3 B) 2 and 1

C) 1.9 and 1.2 D) 1.9 and 1.3

Tim Roughgarden



Problem Definition

Input: Frequencies p1, p2, . . . , pn for items 1, 2, . . . , n.
[Assume items in sorted order, 1 < 2 < . . . < n]

Goal: Compute a valid search tree that minimizes the weighted
(average) search time.

C (T ) =
∑

items i pi [search time for i in T ]

Depth of i in T + 1

Example: If T is a red-black tree, then C (T ) = O(log n).
(Assuming

∑
i pi = 1.)

Tim Roughgarden



Comparison with Huffman Codes

Similarities:
- Output = a binary tree

- Goal is (essentially) to minimize average depth with respect to
given probabilities

Differences:

- With Huffman codes, constraint was prefix-freeness
[i.e., symbols only at leaves]

- Here, constraint = search tree property
[seems harder to deal with]

Tim Roughgarden


