
Algorithms: Design
and Analysis, Part II

Exact Algorithms for
NP-Complete Problems

A Dynamic Programming

Algorithm for TSP

The Subproblems

Moral of last video: To enforce constraint that each vertex visited
exactly once, need to remember the identities of vertices visited in
a subproblem. [But not the order in which they’re visited]

Subproblems: For every destination j ∈ {1, 2, . . . , n}, every subset
S ⊆ {1, 2, . . . , n} that contains 1 and j , let
LS,j = minimum length of a path from 1 to j that visits precisely
the vertices of S [exactly once each]

Tim Roughgarden

Optimal Substructure

Optimal Substructure Lemma: Let P be a shortest path from 1 to
j that visits the vertices S (assume |S | ≥ 2) [exactly once each]. If
last hop of P is (k, j), then P ′ is a shortest path from 1 to k that
visits every vertex of S − {j} exactly once. [Proof =
straightforward “cut+paste”]

P ′

1

k j

Corresponding recurrence:

LS,j = mink∈S ,k 6=j{LS−{j},k + ckj}
[“size” of subproblem = |S |]

Tim Roughgarden

A Dynamic Programming Algorithm

Let A = 2-D array, indexed by subsets S ⊆ {1, 2, . . . , n} that contain 1
and destinations j ∈ {1, 2, . . . , n}
Base case:

A[S , 1] =

{
0 if S = {1}
+∞ otherwise [no way to avoid visiting vertex (twice)]

For m = 2, 3, . . . , n [m = subproblem size]
For each set S ⊆ {1, 2, . . . , n} of size m that contains 1

For each j ∈ S , j 6= 1
A[S , j] = mink∈S,k 6=j{A[S − {j}, k] + ckj} [same as recurrence]

Return minj=2,...,n{ A[{1, 2, . . . , n}, j] + cj1 }

min cost from 1 to j visiting everybody once cost of final hop of tour

Running time: O(n 2n) O(n) =O(n22n)

choices of j · choices of S = # of subproblems work per subproblem

Tim Roughgarden

