Dynamic
% Programming

Algorithms: Design An Algorithm for the
and Analysis, Part Il Knapsack Problem



Recurrence from Last Time

Notation: Let V;, = value of the best solution that:
(1) uses only the first i items

(2) has total size < x
Upshot from last video: For i € {1,2,...,n} and only x,
Vi,x = max{ V(ifl),x

Vi + V(i—l),x—w; }

Edge case: If w; > x, must have Vi, = V(;_1)«

Tim Roughgarden



The Subproblems

Step 2: ldentify the subproblems.

- All possible prefixes of items {1,2,...,i}
- All possible (integral) residual capacities x € {0,1,2,..., W}

Step 3: Use recurrence from Step 1 to systematically solve all
problems.
Let A = 2-D array
Initialize A[0,x] =0 for x=0,1,..., W
Fori=1,2,...,n
For x=0,1,..., W
Ali,x] :==max{ Ali —1,x] , Ali — 1,x — wj] + v; }

Return A[n, W] \ /

Previously computed, available for O(1)-time lookup.

Tim Roughgarden



Running Time

Question: What is the running time of this algorithm?
A)

oY)

(©(nW) subproblems, solve each in ©(1) time)

@)

)
)
)

)

Correctness: Straightforward induction [use step 1 argument to
justify inductive step]

Tim Roughgarden



