Huffman Codes

f

Algorithms: Design
and Analysis, Part I

Problem Definition

Codes as Trees

Goal: Best binary prefix-free encoding for a given set of character
frequencies.

Useful fact: Binary codes <+ Binary trees

Examples: (¥ ={A,B,C,D})

LY g
T8

{00,01,10,11} {0,01,10,1}

{0,10,110,111}

Tim Roughgarden

Prefix-Free Codes as Trees

In general: - Left child edges <> “0", right child edges <> “1"

- For each i € ¥, exactly one node labeled *“i"

- Encoding of i € ¥ <> Bits along path from node to the node “i"
- Prefix-free <> Labelled nodes = the leaves

[since prefixes <+ one node an ancestor of another|

To decode: Repeadetly follow path from root until you hit a leaf.
[ex. 0110111 ~+ ACD] (unambiguous since only leaves are labelled)

‘
VAR
A “/7\‘ ‘/ N |
B~V
{0,10,110,111} VA
‘/7\‘ N
S
c— D

Note: Encoding length of i € ¥ = depth of i in tree.

Tim Roughgarden

Problem Definition

Input: Probability p; for each character i € .

Notation: If T = tree with leaves <> symbols of ¥, then average
encoding length L(T) =} .5 p; - [depth of i in T]

Example: If pa = 60%, pg = 25%, pc = 10%, pp = 5%, then

O) O
L(ég 206) — 9 while L(s 206) —1.55

40

Output: A binary tree T minimizing the average encoding length

L(-).

Tim Roughgarden

