
Algorithms: Design
and Analysis, Part II

The Bellman-Ford
Algorithm

Space Optimization



Quiz

Question: How much space does the basic Bellman-Ford algorithm
require? [Pick the strongest true statement.] [m = # of edges, n
= # of vertices]

A) Θ(n2) → Θ(1) for each of n2 subproblems

B) Θ(mn)

C) Θ(n3)

D) Θ(m2)

Tim Roughgarden



Predecessor Pointers

A[i , v ] = min

{
A[i − 1, v ]
min(w ,v)∈E{A[i − 1,w ] + cwv}

}
Note: Only need the A[i − 1, v ]’s to compute the A[i , v ]’s.

⇒ Only need O(n) to remember the current and last rounds of
subproblems [only O(1) per destination!]

Concern: Without a filled-in table, how do we reconstruct the
actual shortest paths?

Exercise: Find analogous optimizations for our previous DP
algorithms.

Tim Roughgarden



Computing Predecessor Pointers

Idea: Compute a second table B, where B[i , v ] = 2nd-to-last
vertex on a shortest s → v path with ≤ i edges (or NULL if no
such paths exist)

(“Predecessor pointers”)

Reconstruction: Assume the input graph G has no negative cycles
and we correctly compute the B[i , v ]’s.

Then: Tracing back predecessor pointers – the B[n− 1, v ]’s (= last
hop of a shortest s-v path) – from v to s yields a shortest s-v path.

[Correctness from optimal substructure of shortest paths]

Tim Roughgarden



Computing Predecessor Pointers

Recall:

A[i , v ] = min

{
(1) A[i − 1, v ]
(2) min(w ,v)∈E{A[i − 1,w ] + cwv}

}
Base case: B[0, v ] =NULL for all v ∈ V

To compute B[i , v ] with i > 0:
Case 1: B[i , v ] = B[i − 1, v ]
Case 2: B[i , v ] = the vertex w achieving the minimum (i.e., the
new last hop)

Correctness: Computation of A[i , v ] is brute-force search through
the (1+in-deg(v)) possible optimal solutions, B[i , v ] is just caching
the last hop of the winner.

To reconstruct a negative-cost cycle: Use depth-first search to
check for a cycle of predecessor pointers after each round (must be
a negative cost cycle). (Details omitted)

Tim Roughgarden


