
Algorithms: Design
and Analysis, Part II

Minimum
Spanning Trees

Fast Implementation

of Prim’s Algorithm

Running Time of Prim’s Algorithm

- Initialize X = {s} [s ∈ V chosen arbitrarily]

- T = ∅ [invariant: X = vertices spanned by tree-so-far T]

- While X 6= V

- Let e = (u, v) be the cheapest edge of G with u ∈ X , v /∈ X .

- Add e to T , add v to X .

Running time of straightforward implementation:
- O(n) iterations [where n = # of vertices]
- O(m) time per iteration [where m = # of edges]
⇒ O(mn) time

BUT CAN WE DO BETTER?

Tim Roughgarden

Prim’s Algorithm with Heaps

[Compare to fast implementation of Dijkstra’s algorithm]
Invariant #1: Elements in heap = vertices of V − X .

Invariant #2: For v ∈ V − X , key[v] = cheapest edge (u, v) with
i ∈ X (or +∞ if no such edges exist).

2

4

5
v

X V −X
key[v]=2

Check: Can initialize heap with O(m + n log n) = O(m log n)
preprocessing.

To compare keys n − 1 Inserts m ≥ n − 1 since G connected

Note: Given invariants, Extract-Min yields next vertex v /∈ X and
edge (u, v) crossing (X ,V − X) to add to X and T , respectively.

Tim Roughgarden

Quiz: Issue with Invariant #2

Question: What is: (i) current value of key[v] (ii) current value of
key[w] (iii) value of key[w] after one more iteration of Prim’s
algorithm?

10

2

4

5

1

key[w]=10

X V −X

v

w

key[v]=2
new X

new key[w]=1

A) 11, 10, 4 C) 2, 10, 1

B) 2, 10, 10 D) 2, 10, 2

Tim Roughgarden

Maintaining Invariant #2

Issue: Might need to recompute some keys to maintain Invariant
#2 after each Extract-Min.

v

X V −X

Pseudocode: When v added to X :
- For each edge (v ,w) ∈ E :

- If w ∈ V − X → The only whose key might have changed
(Update key if needed:)

- Delete w from heap

- Recompute key[w]:=min{key[w],cvw}
- Re-Insert into heap

Subtle point/exercise:

Think through book-keeping needed to pull this off
Tim Roughgarden

Running Time with Heaps

- Dominated by time required for heap operations

- (n − 1) Inserts during preprocessing

- (n − 1) Extract-Mins (one per iteration of while loop)

- Each edge (v ,w) triggers one Delete/Insert combo
[When its first endpoint is sucked into X]

⇒ O(m) heap operations [Recall m ≥ n − 1 since G connected]

⇒ O(m log n) time [As fast as sorting!]

Tim Roughgarden

