
Algorithms: Design
and Analysis, Part II

The Bellman-Ford
Algorithm

Single-Source Shortest

Paths Revisited



The Single-Source Shortest Path Problem

Input: Directed graph G = (V ,E ), edge lengths ce for each e ∈ E ,
source vertex s ∈ V . [Can assume no parallel edges.]

Goal: For every destination v ∈ V , compute the length (sum of
edge costs) of a shortest s-v path.

Tim Roughgarden



On Dijkstra’s Algorithm

Good news: O(m log n) running time using heaps
(n = number of vertices, m = number of edges)

Bad news:

(1) Not always correct with negative edge lengths
[e.g. if edges 7→ financial transactions]

(2) Not very distributed (relevant for Internet routing)

Solution: The Bellman-Ford algorithm

Tim Roughgarden



On Negative Cycles

-4s

3

4

-5

Question: How to define shortest path when G has a negative
cycle?

Solution #1: Compute the shortest s-v path, with cycles allowed.

Problem: Undefined or −∞. [will keep traversing negative cycle]

Solution #2: Compute shortest cycle-free s-v path.

Problem: NP-hard (no polynomial algorithm, unless P=NP)

Solution #3: (For now) Assume input graph has no negative
cycles.

Later: Will show how to quickly check this condition.
Tim Roughgarden



Quiz

Quiz: Suppose the input graph G has no negative cycles. Which of
the following is true? [Pick the strongest true statement.] [n = #
of vertices, m = # of edges]

A) For every v , there is a shortest s-v path with ≤ n − 1 edges.

B) For every v , there is a shortest s-v path with ≤ n edges.

C) For every v , there is a shortest s-v path with ≤ m edges.

D) A shortest path can have an arbitrarily large number of edges in
it.

Tim Roughgarden


