
Algorithms: Design
and Analysis, Part II

Local Search

The 2-SAT Problem



2-SAT

Input:
(1) n Boolean variables x1, x2, . . . , xn. (Can be set to TRUE or FALSE)

(2) m clauses of 2 literals each (“literal” = xi or ¬xi )

Example: (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (x3 ∨ x4) ∧ (¬x2 ∨ ¬x4)

Output: “Yes” if there is an assignment that simultaneously
satisfies every clause, “no” otherwise.

Example: “yes”, via (e.g.) x1 = x3 =TRUE and x2 = x4 =FALSE

Tim Roughgarden



(In)Tractability of SAT

2-SAT: Can be solved in polynomial time!

- Reduction to computing strongly connected components
(nontrivial exercise)

- “Backtracking” works in polynomial time (nontrivial exercise)

- Randomized local search (next)

3-SAT: Canonical NP-complete

- Brute-force search ≈ 2n time

- Can get time ≈
(
4
3

)n
via randomized local search [Schöning ’02]

Tim Roughgarden



Papadimitriou’s 2-SAT Algorithm

Repeat log2 n times:
- Choose random initial assignment
- Repeat 2n2 times:

- If current assignment satisfies all clauses, halt + report this
- Else, pick arbitrary unsatisfied clause and flip the value of
one of its variables [choose between the two uniformly at
random]

Report “unsatisfiable”

Key question: If there’s a satisfying assignment, will the algorithm
find one (with probability close to 1)?

Obvious good points:

(1) Runs in polynomial time

(2) Always correct on unsatisfiable instances

Tim Roughgarden


