
Algorithms: Design
and Analysis, Part II

Local Search

Analysis of

Papadimitriou’s Algorithm



Papadimitriou’s Algorithm

n = number of variables

Repeat log2 n times:
- Choose random initial assignment
- Repeat 2n2 times:

- If current assignment satisfies all clauses, halt + report this
- Else, pick arbitrary unsatisfied clause and flip the value of
one of its variables [choose between the two uniformly at
random]

Report “unsatisfiable”

Obvious good points:

(1) Runs in polynomial time

(2) Always correct on unsatisfiable instances

Tim Roughgarden



Satisfiable Instances

Theorem: For a satisfiable 2-SAT instance with n variables,
Papadimitriou’s algorithm produces a satisfying assignment with
probability ≥ 1− 1

n .

Proof: First focus on a single iteration of the outer for loop.

Fix an arbitrary satisfying assignment a∗.

Let at = algorithm’s assignment after inner iteration t
(t = 0, 1, . . . , 2n2) [a random variable]

Let Xt = number of variables on which at and a∗ agree.
(Xt ∈ {0, 1, . . . , n})
Note: If Xt = n, algorithm halts with satisfying assignment a∗.

Tim Roughgarden



Proof of Theorem (con’d)

Key point: Suppose at not a satisfying assignment and algorithm
picks unsatisfied clause with variables xi , xj .

Note: Since a∗ is satisfying, it makes a different assignment than
xi or xj (or both).

Consequence of algorithm’s random variable flip:

(1) If a∗ and at differ on both xi & xj , then Xt+1 = Xt + 1 (100%
probability)

(2) If a∗ and at differ on exactly one of xi , xj , then

Xt+1 =

{
Xt + 1 (50% probability)
Xt − 1 (50% probability)

Tim Roughgarden



Quiz: Connection to Random Walks

Question: The random variables X0,X1, . . . ,X2n2 behave just like a
random walk of the nonnegative integers except that:

n0 1 2 n− 1

A) Sometimes move right with 100% probability (instead of 50%)

B) Might have X0 > 0 instead of X0 = 0

C) Might stop early, before Xt = n

D) All of the above

Tim Roughgarden



Completing the Proof

Consequence: Probability that a single iteration of the outer for
loop finds a satisfying assignment is ≥Pr[Tn ≤ 2n2] ≥ 1/2

from last video

Thus:

Pr[algorithm fails] ≤ Pr[all log2 n independent trials fail]

≤
(
1
2

)log2 n
= 1

n . QED!

Tim Roughgarden


