
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

The Knapsack Problem



Problem Definition

Input: n items. Each has a value:

- Value vi (nonnegative)
- Size wi (nonnegative and integral)
- Capacity W (a nonnegative integer)

Output: A subset S ⊆ {1, 2, . . . , n} that maximizes
∑

i∈S vi
subject to

∑
i∈S wi ≤W .

Tim Roughgarden



Developing a Dynamic Programming
Algorithm

Step 1: Formulate recurrence [optimal solution as function of
solutions to “smaller subproblems”] based on a structure of an
optimal solution.

Let S = a max-value solution to an instance of knapsack.

Case 1: Supose item n /∈ S .
⇒ S must be optimal with the first n− 1 items (same capacity W )
[If S∗ were better than S with respect to 1st n− 1 items, then this
equally true w.r.t. all n items - contradiction]

Tim Roughgarden



Optimal Substructure

Case 2: Suppose item n ∈ S . Then S − {n} . . .
A) is an optimal solution with respect to the 1st n − 1 items and

capacity W .

B) is an optimal solution with respect to the 1st n − 1 items and
capacity W − vn.

C) is an optimal solution with respect to the 1st n − 1 items

and capacity W − wn.

D) might not be feasible for capacity W − wn.

Proof: If S∗ has higher value than S −{n} + total size ≤W −wn,
then S∗ ∪{n} has size ≤W and value more than S [contradiction]

Tim Roughgarden


