
Algorithms: Design
and Analysis, Part II

NP-Completeness

Reductions and
Completeness



Reductions

Conjecture: [Edmonds ’65] There is no polynomial-time algorithm
that solves the TSP. [Equivalent to P6=NP]

Really good idea: Amass evidence of intractability via relative
difficulty - TSP “as hard as” lots of other problems.

Definition: [A little informal] Problem Π1 reduces to problem Π2 if:
given a polynomial-time subroutine for Π2, can use it to solve Π1

in polynomial time.

Tim Roughgarden



Quiz

Which of the following statements are true?

A) Computing the median reduces to sorting

B) Detecting a cycle reduces to depth-first search

C) All pairs shortest paths reduces to single-source shortest paths

D) All of the above

Tim Roughgarden



Completeness

Suppose Π1 reduces to Π2.

Contrapositive: If Π1 is not in P, then neither is Π2.

That is: Π2 is at least as hard as Π1.

Definition: Let C = a set of problems.

The problem Π is C-complete if:

(1) Π ∈ C and (2) everything in C reduces to Π.

That is: Π is the hardest problem in all of C.

Tim Roughgarden



Choice of the Class C

Idea: Show TSP is C-complete for a REALLY BIG set C.

How about: Show this where C = ALL problems.

Halting Problem: Given a program and an input for it, will it
eventually halt?

Fact: [Turing ’36] No algorithm, however slow, solves the Halting
Problem.

Contrast: TSP definitely solvable in finite time (via brute-force
search).

Refined idea: TSP as hard as all brute-force-solvable problems.

Tim Roughgarden


