
Algorithms: Design
and Analysis, Part II

The Wider World
of Algorithms

Matchings, Flows, and

Beyond

Stable Matchings

Consider two node sets U and V (“men” and “women”)

For simplicity: Assume |U| = |V | = n.

Each node has a ranked order of the nodes on the other side.
(different for different nodes)

F

A

B

CD,E, F

D,E, F

D,E, F A,B, C

B,C,A

C,A,B

D

E

Examples: Hospitals & residents, colleges & applicants.

Stable matching: A perfect matching (i.e., matches each node of
U to a distinct node of V) such that: if u ∈ U and v ∈ V are not
matched, then either u likes its mate v ′ better than v , or v likes its
mate u′ better than u.

vu

v′

u′

Tim Roughgarden

Gale-Shapley Proposal Algorithm

While there is an unattached man u

- u proposes to the top woman v on his preference list who
hasn’t rejected him yet

- Each woman entertains only the best proposal received so far

[Invariant: current engagements = a matching]

F

A

B

CD,E, F

D,E, F

D,E, F A,B, C

B,C,A

C,A,B

D

E

Theorem: Terminates with a stable matching after ≤ n2 iterations.
[In particular, a stable matching always exists!]

Tim Roughgarden

Gale-Shapley Theorem

(1) Each man makes ≤ n proposals ⇒ ≤ n2 iterations.

(2) Terminates with a perfect matching.
Why? If not, some man rejected by all women.
⇒ All n women engaged at conclusion of algorithm
⇒ All n men engaged at end, as well [contradiction]

(3) Terminates with a stable matching. Why? Consider some u, v
not matched to each other.
Case 1: u never proposed to v .
⇒ u matched to someone he prefers to v .
Case 2: u proposed to v .
⇒ v got a better offer, ends up matched to someone she
prefers to u. QED!

Tim Roughgarden

Bipartite Matching

Input: Bipartite graph G = (U,V ,E). [Each e ∈ E has one
endpoint in each of U,V]

Goal: Compute a matching M ⊆ E [i.e., pairwise disjoint edges] of
maximum size.

Fact: There is a straightforward reduction from this problem to the
maximum flow problem.

max matching

size = 3

Tim Roughgarden

The Maximum Flow Problem

Input: Directed graph G = (V ,E).
- Source vertex s, sink vertex t

- Each edge e has capacity ue

Goal: Compute the s-t “flow” that sends as much flow as possible.

max flow value = 2

s

v

w

t

1

1 1

1

1 1
1

1

Fact: Solvable in polynomial time. (e.g., via non-trivial greedy
algorithms based on “augmenting paths”)

Tim Roughgarden

Selfish Flow

- Flow network

- 1 unit of selfish traffic

- Each edge has a delay function
[travel time as function of edge load]

1/2s

v

w

t0

delay(x)=x

delay(x)=x

100%
delay(x)=1

delay(x)=1

1/2

Steady state: With a 50/50 split, commute time = 1.5 hours

Braess’s Paradox (’68): After adding a teleported from v to w ,
commute time of selfish traffic degrades to 2 hours!

Tim Roughgarden

Linear Programming

The general problem: Optimize a linear function over the
intersection of halfspaces.

⇒ Generalizes maximum flow plus tons of other problems
objective function

optimal
solution

Fact: Can solve linear programs efficiently (in theory and in
practice)
⇒ Very powerful “black-box” subroutine

Extensions: Convex programming , integer programming .

polynomial-time solvable under mild conditions NP-hard in general
Tim Roughgarden

Other Topics and Models

- Deeper study of data structures, graph algorithms, approximation
algorithms, etc.

- Gerometric algorithms
- Low-dimensional (e.g., convex hull)
- High-dimensional (e.g., nearest neighbors in information

retrieval)

- Algorithms that run forever (usually in real time)
[e.g., caching, routing]

- Bounded memory (“streaming algorithms”)
[e.g., maintain statistics at a network router]

- Exploiting parallelism (e.g., via Map-Reduce/Hadoop)

Tim Roughgarden

Epilogue

Tim Roughgarden

