
Algorithms: Design
and Analysis, Part II

NP-Completeness

P: Polynomial-Time

Solvable Problems



Ubiquitous Intractability

Focus of this course (+ Part I): Practical algorithms + supporting
theory for fundamental computational problems.

Sad fact: Many important problems seem impossible to solve
efficiently.

Next: How to formalize computational intractability using
NP-completeness.

Later: Algorithmic approaches to NP-complete problems.

Tim Roughgarden



Polynomial-Time Solvability

Question: How to formalize (in)tractability?

Definition: A problem is polynomial-time solvable if there is an
algorithm that correctly solves it in O(nk) time, for some constant
k .

[Where n = input length = # of key strokes needed to describe
input]

[Yes, even k = 10, 000 is sufficient for this definition]

Comment: Will focus on deterministic algorithms, but to first order
doesn’t matter.

Tim Roughgarden



The Class P

Definition: P = the set of poly-time solvable problems.

Examples: Everything we’ve seen in this course except:

- Cycle-free shortest paths in graphs with negative cycles

- Knapsack [running time of our algorithm was Θ(nW ), but input

length proportional to logW ]

Both problems are NP-complete

Interpretation: Rough litmus test for “computational tractability”.

Tim Roughgarden



Traveling Salesman Problem

Input: Complete undirected graph with nonnegative edge costs.

Output: A min-cost tour [i.e., a cycle that visits every vertex
exactly once].

4

1

2

5

OPT = 13

6

3

Conjecture: [Edmonds ’65] There is no polynomial-time algorithm
for TSP.

[As we’ll see, equivalent to P 6=NP]
Tim Roughgarden


