Advanced

? Union-Find

_ _ Path Compression
Algorithms: Design

and Analysis, Part I



Path Compression

Idea: Why bother traversing a leaf-root path multiple times?

Path compression: After FIND(x), install shortcuts (i.e., revise
parent pointers) to x's root all along the x — root path.

(7 D——~(7
e =0
®2 & @/ ®
@ @0 (o Clogie

N
(Do
In array representation:

123456867 123456867
alslsle|7]7]7]—l7]s[5][77]7]7]

Con: Constant-factor overhead to FIND (from “multitasking”).
Pro: Speeds up subsequent FINDs. [But by how much?]

Tim Roughgarden



On Ranks

Important: Maintain all rank fields EXACTLY as without path
compression.

- Ranks initially all 0

- In UNION, new root = old root with bigger rank

- When merging two nodes of common rank r, reset new root's

rank to r +1
73 o(1)——=(73
/L\ /9/\
/@2 /@\1 109 /@1
@1 @0 (o 2(® @0 @0
P
o

Bad news: Now rank|[x] is only an upper bound on the maximum
number of hops on a path from a leaf to x

Good news: Rank Lemma still holds (< n/2" objects with rank r)

Also: Still always have rank[parent[x]]>rank[x] for all non-roots x
Tim Roughgarden



Hopcroft-Ullman Theorem

Theorem: With Union by Rank and path
compression, m Union+Find operations take O(mlog™ n) time,
where log® n = the number of times you need to apply log to n
before the result is < 1.

Tim Roughgarden



Quiz on log*

Question: What is log*(20%536)?
A) 2

) 5

) 16

) 65536

N @

D

t times 2

In general: log*(2%" T)=t

Tim Roughgarden



Measuring Progress

Tim Roughgarden



