Huffman Codes

f

Algorithms: Design
and Analysis, Part I

A Greedy Algorithm

Codes as Trees

Input: Probability p; for each character i € ¥.

Output: Binary tree (with leaves <+ symbols of ¥) minimizing the
average encoding length:

L(T)=">_ pildepth of i in T]
i€ex

Tim Roughgarden

Building a Tree

Question: What's a principled approach for building a tree with
leaves <> symbols of X7

Natural but suboptimal idea: Top-down/divide+conquer.

- Partition X into X1, ¥5 each with =50% of total frequency.

- Recursively compute T for X1, T, for X5, return:

Huffman's (optimal) idea: Build tree bottom-up using successive
mergers.

N SN A

- (A)(B)|(C) (D)

O\ |\ N\

- (/;\) (/E\) A(O\/A o
|~ (¢) (D) gl

) =/ (A)/“/\\O

~(B) A\
—~ N =LA
SHONONE P (©0®
P N O o

(¢ (p)

Tim Roughgarden

A Greedy Approach

Question: Which pair of symbols is “safe” to merge?

Observation: Final encoding length of i € ¥ = # of mergers its

subtree endures.

[Each merger increases encoding length of participating symbols by

1] P N
(n) (B)|(c) (D)
~ (R)|(B) QA 0l
1= (C) (b) A 001
—) =2\ 091
— (B) 9\
- N \i?/? A
- ® @ ' ©O®

Greedy heuristic: In first iteration, merge the two symbols with the

smallest frequencies.

Tim Roughgarden

How to Recurse?

Suppose: 1st iteration of algorithm merges symbols a & b.
Idea: Replace symbols a, b by a new “meta-symbol” ab.

Question: What should be the frequency p,p of this meta-symbol?
A)

O N @

)
) since ab is a proxy for "a or b" (intuitively)
)

Tim Roughgarden

Example

60 25 10 5 pa=60%

e o o

pe = 10%
l pp = 5%

60 25 15 0 N1
SOICT S

) \\T © ©
l
o o
® DO T

Tim Roughgarden

Huffman's Algorithm

(Given frequencies p; as input)

Q
&

Let a, b € ¥ have the smallest frequencies.

Let X' = X with a, b replaced by new symbol ab.

Define pap = pa + pb.

Recursively compute T’ (for the alphabet ')

Extend T’ (with leaves <+ ¥') to a tree T with leaves <+ X by
splitting leaf ab into two leaves a & b.

/
/r
/
@

If |X| = 2 return

Return T

Tim Roughgarden

