The Bellman-Ford
? Algorithm

Algorithms: Design The Basic Algorithm

and Analysis, Part I

The Recurrence

Notation: Let L;, = minimum length of a s-v path with </ edges.
- With cycles allowed
- Defined as 400 if no s-v paths with < i edges

Recurrence: Forevery v e V, i€ {1,2,...}

L — min L1y, Case 1
we min(u,v)EE{L(i—l),w + cw} Case 2

Correctness: Brute-force search from the only (1+in-deg(v))
candidates (by the optimal substructure lemma).

Tim Roughgarden

If No Negative Cycles

Now: Suppose input graph G has no negative cycles.
= Shortest paths do not have cycles

[removing a cycle only decreases length]
= Have < (n — 1) edges

Point: If G has no negative cycle, only need to solve subproblems
uptoi=n—1

Subproblems: Compute L;, for all i € {0,1,...,n— 1} and all
vev.

Tim Roughgarden

The Bellman-Ford Algorithm

Let A = 2-D array (indexed by i and v)
Base case: A[0, s] = 0; A[0, v] = 400 for all v # s.

Fori=1,2,...,n—1

For each v e V

Al — min{ Ali = 1,v] }

min(w,v)EE{A[i -1, W] + va}

As discussed: If G has no negative cycle, then algorithm is correct
[with final answers = A[n — 1, v]'s]

Tim Roughgarden

Example

Alv] — min{ Ali —1,v] }

min(w,v)ee{All =1, w] + cu }

£ Y
v ¥ i=0
e #oo !
0 oo 9 oo j;:s
s () ——(w) i=4
v PN
o ®)
oo
= s
¥
v i
3

Tim Roughgarden

Quiz

Question: What is the running time of the Bellman-Ford
algorithm? [Pick the strongest true statement.] [m = # of edges,
n = # of vertices]

A) O(n?) — # of subproblems, but might do ©(n) work for one
subproblem

B) [O(mn)
C) O(n%)
D) O(m?)

Reason: Total work is O(_ n } oy in-deg(v)) = O(mn)
\

iterations of outer loop (i.e. choices of i) work done in one iteration = m

Tim Roughgarden

Stopping Early

Note: Suppose for some j < n—1, A[j,v] = A[j — 1, v] for all
vertices v.

= For all v, all future A[i, v]'s will be the same

= Can safely halt (since A[n — 1, v]'s = correct shortest-path
distances)

Tim Roughgarden

