
Algorithms: Design
and Analysis, Part II

Minimum
Spanning Trees

Problem Definition



Overview

Informal Goal: Connect a bunch of points together as cheaply as
possible.

Applications: Clustering (more later), networking.

Blazingly Fast Greedy Algorithms:

- Prim’s Algorithm [1957; also Dijkstra 1959, Jarnik 1930]

- Kruskal’s algorithm [1956]

⇒ O( m log n ) time (using suitable data structures)

# of vertices

# of edges
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Problem Definition

vertices edges

Input: Undirected graph G = ( V , E ) and a cost ce for each edge
e ∈ E .

- Assume adjacency list representation (see Part I for details)
- OK if edge costs are negative

Output: minimum cost tree T ⊆ E that spans all vertices .

i.e., sum of edge costs

I.e.: (1) T has no cycles, (2) the subgraph (V ,T ) is connected
(i.e., contains path between each pair of vertices).
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Standing Assumptions

Assumption #1: Input graph G is connected.

- Else no spanning trees.

- Easy to check in preprocessing (e.g., depth-first search).

Assumption #2: Edge costs are distinct.

- Prim + Kruskal remain correct with ties (which can be broken
arbitrarily).

- Correctness proof a bit more annoying (will skip).
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