
Algorithms: Design
and Analysis, Part II

Approximation Algorithms
for NP-Complete Problems

A Dynamic Programming

Heuristic for Knapsack



Arbitrarily Good Approximation

Goal: For a user-specified parameter ε > 0 (e.g., ε = 0.01)
guarantee a (1− ε)-approximation.

Catch: Running time will increase as ε decreases.
(i.e., algorithm exports a running time vs. accuracy trade-off).

[Best-case scenario for NP-complete problems]

Tim Roughgarden



The Approach: Rounding Item Values

High-level idea: Exactly solve a slightly incorrect, but easier,
knapsack instance.

Recall: If the wi ’s and W are integers, can solve the knapsack
problem via dynamic programming in O(nW ) time.

Alternative: If vi ’s are integers, can solve knapsack via dynamic
programming in O(n2vmax) time, where vmax = maxi{vi}.
(See separate video)

Upshot: If all vi ’s are small integers (polynomial in n) then we
already know a poly-time algorithm.

Plan: Throw out lower-order bits of the vi ’s!

Tim Roughgarden



A Dynamic Programming Heuristic

Step 1 of algorithm:

Round each vi down to the nearest multiple of m
[larger m ⇒ throw out more info ⇒ less accuracy]
[Where m depends on ε, exact value to be determined later]

Divide the results by m to get v̂i ’s (integers). (i.e., v̂i = b vimc)

Step 2 of algorithm: Use dynamic programming to solve the
knapsack instance with values v̂1, . . . , v̂n, sizes w1, . . . ,wn,
capacity W .

Running time = O(n2 maxi v̂i )

Note: Computes a feasible solution to the original Knapsack
instance.

Tim Roughgarden


