Dynamic

% Programming

Algorithms: Design An Algorithm for
and Analysis, Part Il Sequence Alignment



The Subproblems

(1) xm & yn, (2) xm & gap, (3) yn & gap

‘w } final position

Y + gaps A\j

X + gaps

Optimal substructure: Let X' =X —x,, Y/ =Y — y,.

If case (1) holds, then induced alignment of X’ & Y’ is optimal.
If case (2) holds, then induced alignment of X’ & Y is optimal.
If case (3) holds, then induced alignment of X & Y’ is optimal.

Relevant subproblems: Have the form (X;, Y;) where
X; = 1st i letters of X
Y; = 1st j letters of Y

Tim Roughgarden



The Recurrence

Notation: Pj = penalty of optimal alignment of X; & Y.

Recurrence: Forall i=1,... ,mandj=1,... n
(1) axy, + Pim1j-1

P,’j = min (2) Qgap + Pi—l,j
(3) Ogap + Pi,jfl

Correctness: Optimal solution is one of these 3 candidates, and
recurrence selects the best of these.

Tim Roughgarden



Base Cases

Question: What is the value of P;g and Py ;?

>

)
B)
Q) +
D) Undefined

Tim Roughgarden



The Algorithm

A = 2-D array.
Ali,0] = A[0,i] =i - agap, Vi >0
Fori=1tom
Forj=1ton
(1) AL + axy,
Alijl = min{ (2) AfL] + oy
(3) ~Afij-1] + ogap

All available for O(1)-time lookup!

Correctness: [i.e., Ali, ] = Py, Vi, j > 0] Follows from induction +
correctness of recurrence.

Running time: O(mn) [©(1) work for each of ©(mn) subproblems]

Tim Roughgarden



Reconstructing a Solution

- Trace back through filled-in table A, starting A[m, n]
- When you reach subproblem A[i, j]:

- If A[i,j] filled using case (1), match x; & y; and go to

- If A[i, /] filled using case (2), match x; with a gap and go to

- If A[i, j] filled using case (3), match y; with a gap and go to
[If i=0orj=0, match remaining substring with gaps]

Running time is only O(m + n)!

Tim Roughgarden



