
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

Sequence Alignment

Optimal Substructure



Problem Definition

Recall: Sequence alignment. [Needleman-Wunsch score =
Similarity measure between strings]

Example:
A G G G C T

A G G - C A
Total penalty = αgap + αAT

Input: Strings X = x1 . . . xm, Y = y1 . . . yn over some alphabet Σ
(like {A,C,G,T})
- Penalty αgap for inserting a gap, αab for matching a & b
[presumably αab = 0 of a = b]

Feasible solutions: Alignments - i.e., insert gaps to equalize lengths
of the string

Goal: Alignment with minimum possible total penalty

Tim Roughgarden



A Dynamic Programming Approach

Key step: Identify subproblems. As usual, will look at structure of
an optimal solution for clues.
[i.e., develop a recurrence + then reverse engineer the subproblems]

Structure of optimal solution: Consider an optimal alignment of
X ,Y and its final position:

final position

Y + gaps

X + gaps

Question: How many relevant possibilities are there for the
contents of the final position?

A) 2 C) 4

B) 3 D) mn

Case 1: xm, yn matched, case 2: xm matched with a gap, case 3: yn
matched with a gap [Pointless to have 2 gaps]

Tim Roughgarden



Optimal Substructure

(1) xm & yn, (2) xm & gap, (3) yn & gap

final position

Y + gaps

X + gaps

Point: Narrow optimal solution down to 3 candidates.

Optimal substructure: Let X ′ = X − xm, Y ′ = Y − yn.

If case (1) holds, then induced alignment of X ′ & Y ′ is optimal.
If case (2) holds, then induced alignment of X ′ & Y is optimal.
If case (3) holds, then induced alignment of X & Y ′ is optimal.

Tim Roughgarden



Optimal Substructure (Proof)

Proof: [of Case 1, other cases are similar]

By contradiction. Suppose induced alignment of X ′,Y ′ has penalty
P while some other one has penalty P∗ < P.

⇒ Appending
xm
yn

to the latter, get an alignment of X and Y

with penalty P∗ + αxmyn < P + αxmyn

Contents of final position Penalty of original alignment

⇒ Contradicts optimality of original alignment of X & Y . QED!

Tim Roughgarden


