NP-Completeness

f

Algorithms: Design
and Analysis, Part I

Reductions and
Completeness

Reductions

Conjecture: There is no polynomial-time algorithm
that solves the TSP. [Equivalent to P#NP]

Really good idea: Amass evidence of intractability via relative
difficulty - TSP “as hard as” lots of other problems.

Definition: [A little informal] Problem I; reduces to problem [if:
given a polynomial-time subroutine for [y, can use it to solve I3
in polynomial time.

Tim Roughgarden

Quiz

Which of the following statements are true?

A) Computing the median reduces to sorting
B) Detecting a cycle reduces to depth-first search

)
C) All pairs shortest paths reduces to single-source shortest paths
D) All of the above

Tim Roughgarden

Completeness

Suppose Iy reduces to .
Contrapositive: If Ty is not in P, then neither is IM5.
That is: Ty is at least as hard as I;.

Definition: Let C = a set of problems.
The problem I is C-complete if:
(1) M € C and (2) everything in C reduces to I1.

That is: I is the hardest problem in all of C.

Tim Roughgarden

Choice of the Class C

Idea: Show TSP is C-complete for a REALLY BIG set C.
How about: Show this where C = ALL problems.

Halting Problem: Given a program and an input for it, will it
eventually halt?

Fact: No algorithm, however slow, solves the Halting
Problem.

Contrast: TSP definitely solvable in finite time (via brute-force
search).

Refined idea: TSP as hard as all brute-force-solvable problems.

Tim Roughgarden

