
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

Optimal BSTs: A Dynamic

Programming Algorithm



Optimal Substructure

Optimal Substructure Lemma: If T is an optimal BST for the keys
{1, 2, . . . , n} with root r , then its subtrees T1 and T2 are optimal
BSTs for the keys {1, 2, . . . , r − 1} and {r + 1, . . . , n},
respectively.

keyskeys

r

T1 T2

1, 2, . . . , r − 1 r + 1, . . . , n

Note: Items in a subproblem are either a prefix or a suffix of the
original problem.

Tim Roughgarden



Relevant Subproblems

Question: Let {1, 2, . . . , n} = original items. For which subsets
S ⊆ {1, 2, . . . , n} might we need to compute the optimal BST for
S?

A) Prefixes (S = {1, 2, . . . , i} for every i)

B) Prefixes and suffixes (S = {1, . . . , i} and {i , . . . , n} for every i)

C) Contiguous intervals (S = {i , i + 1, . . . , j − 1, j} for every i ≤ j)

D) All subsets S

Tim Roughgarden



The Recurrence

Notation: For 1 ≤ i ≤ j ≤ n, let Cij = weighted search cost of an
optimal BST for the items {i , i + 1, . . . , j − 1, j} [with probabilities
pi , pi+1, . . . , pj ]

Recurrence: For every 1 ≤ i ≤ j ≤ n:

Cij = min
r=i ,...,j

{
j∑

k=i

pk + Ci ,r−1 + Cr+1,j

}

(Recall formula C (T ) =
∑

k pk + C (T1) + C (T2) from last video)

Interpret Cxy = 0 if x > y

Correctness: Optimal substructure narrows candidates down to
(j − i + 1) possibilities, recurrence picks the best by brute force.

Tim Roughgarden



The Algorithm

Important: Solve smallest subproblems (with fewest number
(j − i + 1) of items) first.
Let A = 2-D array. [A[i , j ] represents opt BST value of items {1, . . . , j}]
For s = 0 to n − 1 [s represents j − i ]

For i = 1 to n [so i + s plays role of j ]
A[i , i + s] = minr=i,...,i+s{

∑i+s
k=i pk+ A[i , r − 1] + A[r + 1, i + s] }

Return A[1, n]

Interpret as 0 if 1st index > 2nd index. Available for O(1)-time lookup

i

Pictorially: s = n− 1

...

s = 2

s = 1

s = 0

j

n

...

2

1

1 2 . . . n

A[i, i] = pi

Tim Roughgarden



Running Time

- Θ(n2) subproblems

- Θ(j − i) time to compute A[i , j ]

⇒ Θ(n3) time overall

Fun fact: [Knuth ’71, Yoo ’80] Optimized version of this DP
algorithm correctly fills up entire table in only Θ(n2) time [Θ(1) on
average per subproblem]

[Idea: piggyback on work done in previous subproblems to avoid
trying all possible roots]

Tim Roughgarden


