
Algorithms: Design
and Analysis, Part II

NP-Completeness

Reductions and
Completeness



Reductions

Conjecture: [Edmonds ’65] There is no polynomial-time algorithm
that solves the TSP. [Equivalent to P6=NP]

Really good idea: Amass evidence of intractability via relative
difficulty - TSP “as hard as” lots of other problems.

Definition: [A little informal] Problem Π1 reduces to problem Π2 if:
given a polynomial-time subroutine for Π2, can use it to solve Π1

in polynomial time.
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Quiz

Which of the following statements are true?

A) Computing the median reduces to sorting

B) Detecting a cycle reduces to depth-first search

C) All pairs shortest paths reduces to single-source shortest paths

D) All of the above
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Completeness

Suppose Π1 reduces to Π2.

Contrapositive: If Π1 is not in P, then neither is Π2.

That is: Π2 is at least as hard as Π1.

Definition: Let C = a set of problems.

The problem Π is C-complete if:

(1) Π ∈ C and (2) everything in C reduces to Π.

That is: Π is the hardest problem in all of C.
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Choice of the Class C

Idea: Show TSP is C-complete for a REALLY BIG set C.

How about: Show this where C = ALL problems.

Halting Problem: Given a program and an input for it, will it
eventually halt?

Fact: [Turing ’36] No algorithm, however slow, solves the Halting
Problem.

Contrast: TSP definitely solvable in finite time (via brute-force
search).

Refined idea: TSP as hard as all brute-force-solvable problems.
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