
Algorithms: Design
and Analysis, Part II

Advanced
Union-Find

Path Compression



Path Compression

Idea: Why bother traversing a leaf-root path multiple times?

Path compression: After FIND(x), install shortcuts (i.e., revise
parent pointers) to x ’s root all along the x → root path.

3

1

2 34

56

7 7

6

4

1

2 3

5

0

0 01

12

In array representation:

7

2 3 4 5 6 7 1 2 3 4 5 6 7

4 5 5 6 7 7 7 5 5 7 7 77

1

Con: Constant-factor overhead to FIND (from “multitasking”).

Pro: Speeds up subsequent FINDs. [But by how much?]
Tim Roughgarden



On Ranks

Important: Maintain all rank fields EXACTLY as without path
compression.

- Ranks initially all 0

- In UNION, new root = old root with bigger rank

- When merging two nodes of common rank r , reset new root’s
rank to r + 1

3

1

2 34

56

7 7

6

4

1

2 3

5

0 0

12

3

1

0

0

1

2 0 0

1

Bad news: Now rank[x ] is only an upper bound on the maximum
number of hops on a path from a leaf to x
(which could be much less)

Good news: Rank Lemma still holds (≤ n/2r objects with rank r)

Also: Still always have rank[parent[x ]]>rank[x ] for all non-roots x
Tim Roughgarden



Hopcroft-Ullman Theorem

Theorem: [Hopcroft-Ullman 73] With Union by Rank and path
compression, m Union+Find operations take O(m log∗ n) time,
where log∗ n = the number of times you need to apply log to n
before the result is ≤ 1.

Tim Roughgarden



Quiz on log∗

Question: What is log∗(265536)?

A) 2

B) 5

C) 16

D) 65536

In general: log∗(22
... t times ...2

) = t

Tim Roughgarden



Measuring Progress

Tim Roughgarden


