
Algorithms: Design
and Analysis, Part II

Huffman Codes

Correctness Proof

Correctness of Huffman’s Algorithm

Theorem: [Huffman 52] Huffman’s algorithm computes a binary
tree (with leaves ↔ symbols of Σ) that minimizes the average
encoding length

L(T) =
∑
i∈Σ

pi [depth of leaf i in T].

Proof: By induction on n = |Σ|. (Can assume n ≥ 2.)

Base case: When n = 2, algorithm outputs the optimal tree.
(Needs 1 bit per symbol)

0 1

Inductive step: Fix input with n = |Σ| > 2.

By inductve hypothesis: Algorithm solves smaller subproblems (for
Σ′) optimally.

Tim Roughgarden

Inductive Step

Let Σ′ = Σ with a, b (symbols with smallest frequencies) replaced
by meta-symbol ab. Define pab = pa + pb.

Recall: Exact correspondence between:

Xab

T ′

ab

a b

Trees for Σ

that have a, b

as siblings

Important: For every such pair T ′ and T , L(T)− L(T ′) is (after
cancellation)

pa [a’s depth in T] +pb [b’s depth in T] -pab [ab’s depth in T ′] =

Each is one more than

= pA(d + 1) + pb(d + 1)− (pa + pb)d = pa + pb, Independent of T ,T ′!
Tim Roughgarden

Proof of Theorem

Inductive hypothesis: Huffman’s algorithm computes a tree T̂ ′

that minimizes L(T ′) for Σ′.

Upshot of last slide: Corresponding tree T̂ minimizes L(T) for Σ
over all trees in Xab (i.e., where a & b are siblings)

Key lemma: [Completes proof of theorem] There is an optimal tree
(for Σ) in Xab. [i.e., a & b were “safe” to merge]

Intuition: Can make an optimal tree better by pushing a & b as
deep as possible (since a, b have smallest frequencies).

Tim Roughgarden

Proof of Key Lemma

By exchange argument. Let T ∗ be any tree that minimizes L(T)
for Σ. Let x , y be siblings at the deepest level of T ∗.

The exchange: Obtain T̂ from T ∗ by swapping a↔ x , b ↔ y
T ∗

x y a

b

T̂

b x

y

a

Note: T̂ ∈ Xab (by choice of x , y).

To finish: Will show that L(T̂) ≤ L(T ∗)
[⇒ T̂ also optimal, completes proof]

Reason:
L(T ∗)− L(T̂) = (px − pa) [x ’s depth in T ∗ - a’s depth in T ∗]

+ (py − pb) [y ’s depth in T ∗ - b’s depth in T ∗]

≥ 0 QED!

≥ 0 since a, b have smallest frequencies ≥ 0 by choice of x , y

Tim Roughgarden

Notes on Running Time

Naive implementation: O(n2) time, where n = |Σ|.
Speed ups: - Use a heap! [to perform repeated minimum
computations]
- Use keys = frequencies
- After extracting the two smallest-frequency symbols, re-Insert the
new meta-symbol [new key = sum of the 2 old ones]
⇒ Iterative, O(n log n) implementation.

Even faster: (Non-trivial exercise) Sorting + O(n) additional work.
- Manage (meta-)symbols using two queues.

Tim Roughgarden

