
Algorithms: Design
and Analysis, Part II

Advanced
Union-Find

Lazy Unions



The Union-Find Data Structure

Raison d’être: Maintain a partition of a set X .

C2

x

yC3

C4

X

C1

FIND: Given x ∈ X , return name of x ’s group.
UNION: Given x & y , merge groups containing them.

Previous solution (for Kruskal’s MST algorithm)
- Each x ∈ X points directly to the “leader” of its group.

z

x

y

- O(1) FIND [just return x ’s leader]

- O(n log n) total work for n UNIONS [when 2 groups merge,
smaller group inherits leader of larger one]

Tim Roughgarden



Lazy Unions

New idea: Update only one pointer each merge!

How?

Only update object 1

1

2 3

4

5 6

+ =

1

2 3

4

5 6

+ =

4
1

6

5
2

3

4
1

6

52 3

Old solution:

New solution:

Update objects 1, 2, 3

In array representation: (Where A[i ] ↔ name of i ’s parent)

new solution

1 1 1 4 4 4

1 2 3 4 5 6

4 4 4

1 1 4 4 4

4 4 4

4

old solution

Tim Roughgarden



How to Merge?

In general: When two groups merge in a UNION, make one
group’s leader (i.e., root of the tree) a child of the other one.

=+

Pro: UNION reduces to 2 FINDS [r1=FIND(x), r2=FIND(y)] and
O(1) extra work [link r1, r2 together]

Con: To recover leader of an object, need to follow a path of
parent pointers [not just one!]
⇒ Not clear if FIND still takes O(1) time.

Tim Roughgarden


