
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

Optimal BSTs: Optimal

Substructure



Problem Definition

Input: Frequencies p1, p2, . . . , pn for items 1, 2, . . . , n.
[Assume items in sorted order, 1 < 2 < . . . < n]

Goal: Compute a valid search tree that minimizes the weighted
(average) search time.

C (T ) =
∑

items i pi [search time for i in T ]

Depth of i in T + 1

Tim Roughgarden



Greedy Doesn’t Work

Intuition: Want the most (respectively, least) frequently accessed
items closest (respectively, furthest) from the root.

Ideas for greedy algorithms:
- Bottom-up [populate lowest level with least frequently
accessed keys]

- Top-down [put most frequently accessed item at root, recurse]

Counter examples:

33

1 3

2

4

2

1

3

4

1 3

2

4

2

1

3

4

OPTgreedy

instead of

instead of

2

23

73

2 2

23

73

2

1

34

33

22 1

34 22

Tim Roughgarden



Choosing the Root

Issue: With the top-down approach, the choice of root has
hard-to-predict repercussions further down the tree.
[stymies both greedy and naive divide + conquer approaches]

Idea: What if we knew the root?
(i.e., maybe can try all possibilities within a dynamic programming
algorithm!)

Tim Roughgarden



Optimal Substructure

Question: Suppose an optimal BST for keys {1, 2, . . . , n} has root
r , left subtree T1, right subtree T2. Pick the strongest statement
that you suspect is true.

T2

r

T1

A) Neither T1 nor T2 need be optimal for the items it contains.

B) At least one of T1,T2 is optimal for the items it contains.

C) Each of T1,T2 is optimal for the items it contains.

D) T1 is optimal for the keys {1, 2, . . . , r − 1} and T2 for the keys
{r + 1, r + 2, . . . , n}

Tim Roughgarden



Proof of Optimal Substructure

Let T be an optimal BST for keys {1, 2, . . . , n} with frequencies
p1, . . . , pn. Suppose T has root r . Suppose for contradiction that
T1 is not optimal for {1, 2, . . . , r − 1} [other case is similar] with
C (T ∗

1 ) < C (T1). Obtain T ∗ from T by “cutting+pasting” T ∗
1 in

for T1.

T ∗
1T1 T2

T

r r

T2

T ∗

Note: To complete contradiction + proof, only need to show that
C (T ∗) < C (T ).

Tim Roughgarden



Proof of Optimal Substructure (con’d)

A Calculation:
=1+search time for i in T1 =1+search time for i in T2

C (T ) =
∑n

i=1 pi [search time for i in T ]

= pr · 1 +
∑r−1

i=1 pi [search time for i in T ]

+
∑n

i=r+1 pi [search time for i in T ]

=
∑n

i=1 pi +
∑r−1

i=1 pi [search time for i in T1]

+
∑n

i=r+1 pi [search time for i in T2]

a constant (independent of T ) = C (T1) = C (T2)

Similarly: C (T ∗) =
∑n

i=1 pi + C (T ∗
1 ) + C (T2)

Upshot: C (T ∗
1 ) < C (T1) implies C (T ∗) < C (T ), contradicting

optimality of T . QED!
Tim Roughgarden


