Dynamic
% Programming

Algorithms: Design Optimal BSTs: A Dynamic
and Analysis, Part Il Programming Algorithm

Optimal Substructure

Optimal Substructure Lemma: If T is an optimal BST for the keys
{1,2,..., n} with root r, then its subtrees T; and T are optimal
BSTs for the keys {1,2,...,r—1} and {r+1,...,n},

respectively.
/@\
T T

1

keys keys
1,2,....r—1 7r+1,....n

Note: Items in a subproblem are either a prefix or a suffix of the
original problem.

Tim Roughgarden

Relevant Subproblems

Question: Let {1,2,...,n} = original items. For which subsets
S C{1,2,...,n} might we need to compute the optimal BST for
S?

A) Prefixes (S = {1,2,..., i} for every i)
B) Prefixes and suffixes (S = {1,..., i}t and {i,..., n} for every i)

)
)
C) Contiguous intervals (S = {i,i+1,..., J—1,j} for every i <)
D) All subsets S

Tim Roughgarden

The Recurrence

Notation: For 1 <7 <j < n, let Cj; = weighted search cost of an
optimal BST for the items {i,i +1,...,j — 1,j} [with probabilities
Pi; Pi+1, - -+ pil

Recurrence: Forevery 1 <i<j<n:

J
Cj = min {Z Pk + Cir—1+ Cr+1,j}

r=i,....J Py
(Recall formula C(T) =", px + C(T1) + C(T>) from last video)

Interpret C,, =0 if x >y

Correctness: Optimal substructure narrows candidates down to
(j — i + 1) possibilities, recurrence picks the best by brute force.

Tim Roughgarden

The Algorithm

Important: Solve smallest subproblems (with fewest number
(j — i+ 1) of items) first.
Let A = 2-D array. [A[i,] represents opt BST value of items {1
Fors=0ton—1 s represents j — /]
For i=1to n[so i+ s plays role of J]
Aliyi+s] = min—i s {0 ot Ali,r—1] + Alr+1,i+s] }

Return A[L, n] //

Interpret as 0 if 1st index > 2nd index. Available for O(1)-time lookup

Pictorially: s :QJLO P Ali,i] = pi

(7
V4

EAGAY

Running Time

- ©(n?) subproblems

- ©(j — i) time to compute A[/,]

= O(n%) time overall

Fun fact: Optimized version of this DP

algorithm correctly fills up entire table in only ©(n?) time [©(1) on
average per subproblem]

[Idea: piggyback on work done in previous subproblems to avoid
trying all possible roots]

Tim Roughgarden

