
Algorithms: Design
and Analysis, Part II

NP-Completeness

Definition and
Interpretation



The Class NP

Refined idea: Prove that TSP is as hard as all brute-force-solvable
problems.

Definition: A problem is in NP if:

(1) Solutions always have length polynomial in the input size

(2) Purported solutions can be verified in polynomial time.

Examples: - Is there a TSP tour with length ≤ 1000?

- Constraint satisfaction problems (e.g., 3SAT)

Tim Roughgarden



Interpretation of NP-Completeness

Note: Every problem in NP can be solved by brute-force search in
exponential time. [Just check every candidate solution.]

Fact: Vast majority of natural computational problems are in NP
[≈ Can recognize a solution]

By definition of completeness: A polynomial-time algorithm for
one NP-complete problem solves every problem in NP efficiently
[i.e., implies that P=NP]

Upshot: NP-completeness is strong evidence of intractability!

Tim Roughgarden



A Little History

Interpretation: An NP-complete problem encodes simultaneously
all problems for which a solution can be efficiently recognized (a
“universal problem”).

Question: Can such problems really exist?

Amazing fact #1: [Cook ’71, Levin ’73] NP-complete problems
exist.

Amazing fact #2: [started by Karp ’72] 1000s of natural and
important problems are NP-complete (including TSP).

Tim Roughgarden



NP-Completeness User’s Guide

Essential tool in the programmer’s toolbox: The following recipe
for proving that a problem Π is NP-complete.

(1) Find a known NP-complete problem Π′ (see e.g. Garey +
Johnson, Computers + Intractability)

(2) Prove that Π′ reduces to Π

⇒ implies that Π at least as hard as Π′

⇒ Π is NP-complete as well (assuming Π is an NP problem)

Tim Roughgarden


