Approximation Algorithms
% for NP-Complete Problems

A Greedy Knapsack
Algorithms: Design
and Analysis, Part I

Heuristic



Strategies for NP-Complete Problems

(1) Identify computationally tractable special cases.

Knapsack instances with small capacity [i.e., knapsack
capacity W = polynomial in number of items n]

(2) Heuristics — today

- : _— — For K k
- Excellent dynd@mic programming heuristic } or Knapsac

(3) Exponential time but better than brute-force search

(nW)-time dynamic programming vs. O(2")
brute-fofce search.

Ideally: Should provide a performance guarantee (i.e., “almost
correct”) for all (or at least many) instances.

Tim Roughgarden



Knapsack Revisited

Input: n items. Each has a positive value v; and a size w;. Also,
knapsack capacity is W.

Output: A subset S C {1,2,...,n} that

Maximizes ) ;. Vi
Subjectto Y ;i ow; < W

Tim Roughgarden



A Greedy Heuristic

Motivation: ldeal items have big value, small size.

Step 1: Sort and reindex item so that
U>n> >0

wi — wp — = wp
Step 2: Pack items in this order until one doesn’t fit, then halt.
Example:
vi=2 wp=1
W=5 w=4 wp, =3 = Greedy gives {1,2} [also optimal]
V3 = 3 w3 = 3

Tim Roughgarden



Quiz

Consider a Knapsack instance with W = 1000 and
vy =2 wi =1
vo = 1000 w, = 1000

Question: What is the value of the greedy solution and the optimal
solution, respectively?

Tim Roughgarden



A Refined Greedy Heuristic

Upshot: Greedy solution can be arbitrarily bad relative to an
optimal solution.

Fix: Add:
Step 3: Return either the Step 2 solution, or the maximum

valuable item, whichever is better.

Theorem: Value of the 3-step greedy solution is always > 50%-
value of an optimal solution.

[i.e., a “%—approximation algorithm”]

Tim Roughgarden



