
Algorithms: Design
and Analysis, Part II

Greedy Algorithms

Introduction



Algorithm Design Paradigms

Algorithm Design: No single “silver bullet” for solving problems.

Design Paradigms:

- Divide & conquer (see Part I)

- Randomized algorithms (touched in Part I)

- Greedy algorithms (next)

- Dynamic programming (later in Part II)

Tim Roughgarden



Greedy Algorithms

“Definition”: Iteratively make “myopic” decisions, hope everything
works out at the end.

Example: Dijkstra’s shortest path algorithm (from Part I)
- Processed each destination once, irrevocably.

Tim Roughgarden



Contrast with Divide & Conquer

1. Easy to propose multiple greedy algorithms for many problems.

2. Easy running time analysis.
(Contrast with Master method etc.)

3. Hard to establish correctness.
(Contrast with straightforward inductive correctness proofs.)

DANGER: Most greedy algorithms are NOT correct. (Even if your
intuition says otherwise!)

Tim Roughgarden



In(correctness)

Example: Dijkstra’s algorithm with negative edge lengths. What
does the algorithm compute as the length of a shortest s-w path,
and what is the correct answer?

s 3 v

2 −2

w

A) 2 and 2 C) 1 and 2

B) 2 and 0 D) 2 and 1

Tim Roughgarden



Proofs of Correctness

Method 1: Induction. (“greedy stays ahead”)

Example: Correctness proof for Dijkstra’s algorithm. (See Part I.)

Method 2: “Exchange argument”.

Example: Coming right up!

Method 3: Whatever works!

Tim Roughgarden


