
Algorithms: Design
and Analysis, Part II

All-Pairs Shortest
Paths (APSP)

Johnson’s Algorithm



Example

0

a b

c

x y

z

-2

4 -1

2 -3

1 -4

0 -2

-3

-1 -6

0

s

0

0

0

0

0

Note: Adding s does not add any new u-v paths for any u, v ∈ G .

Key insight: Define vertex weight pv := length of a shortest s-v
path.

Tim Roughgarden



Example (con’d)

1

0

0

00

2 2

a b

c

x y

z

-2

4 -1

2 -3

1 -4

0 -2

-3

-1 -6

0

Recall: For each edge e = (u, v), define c ′e = ce + pu − pv .

Note: After reweighting, all edge lengths nonnegative! ⇒ Can
compute all (reweighted) shortest paths via n Dijkstra
computations! [No need for Bellman-Ford]

Tim Roughgarden



Johnson’s Algorithm

Input: Directed graph G = (V ,E ), general edge lengths ce .
(1) Form G ′ by adding a new vertex s and a new edge (s, v) with

length 0 for each v ∈ G .

G′ Gs

0
0

0

0

(2) Run Bellman-Ford on G ′ with source vertex s. [If B-F detects a
negative-cost cycle in G ′ (which must lie in G ), halt + report this.]

(3) For each v ∈ G , define pv = length of a shortest s → v path in G ′.
For each edge e = (u, v) ∈ G , define c ′e = ce + pu − pv .

(4) For each vertex u of G : Run Dijkstra’s algorithm in G , with edge
lengths {c ′e}, with source vertex u, to compute the shortest-path
distance d ′(u, v) for each v ∈ G .

(5) For each pair u, v ∈ G , return the shortest-path distance
d(u, v) := d ′(u, v)− pu + pv

Tim Roughgarden



Analysis of Johnson’s Algorithm

Running time: O(n) + O(mn) + O(m) + O(nm log n) + O(n2)

Step (1), form G ′ Step (2), run BF Step (3), form c′ Step (4), n Dijkstra Step (5), O(1) work per u-v pair

= O(mn log n). [Much better than Floyd-Warshall for sparse
graphs!]

Correctness: Assuming c ′e ≥ 0 for all edges e (see next slide for
proof), correctness follows from last video’s quiz.

[Reweighting doesn’t change the shortest u-v path, it just adds
(pu − pv ) to its length]

Tim Roughgarden



Correctness of Johnson’s Algorithm

Claim: For every edge e = (u, v) of G , the reweighted length
c ′e = ce + pu − pv is nonnegative.

cuv

G

0

0

0

G′ s

0

P

u v

s

Proof: Fix an edge (u, v). By construction,
pu = length of a shortest s-u path in G ′

pv = length of a shortest s-v path in G ′

Let P = a shortest s-u path in G ′ (with length pu - exists, by
construction of G ′)
⇒ P + (u, v) = an s-v path with length pu + cuv
⇒ Shortest s-v path only shorter, so pv ≤ pu + cuv

⇒ c ′uv = cuv + pu − pv ≥ 0. QED!
Tim Roughgarden


