
Algorithms: Design
and Analysis, Part II

Dynamic
Programming

An Algorithm for

Sequence Alignment



The Subproblems

(1) xm & yn, (2) xm & gap, (3) yn & gap

final position

Y + gaps

X + gaps

Optimal substructure: Let X ′ = X − xm, Y ′ = Y − yn.

If case (1) holds, then induced alignment of X ′ & Y ′ is optimal.
If case (2) holds, then induced alignment of X ′ & Y is optimal.
If case (3) holds, then induced alignment of X & Y ′ is optimal.

Relevant subproblems: Have the form (Xi ,Yi ) where
Xi = 1st i letters of X
Yj = 1st j letters of Y
[Since only peel off letters from the right ends of the strings]

Tim Roughgarden



The Recurrence

Notation: Pij = penalty of optimal alignment of Xi & Yj .

Recurrence: For all i = 1, . . . ,m and j = 1, . . . , n:

Pij = min


(1) αxiyj + Pi−1,j−1
(2) αgap + Pi−1,j
(3) αgap + Pi ,j−1


Correctness: Optimal solution is one of these 3 candidates, and
recurrence selects the best of these.

Tim Roughgarden



Base Cases

Question: What is the value of Pi ,0 and P0,i?

A) 0

B) i · αgap

C) +∞
D) Undefined

Tim Roughgarden



The Algorithm

A = 2-D array.

A[i , 0] = A[0, i ] = i · αgap,∀i ≥ 0

For i = 1 to m

For j = 1 to n

A[i , j ] = min


(1) A[i-1,j-1] + αxiyj

(2) A[i-1,j] + αgap

(3) A[i,j-1] + αgap


All available for O(1)-time lookup!

Correctness: [i.e., A[i , j ] = Pij , ∀i , j ≥ 0] Follows from induction +
correctness of recurrence.

Running time: O(mn) [Θ(1) work for each of Θ(mn) subproblems]

Tim Roughgarden



Reconstructing a Solution

- Trace back through filled-in table A, starting A[m, n]

- When you reach subproblem A[i , j ]:

- If A[i , j ] filled using case (1), match xi & yj and go to
A[i − 1, j − 1]

- If A[i , j ] filled using case (2), match xi with a gap and go to
A[i − 1, j ]

- If A[i , j ] filled using case (3), match yj with a gap and go to
A[i , j − 1]

[If i = 0 or j = 0, match remaining substring with gaps]

Running time is only O(m + n)!

Tim Roughgarden


