% Introduction

Guiding
Principles

Design and Analysis
of Algorithms |



Guiding Principle #1

“worst — case analysis” : our running time bound holds
for every input of length n.

-Particularly appropriate for “general-purpose”
routines

As Opposed to
--"average-case” analysis KNOWLI

--benchmarks

BONUS : worst case usually easier to analyze.

Tim Roughgarden



Guiding Principle #2

Won’t pay much attention to constant factors,
lower-order terms

Justifications

1. Way easier

2. Constants depend on architecture / compiler /
programmer anyways

3. Lose very little predictive power
(as we’ll see)

Tim Roughgarden



Guiding Principle #3

Asymptotic Analysis : focus on running time for large
input sizes n

1
Eg : 6nlog, +6n “better than” §n2
MERGE SORIT INSERTION SOR1

Justification: Only big problems are interesting!

Tim Roughgarden



12000

10000

8000

5000

4000

2000

T T
B5*x"{log(x)/log(2) )+(5"x!
{log(x} g(.islt}((”zg

Small n

n

6n log, n + 6n

Tim Roughgarden



1.2e+06

1e+06

200000

500000

400000

200000

v/

_—— 6nlogyn + 6n

1

1000

1400

Tim Roughgarden



What Is a “Fast” Algorithm?

This Course : adopt these three biases as guiding principles

fast ~ worst-case running time
algorithm grows slowly with input size

Usually : want as close to linear (O(n)) as possible

Tim Roughgarden



