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Guiding Principle #1

“worst — case analysis” : our running time bound holds
for every input of length n.

-Particularly appropriate for “general-purpose”
routines

As Opposed to
--"average-case” analysis KNOWLI

--benchmarks

BONUS : worst case usually easier to analyze.
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Guiding Principle #2

Won’t pay much attention to constant factors,
lower-order terms

Justifications

1. Way easier

2. Constants depend on architecture / compiler /
programmer anyways

3. Lose very little predictive power
(as we’ll see)
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Guiding Principle #3

Asymptotic Analysis : focus on running time for large
input sizes n

1
Eg : 6nlog, +6n “better than” §n2
MERGE SORIT INSERTION SOR1

Justification: Only big problems are interesting!
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What Is a “Fast” Algorithm?

This Course : adopt these three biases as guiding principles

fast ~ worst-case running time
algorithm grows slowly with input size

Usually : want as close to linear (O(n)) as possible
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