Data Structures
4 4

% Heaps and Their
Applications

Design and Analysis
of Algorithms |

Heap: Supported Operations

- A container for objects that have keys
- Employer records, network edges, events, etc.
Insert: add a new object to a heap. cqually well,
Running time : O(log(n)) L, BXTRACT MAX
Extract-Min: remove an object in heap with a minimum key
value. [ties broken arbitrarily]
Running time : O(log n) [n = # of objects in heap]

Also : HEAPIFY (5 omame), DELETE(O(log(n)) time)

Tim Roughgarden

Application: Sorting

Canonical use of heap : fast way to do repeated minimum
computations.

Example : SelectionSort ~0(n) linear scans, ¢(n”) runtime on array of
length n
Heap Sort : 1.) insert all n array elements into a heap
2.) Extract-Min to pluck out elements in sorted order

Running Time = 2n heap operations = O(nlog(n)) time.
=> optimal for a “comparison-based” sorting algorithm!

Tim Roughgarden

Application: Event Manager

“Priority Queue” —synonym for a heap.

Example : simulation (e.g., for a video game)

. _ Action/update to occur at]
'ObJeCtS = event records [given time in the future

- Key = time event scheduled to occur
- Extract-Min => yields the next scheduled event

Tim Roughgarden

Application: Median Maintenence

| give you : a sequence x1,...,xn of numbers, one-by-one.

You tell me : at each time step i, the median of {x1,....,xi}.

Constraint : use O(log(i)) time at each step i.

Solution : maintain heaps H,,, : supports Extract Max
Hyign : SUpports Extract Min

Key Idea : maintain invariant that ~ i/2 smallest (largest) elements in
HLow (HHigh)
You Check : 1.) can maintain invariant with O(log(i)) work
2.) given invariant, can compute median in O(log(i)) work

Tim Roughgarden

Application: Speeding Up Dijkstra

DiikStra’S Shortest-Path AlgOrlthm #VQr\ticesL#/dges

-Naive implementation => runtime = 9(7{&#\‘%

- with heaps => runtime = O(m Iog(n)) Work per iteration

loop [linear scan through
iteratios edges for minimum
computation]

Tim Roughgarden

