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Abstract—This paper explains when and how communication
and computational lower bounds for algorithms for an opti-
mization problem translate to lower bounds on the worst-case
quality of equilibria in games derived from the problem. We give
three families of lower bounds on the quality of equilibria, each
motivated by a different set of problems: congestion, scheduling,
and distributed welfare games; welfare-maximization in combina-
torial auctions with “black-box” bidder valuations; and welfare-
maximization in combinatorial auctions with succinctly described
valuations.

The most straightforward use of our lower bound framework
is to harness an existing computational or communication lower
bound to derive a lower bound on the worst-case price of anarchy
(POA) in a class of games. This is a new approach to POA
lower bounds, which relies on reductions in lieu of explicit
constructions.

More generally, the POA lower bounds implied by our
framework apply to all classes of games that share the same
underlying optimization problem, independent of the details of
players’ utility functions. For this reason, our lower bounds are
particularly significant for problems of game design — ranging
from the design of simple combinatorial auctions to the existence
of effective tolls for routing networks — where the goal is to
design a game that has only near-optimal equilibria. For example,
our results imply that the simultaneous first-price auction format
is optimal among all “simple combinatorial auctions” in several
settings.

Index Terms—price of anarchy; mechanism design; complexity
of equilibria

I. INTRODUCTION

All of the classical equilibrium concepts in game theory,
such as the Nash equilibrium, are defined without reference
to any computational process. Indeed, some of the greatest
hits of algorithmic game theory show that computing a Nash
equilibrium is intractable in multiple senses [1]–[4], and this
raises the possibility that Nash equilibria can solve problems
that efficient algorithms cannot. The goal of this paper is
to prove that game-theoretic equilibria are generally bound
by the same limitations as algorithms that use polynomial
computation or communication.

Our lower bound framework is quite general, and we give
several example applications. The most straightforward use
is to harness an existing computational or communication
lower bound to derive a lower bound on the worst-case price
of anarchy (POA) in a class of games — the worst-case
approximation guarantee for equilibria with respect to some
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objective function on game outcomes. Sections I-A and I-B
give two illustrative examples in well-studied classes of games
— congestion games and simultaneous first-price auctions —
and more examples appear in the full version of the paper.
This is a new approach to POA lower bounds, which relies
on reductions in lieu of explicit constructions. The latter can
require a tour de force — see [5] and [6] for two recent
examples — in part because it involves solving explicitly for
the worst equilibrium.

Perhaps the strongest feature of our lower bound framework
is that the consequent POA lower bounds apply not just to
one particular class of games, but to all classes of games that
share the same underlying optimization problem, independent
of the details of players’ utility functions. By contrast, small
changes to players’ utility functions can radically change the
set of equilibria of a game, and for this reason explicit POA
lower bounds tend to be brittle and need to be reworked on
a case-by-case basis (e.g. [7]). Thus, our lower bounds are
particularly significant for problems of game design, where the
goal is to design a game that has only near-optimal equilibria.
The full version of the paper explains how much recent and
current work in algorithmic game theory, ranging from the
design of simple combinatorial auctions to the existence of
effective tolls for routing networks, boils down to such game
design problems.

The next two sections are intended for readers interested
in the gist of the paper’s techniques or in concrete examples
that motivate the more general formalism and results of Sec-
tions IV–VII. The reader interested primarily in the summary
of results can skip to Section II.

A. Example: Cost-Minimization in Congestion Games

This section illustrates how near-optimal POA lower bounds
for congestion games follow, conditional on NP 6= coNP ,
from NP -hardness results for the underlying optimization
problem.

A congestion game [8] is defined by a ground set E of
resources, a set of n players with action sets A1, . . . ,An ⊆
2E , and a non-negative cost function ce : Z+ → R+ for
each resource e ∈ E. Given an action profile a ∈ A = A1 ×
· · · × An, we define the load xe as the number of players
that use resource e in a. The cost to player i is defined as



Ci(a) =
∑
e∈ai

ce(xe). The cost of an outcome is defined as

n∑
i=1

Ci(a) =
∑
e∈E

ce(xe)xe, (1)

where the equation follows from a reversal of sums.
For this example, we focus on pure Nash equilibria (PNE),

which are action profiles a such that Ci(a) ≤ Ci(a′i,a−i) for
every player i and unilateral deviation a′i ∈ Ai. The (pure)
POA of a congestion game is the ratio between the cost (1)
of the worst PNE and that of a minimum-cost outcome;
Proposition I.2 below implies that this is well defined.

Simple examples show that the worst-case POA of con-
gestion games is finite only if the set C of allowable cost
functions is restricted [9]. The worst-case POA of congestion
games, as a function of the set C, is well understood [5], [10]–
[12]. One simple and common parameterization is to consider
the sets Cd of polynomials with nonnegative coefficients and
degree at most d. There is a closed-form formula for the worst-
case POA of congestion games with cost functions in Cd [5];
the dependence on d is roughly (d/ ln d)d+1. The tight lower
bounds in [5] are proved via non-trivial and interesting explicit
constructions.

To bring complexity theory into the picture, define the Cost-
Minimization(d) (CM(d)) problem as: given a description of
a congestion game with cost functions in Cd, compute the
minimum cost of an action profile. We assume that players’
strategies and the polynomial coefficients are provided explic-
itly as part of the input.

Theorem I.1 Fix d ≥ 1, and assume that:
1) There is a polynomial-time reduction R from an NP -

complete problem Π that computes a parameter C∗

and maps “yes” and “no” instances of Π to instances
of CM(d) with cost at most C∗ and at least ρC∗,
respectively.1

2) NP 6= coNP .2

Then, the worst-case pure POA in congestion games with cost
functions in Cd is at least ρ.

The proof of Theorem I.1 relies on three simple facts. The
first was proved by Rosenthal [8], the second follows from
brute-force comparisons, and the third is obvious from (1).

Proposition I.2 ( [8]) Every congestion game has at least
one PNE.

Proposition I.3 The problem of deciding whether or not a
given action profile of a congestion game is a PNE can be
solved in polynomial time.

1Henceforth, we abbreviate such an assumption as “NP -hard to approxi-
mate better than a factor of ρ.”

2This assumption can be weakened to NP 6⊆ PLS, where PLS is defined
in [13].

Proposition I.4 The problem of computing the cost (1) of a
given action profile of a congestion game can be solved in
polynomial time.

Proof: (of Theorem I.1) Let α denote the worst-case
pure POA of congestion games with cost functions in Cd,
and consider the following nondeterministic algorithm P for
the instances of the CM(d) problem produced by the assumed
reduction R.

1) Given a description of a congestion game G produced
by R, nondeterministically guess a PNE a.

2) Verify that a is a PNE.
3) Compute the cost C of a.
4) Output “yes” if and only if C < ρ ·C∗, where C∗ is the

parameter given by the reduction R.
Propositions I.2–I.4 imply that P is a well-defined, nondeter-
ministic polynomial-time algorithm.

By the definition of the POA, the cost C of the PNE a is at
most α times that of a minimum-cost outcome of G. Hence,
if α < ρ, then P outputs “yes” whenever there is an outcome
with cost at most C∗ and “no” whenever every outcome has
cost at least ρ·C∗. This would contradict our two assumptions,
so we conclude that α ≥ ρ, as required.

Theorem I.1 reduces proving lower bounds on the POA of
congestion games to proving hardness of approximation results
for the CM(d) problem. Perhaps surprisingly, this problem
has not been well studied.3 in the full version of the paper,
we provide a new hardness of approximation result for the
problem.

Theorem I.5 There is a constant β > 0 such that, for all
d ≥ 1, it is NP-hard to approximate the CM(d) problem better
than a (βd)d/2 factor.

Combining Theorems I.1 and I.5 proves that, assuming
NP 6= coNP , the worst-case POA of congestion games with
cost functions in Cd is at least (βd)d/2. This lower bound is
weaker than the tight lower bound of ≈ (d/ ln d)d+1 in [5]
in two respects: it is conditional, and it is not quantitatively
tight. On the other hand, the lower bound relies only on Propo-
sitions I.2–I.4, and therefore extends to many other classes
of games for which the underlying optimization problem is
CM(d) (see the full version for details).

B. Example: Welfare-Maximization in Combinatorial Auctions

No problem in algorithmic game theory has been studied
more than that of welfare-maximization in combinatorial auc-
tions (e.g. [17]). This section uses a representative special case
of the problem to illustrate the additional ideas necessary to
prove POA lower bounds in games with a super-polynomial
number of player actions.

3In [14], several NP -hardness results are given for solving the problem
exactly. For arbitrary nondecreasing cost functions, no finite approximation
is possible (assuming P 6= NP ) [14]. Hardness results for the more general
model of congestion games with player-specific cost functions are considered
in [15], [16].



In a combinatorial auction, there is a set U of m distinct
items. There are n bidders. Each bidder i has a valuation
function vi : 2U → R+. Most of the results of this section
apply to arbitrary classes of bounded valuation functions, but
for concreteness we stick with valuation functions vi that
satisfy vi(∅) = 0, monotonicity (so T ⊆ S implies vi(T ) ≤
vi(S)), and subadditivity (so vi(S ∪ T ) ≤ vi(S) + vi(T )
for every S, T ⊆ U ). We also assume that every valuation
vi(S) is integral and bounded above by a number Vmax that is
polynomial in n and m. An allocation is an assignment of each
item of U to at most one bidder. The welfare w(S1, . . . , Sn)
of an allocation is

∑n
i=1 vi(Si).

A simple approach to selling multiple items is to sell each
seperately via a single-item auction [18]. This section focuses
on the concrete case of simultaneous first-price auctions
(S1As) [19], [20]. Every player i has the same action set
Ai = {0, 1, 2, . . . , Vmax}m, with each action representing an
integral bid (between 0 and Vmax) on each of the m items.4

Each item j is sold separately to the highest bidder — with
ties between high bids broken lexicographically, say — and
the winner of an item pays its bid. The utility ui(a) of a player
i in an action profile a is defined as its value vi(Si) for the
items Si that it wins, minus the sum of its bids on the items
in Si.

The underlying optimization problem in a S1A is that of
determining an allocation with the maximum-possible wel-
fare. For this example, we take a communication complexity
approach to the problem. Our communication model is the
standard one in this context [21]. Each of the n players
holds its own subadditive valuation vi and does not know
the others v−i. A communication protocol specifies rules for
exchanging bits of information between the players. In a round
where player i sends a message, this message can depend
only on vi and the messages previously sent by all players.
Nondeterministic protocols can additionally provide all players
with a common advice string (which can depend on all inputs
v) before the protocol begins. A protocol for computing
an allocation is typically deemed tractable if the resources
required are polynomial in n and m. This is sublinear in the
input size, which comprises n · 2m numbers.

We next describe the analogs of Propositions I.2–I.4 appro-
priate for the current setting. First, Proposition I.2 does not
hold for S1A’s with subadditive bidder valuations — PNE need
not exist [22].5 We instead consider mixed Nash equilibria
(MNE), where each player picks a probability distribution over
its actions and no player can increase its expected utility by
a unilateral deviation. Since S1A’s have a finite number of
players and strategies, Nash’s theorem [23] implies that at least
one MNE exists.

Second, the analog of Proposition I.3 also fails. Since the
action space of each player has size (Vmax + 1)m, which is

4Alternatively, valuations and bids can be multiples of an arbitrarily small
constant, like a penny, without affecting our results.

5Guaranteed equilibrium existence is clearly crucial to the proof of Theo-
rem I.1, and more generally it is fundamental to the lower bound framework
of this paper. See Section III-C for further discussion.

exponential in m, an MNE of a S1A cannot generally be
represented, let alone verified, using a number of bits that
is polynomial in m. The next idea is to relax the equilibrium
concept further, to ε-approximate mixed Nash equilibria (ε-
MNE), where no player can increase its expected utility by
more than ε by a unilateral deviation.6

We recall an important result of Lipton et al. [24]. By a
t-uniform mixed strategy for a player i, we mean a uniform
distribution over a multi-set of at most t actions from Ai.

Theorem I.6 (Small Support ε-MNE [24]) Let G be a
game with n players, each with at most N actions, and with all
payoffs bounded between −Vmax and Vmax. For every ε > 0,
G has a (12n2 ln(n2N))/ε2-uniform εVmax-MNE.

The proof of Theorem I.6 proceeds by drawing independent
sample actions for every player according to some fixed MNE
(one exists, by Nash’s theorem), and proving that with positive
probability the empirical distributions of the samples form an
εVmax-MNE.7

Since N = (Vmax + 1)m in a S1A and we are assuming
that Vmax is polynomial in n and m, we deduce an analog of
Proposition I.2 as a corollary to Theorem I.6.

Proposition I.7 For every ε > 0, every S1A has a t-uniform
εVmax-MNE, where t is bounded above by a polynomial in n,
m, and ε−1.

Since Vmax is polynomially bounded, the number of bits
needed to describe the approximate MNE in Proposition I.7 is
polynomial in n, m, and t.

The analog of Proposition I.3 follows from the fact that,
given a description of a mixed strategy profile x, a player
can privately compute both its expected utility in x and its
expected utility in a best response to others’ mixed strate-
gies x−i.

Proposition I.8 The problem of deciding whether or not a t-
uniform mixed strategy profile of a S1A is an εVmax-MNE can
be solved with communication polynomial in n, m, and t.

The analog of Proposition I.4 follows from the fact that,
given a description of a mixed strategy profile, each player
can privately compute its contribution to the social welfare.

Proposition I.9 The problem of computing the expected wel-
fare of a t-uniform mixed strategy profile of a S1A can be
solved with communication polynomial in n, m, and t.

We require one additional simple proposition.

Proposition I.10 For every S1A, there is an action profile that
induces an allocation with the maximum-possible welfare.

6Section III-A explains several senses in which POA lower bounds for
ε-MNE with ε close to 0 are essentially as good as those for exact MNE.

7Hémon et al. [25] and Babichenko and Peretz [26] give quantitative
improvements to Theorem I.6, but the original result is sufficient for our
purposes.



Proof: If (S∗1 , . . . , S
∗
n) is a welfare-maximizing alloca-

tion, have each player i bid 1 on every item of S∗i and 0 on
every other item.

We now show how Propositions I.7–I.10 enable the trans-
lation of lower bounds for communication protocols to lower
bounds on the the POA in S1A’s. We define the POA of MNE
(ε-MNE) in a S1A as the ratio between the welfare of an
optimal allocation and the smallest expected welfare of a MNE
(ε-MNE).

The worst-case POA of MNE in S1A’s was recently de-
termined to be precisely 2. Feldman et al. [27] provided the
upper bound, while Christodoulou et al. [6] devised an intricate
explicit construction to prove a matching lower bound. We
next show how essentially the same lower bound follows from
known lower bounds for communication protocols.

Theorem I.11 Let V denote a set of valuation profiles with
all valuations bounded above by Vmax. Assume that every
nondeterministic communication protocol that distinguishes
between valuation profiles v ∈ V with maximum-possible
welfare at least W ∗ and those with maximum-possible welfare
at most W ∗/ρ uses communication exponential in m, for all
sufficiently large n and m.

Then, for every polynomial function p(n,m) of n and m,
the worst-case POA of p(n,m)−1Vmax-MNE in S1A’s with
valuation profiles in V is at least ρ.

Proof: Fix a polynomial function p(n,m) and consider
the following nondeterministic protocol P:

1) Given a valuation profile v ∈ V , inducing a S1A G, non-
deterministically compute a t-uniform p(n,m)−1Vmax-
MNE x of G, where t = (12n2 ln(n2N))/p(n,m)2 as
in Theorem I.6 and N = (Vmax + 1)m.

2) Verify that x is an p(n,m)−1Vmax-MNE.
3) Compute the expected welfare W of x.
4) Output “yes” if and only if W > W ∗/ρ.

Propositions I.7–I.9 imply that P is a well-defined nonde-
terministic protocol that uses communication polynomial in
n and m (provided Vmax is polynomial in n and m). By
Proposition I.10 and the definition of the POA, the expected
welfare W of the p(n,m)−1Vmax-MNE x is at least an α
fraction of the welfare of an optimal allocation, where α is
the worst-case POA of p(n,m)−1Vmax-MNE in S1A’s with
valuation profiles in V . Hence, if α < ρ, then P outputs “yes”
whenever there is an allocation with welfare at least W ∗ and
“no” whenever every allocation has welfare at most W ∗/ρ.
This would contradict our assumption for sufficiently large m,
so α ≥ ρ.

Theorem I.11 reduces proving lower bounds on the POA of
S1A’s to proving exponential lower bounds for nondetermin-
istic communication protocols. Many such lower bounds are
known (see Section VI); the following is one example.

Theorem I.12 ( [28, Theorem 4.1]) Let δ > 0 be an arbi-
trarily small constant. For subadditive bidder valuations and
every n ≤ m(1/2)−δ , every nondeterministic communication

protocol that distinguishes between instances with optimal
welfare 2n and instances with optimal welfare n+ 1 requires
an exponential number (in m) of bits in the worst case.

Theorem I.12 holds even when all bidder valuations are
either 1 or 2. Combining this lower bound with Theorem I.11
shows that the worst-case POA of ε-MNE in S1A’s with
subadditive bidder valuations is at least 2 (as n,m → ∞),
even when ε tends to 0 inverse polynomially in n and m. This
essentially reproduces the recent lower bound in [6] — which
is for exact MNE, see Section III-A — and matches the upper
bound in [27].

More important than this POA lower bound for the specific
auction format of S1A’s, however, is the fact that this same
lower bound applies to every sufficiently simple combinatorial
auction. Here “simple” roughly means that players’ action
spaces have size sub-doubly-exponential in m; see Section VI
for the precise statement. This general lower bound implied by
Theorems I.11 and I.12 for all simple auctions has interest-
ing implications for combinatorial auctions with subadditive
bidder valuations:

1) Simultaneous first-price auctions minimize the worst-
case POA (of approximate MNE) over all simple auction
formats.

2) Complexity is an unavoidable property of every combi-
natorial auction with a worst-case equilibrium welfare
guarantee that is better than 2.

C. Paper Organization

Examination of the proofs of Theorems I.1 and I.11 sug-
gests that computational and communication lower bounds for
optimization problems should apply to worst-case equilibria
of associated games quite generally — intuitively, whenever
the equilibrium concept is guaranteed to exist and easy to
verify. The remainder of the paper develops this intuition into
a general theory.

Section II summarizes our results. Section III discusses
the limitations of our lower bound framework. Section IV
describes our formalism for game design. Sections V–VII
provide the formal statements of the results described in Sec-
tion II. Due to space constraints, most proofs and applications
of the results in Sections V–VII are omitted; these can be
found in the full version of the paper.

II. SUMMARY OF CONTRIBUTIONS

We offer three families of lower bounds for the minimum
worst-case POA achievable by a “game plan” — a way of
associating a game to each instance of an optimization problem
(defined formally in Section IV). Each family is motivated by
one or more well-studied problems in mechanism or network
game design. In all cases, the goal is to understand when
and how communication or complexity lower bounds for the
underlying optimization problem translate to lower bounds for
the worst-case POA. See also Tables I and II.

The first set of lower bounds is motivated by optimization
problems in large networks and systems.For these problems,



TABLE I
WHEN DOES A HARDNESS OF APPROXIMATION LOWER BOUND TRANSLATE TO A POA LOWER BOUND? THE SECOND COLUMN DESCRIBES THE

HARDNESS ASSUMPTION. “ND” STANDS FOR NONDETERMINISTIC, “RAND.” FOR RANDOMIZED WITH ONE-SIDED ERROR, AND “ρ-HARD FOR P ” MEANS
THAT Π IS NP -HARD TO APPROXIMATE BETTER THAN A ρ FACTOR. THE THIRD COLUMN DESCRIBES THE SET OF GAME PLANS TO WHICH THE POA

LOWER BOUND OF ρ APPLIES. m DENOTES THE NUMBER OF ITEMS IN A COMBINATORIAL AUCTION. “BR” STANDS FOR “BEST RESPONSE”, “EU” FOR
“EXPECTED UTILITY”. THE FOURTH COLUMN INDICATES THE EQUILIBRIUM CONCEPT TO WHICH THE POA LOWER BOUND (OF ρ) APPLIES; SEE

SECTION IV-A FOR DEFINITIONS.

Motivation Assumptions on Π Assumptions on Γ Eq Concept Refer to
Large Systems ρ-hard for P and NP 6⊆ PPAD tractable EU ε-MNE Thm V.1
Large Systems ρ-hard for P and P 6= NP tractable EU CE Thm V.2

Simple Auctions ρ-hard for ND protocols 22o(m)
actions ε-MNE Thm VI.1

Simple Auctions ρ-hard for rand. protocols 22o(m)
actions ε-CCE full version

Tractable Auctions ρ-hard for P and coNP 6⊆MA tractable BR ε-MNE Thm VII.1

we show that NP -hardness of approximating the underly-
ing optimization problem translates under mild conditions
to lower bounds on the worst-case POA of all game plans
— for approximate mixed Nash equilibria assuming that
NP 6⊆ PPAD (via the PPAD algorithm in [29]) and for
(exact) correlated equilibria assuming that P 6= NP (via
the polynomial-time algorithm in [30], [31]). These lower
bounds are the natural generalizations of the argument outlined
in Section I-A for congestion games, and are relevant for
many variants of congestion games, for scheduling games
and coordination mechanisms [32], and for distributed welfare
games [33] (details in the full version).

As mentioned in Section I-A, we also contribute a new
hardness of approximation result for the underlying optimiza-
tion problem in congestion games (Theorem I.5). The proof,
which appears in the full version of this paper, builds on ideas
used previously to establish strong inapproximability results
for routing disjoint paths with congestion [34].

The second family of lower bounds are based on commu-
nication complexity and are unconditional, and are the natural
generalization of the argument outlined in Section I-B. They
are motivated by the problem of designing simple mechanisms
for welfare-maximization in combinatorial auctions, where by
“simple” we mean that the bid space of a player is strictly
smaller than its valuation space (which generally has size
doubly exponential in the number of items m). The gist
of our main result here is: the worst-case POA of simple
mechanisms is bounded below by the communication hardness
of approximating of the underlying optimization problem.
This lower bound applies even to mechanisms that are com-
putationally unbounded. Combining our results with known
communication hardness results for welfare-maximization in
combinatorial auctions gives senses in which certain well-
studied mechanisms, such as simultaneous first-price auc-
tions, are optimal among all mechanisms with a sub-doubly-
exponential-size action space.

The final family of lower bounds is motivated by spe-
cial cases of welfare-maximization in combinatorial auctions
with succinctly described valuation functions, where there
are no non-trivial communication lower bounds. Here, we
prove conditional lower bounds on the POA of mechanisms
that are “tractable,” where the most stringent requirement for

tractability is that a bidder can compute in polynomial time an
approximate best response given mixed strategies of the other
players. Note this is arguably the minimal condition under
which the mixed Nash equilibrium concept is computationally
(and perhaps conceptually) plausible. The essence of our main
result here is: the worst-case POA of tractable mechanisms
is bounded below by the NP -hardness of approximating the
underlying optimization problem. These lower bounds are
for the POA of approximate mixed Nash equilibria, and are
conditional on coNP 6⊆MA.8 The main idea here is to use the
guaranteed existence of near-optimal approximate equilibria
to probabilistically certify a coNP -hard welfare-maximization
problem. As an example application, these results show that,
if coNP 6⊆ MA, then greedy combinatorial auctions have
essentially optimal worst-case POA for welfare-maximization
with single-minded bidders among all tractable mechanisms.

III. DISCUSSION AND LIMITATIONS

A. Exact vs. Approximate Equilibria

Almost all of our POA lower bounds are for approximate
equilibria; in principle, exact equilibria could be much closer
to an optimal outcome. There are three reasons why our
lower bounds for approximate equilibria are, for all practical
purposes, as good as lower bounds for exact equilibria.

First, every known technique for proving POA bounds for
an equilibrium concept also proves approximately the same
POA bound for the approximate version of the equilibrium
concept. This includes the smoothness technique in [12] and its
variants [41], [45], the recent “mimicking” technique of [27],
[42], and any other proof technique that is based solely on
elementary manipulations of the best response condition. Thus,
if nothing else, our lower bounds limit what is provable by all
known POA upper bound methods.

Second, for many natural classes of games and equilibrium
concepts, a lower bound of ρ for ε-approximate equilibria
can be translated into a lower bound of ρ − f(ε) for exact
equilibria, where f(ε) → 0 as ε → 0. For example, given a
congestion game and a high-cost approximate equilibrium σ
of it, minor modifications to the game transmute σ into an
exact equilibrium while only slightly reducing the POA.

8Recall that if coNP ⊆MA then the polynomial hierarchy collapses (see
e.g. [35]).



TABLE II
INSTANTIATIONS OF OUR LOWER BOUNDS FOR SPECIFIC PROBLEMS. THE FIRST PROBLEM IS TO COMPUTE THE OPTIMAL ACTION PROFILE IN A

CONGESTION GAME WITH COST FUNCTIONS THAT ARE POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS AND DEGREE AT MOST d. β ∈ (0, 1) IS A
CONSTANT INDEPENDENT OF d. THE SECOND PROBLEM IS MINIMIZING THE WEIGHTED SUM OF COMPLETION TIMES ON RELATED MACHINES. THESE

TWO LOWER BOUNDS ARE CONDITIONAL ON NP 6⊆ PPAD (FOR ε-MNE) AND ON P 6= NP (FOR CE). THE LAST FIVE PROBLEMS ARE
WELFARE-MAXIMIZATION IN COMBINATORIAL AUCTIONS WITH GENERAL, SUBADDITIVE, XOS, SUBMODULAR, AND SINGLE-MINDED BIDDER

VALUATIONS (SEE SECTION VI-A FOR DEFINITIONS). OF THESE, THE FIRST FOUR LOWER BOUNDS ARE UNCONDITIONAL; THE FIFTH IS CONDITIONAL
ON coNP 6⊆MA.

Problem Π POA Lower Bound POA Upper Bound Refer to

Routing (βd)d/2 (via Thm I.5) ≈ (d/ ln d)d+1 [5] Thms V.1 and V.2
Scheduling > 1 (via [36]) 32/15 [37] Thms V.1 and V.2
General Vals Ω(m(1/2)−ε) (via [38]) O(

√
m) [39]–[41] Section VI-D

Subadditive Vals 2 (via [28]) 2 [27], [42] Section I-B
XOS Vals e/(e− 1) (via [28]) e/(e− 1) [41] Section VI-D
Submodular Vals 2e/(2e− 1) (via [43]) e/(e− 1) [41] Section VI-D
Single-Minded Ω(m(1/2)−ε) (via [44]) O(

√
m) [39]–[41] Theorem VII.1

Finally, suppose there was a class of games with a POA
phase transition between exact and approximate equilibria (we
know of no such classes). The consequent non-robust POA
bound for exact equilibria would not be a convincing guarantee
for actual behavior, and approximate equilibria would likely
be the more relevant solution concept.

B. Bayes-Nash Equilibria

Many of our results are motivated by combinatorial auc-
tions, where bidders’ valuations are usually considered private
information, and yet we study only full-information games.
The reason is our focus on lower bounds — restricting
attention to full-information games only makes them stronger.

C. Equilibria without Guaranteed Existence

There are two genres of POA analyses that appear ill-
suited for complexity-theoretic lower bounds. The first is POA
bounds for equilibrium concepts that are not guaranteed to
exist, such as pure Nash equilibria (PNE). The issue is that
equilibria might exist only in instances where the underlying
optimization problem happens to be easy, and as such a
POA bound that is conditional on existence can bypass the
(worst-case) lower bounds for the problem. Exhibit A of
this phenomenon is PNE in simultaneous first-price auctions
(Section I-B). Such equilibria are only guaranteed to exist
for very special classes of bidder preferences [46], yet they
are optimal whenever they exist, no matter how complex
bidders’ preferences are [19]. By contrast, the underlying
welfare-maximization problem is generally intractable (cf.,
Theorem I.12).

D. POA Lower Bounds without Intractability

The second genre of POA analyses that appears immune
to our approach concerns inefficiency caused by idiosyncratic
details of a mechanism’s implementation. The canonical ex-
ample here is the generalized second price (GSP) auction for
sponsored keyword search. Understanding the POA of the GSP
auction, as done in [47], is important because the auction is
widely used in practice. Because the underlying optimization
problem in sponsored search is not difficult in any sense, we
do not expect our lower bound framework to be relevant.

IV. FORMALISM

A. Preliminaries

We consider finite games, with n players and finite action
sets A1, . . . ,An. A vector a ∈ A, where A =

∏n
i=1Ai, is

called an action profile or outcome. In a cost-minimization
game, each player i has a cost function Ci : A → R+.
In a utility-maximization game, each player i has a utility
function ui : A → R+. Sections I-A and I-B provide concrete
examples.

Several equilibrium notions are relevant to the present work.
We next review a well-known hierarchy of four equilibrium
concepts, each more permissive than the previous one. We
phrase the definitions for utility-maximization games; analo-
gous definitions apply to cost-minimization games.

A pure Nash equilibrium (PNE) is an action profile a such
that no player can increase its payoff via a unilateral deviation:
ui(a) ≥ ui(a′i,a−i) for every player i and a′i ∈ Ai. In many
games, PNE do not exist.

A mixed Nash equilibrium (MNE) is a profile σ =
(σ1, . . . , σn) of mixed actions (with σi a distribution over Ai)
such that no player i can increase its expected utility (over∏
j 6=i σj) via a unilateral deviation. Every finite game has at

least one MNE [23].
A correlated equilibrium (CE) is a distribution σ over A

such that no player can increase its expected payoff via a
conditional deviation: for every player i and ai, a′i ∈ Ai,

Ea∼σ[ui(a) | ai] ≥ Ea∼σ[ui(a′i,a−i) | ai] .

A coarse correlated equilibrium (CCE) is a distribution σ
over A such that, for every player i and a′i ∈ Ai,

Ea∼σ[ui(a)] ≥ Ea∼σ[ui(a′i,a−i)] . (2)

Last but not least, a distribution σ over A is an ε-CCE
if (2) holds for every i and a′i ∈ Ai with an extra “−ε” on the
right-hand side. Approximate versions of the other equilibrium
concepts are defined in the same way.9

9Some previous papers study multiplicative notions of approximate equi-
libria; this additive definition is the appropriate one for the present work.



Given a game, a nonnegative minimization objective func-
tion, and an equilibrium concept, the price of anarchy (POA)
is defined as the worst-case (over equilibria σ) ratio between
the expected objective function value of an equilibrium and
the optimal objective function value of the game. For a
maximization objective function, the POA is the reciprocal
of this (so that the POA is always at least 1). Holding the
game fixed, the POA can only increase with the equilibrium
set. For example, for the equilibrium concepts defined above,
the POA is the smallest for the set of PNE and the largest for
the set of ε-CCE.

B. Game Plan Design

The problem of game design is defined formally as follows.
Given is an instance I of an optimization problem, consisting
of a set F of feasible solutions and an objective function
defined on them. Also fixed is some choice of an equilibrium
concept. A game G on I consists of:

1) a finite set of n players;
2) an action space Ai for each player i;
3) a payoff ui(a) for each outcome a ∈ A = A1×· · ·×An;
4) a function Λ : A → F from outcomes of G to feasible

solutions of I .
Such a game is onto I if Λ is onto F . A congestion game
(Section I-A) or a S1A (Section I-B and Proposition I.10) can
be thought of as a game onto an instance of the underlying
cost-minimization or welfare-maximization problem.

The game design problem for I and a class of games G on I
is: determine the game G ∈ G whose worst-case equilibrium
most closely approximates the optimal solution to I . When
every game G ∈ G is onto I — so every game G ∈ G
has an outcome mapping to the optimal solution of I — this
game design problem is equivalent to minimizing the price of
anarchy over G ∈ G.10

While the game design problem is non-trivial even for a
single instance I , we are generally interested in designing
games with small POA across all instances of an optimization
problem Π. By a game plan for an optimization problem Π,
we mean a function Γ from the each instance I of Π to a
game Γ(I) on I . We call a game plan onto Π if Γ(I) is onto
I for every I ∈ Π, and H-bounded if the players’ utilities in
every game Γ(I) are always between −H and H .

We briefly mention two well-studied examples of game plan
design and defer further examples and a detailed discussion
to the full version of the paper. First, the literature on co-
ordination mechanisms for scheduling, beginning with [32],
provides particularly transparent examples of game plan design
problems. The goal here is to define local machine scheduling
policies (and thereby players’ utility functions) to minimize
the POA; each choice of a local policy can be thought of
as a game plan in the above sense. Second, the literature on
identifying simple auctions with good equilibria (e.g. [18],

10There is of course the trivial game with a unique outcome (or more
generally, a unique outcome in strictly dominant strategies) that is mapped to
the optimal solution of I . We will always impose natural restrictions on G
that rule out uninteresting solutions of this sort.

[40]) is implicitly seeking out near-optimal solutions to natural
game plan design problems, with each choice of an auction
format inducing a game plan.

V. POA LOWER BOUNDS FOR POLYNOMIAL GAME PLANS

Our first set of lower bounds are for the relatively simple
case of games of polynomial size. As mentioned in Section II
and detailed in the full version, these lower bounds are relevant
for several types of congestion games, scheduling games, and
distributed welfare games.

Formally, we say that a game plan Γ for an optimization
problem Π is polynomial if:

1) the function Γ can be implemented as an algorithm that,
given a description of an instance I ∈ Π, outputs a
description of the game Γ(I) in time polynomial in the
description length of I;

2) for every I ∈ Π, the size of every action set in Γ(I) is
polynomial in the description length of I .

Computational complexity lower bounds for approximating
an optimization problem translate to conditional lower bounds
on the worst-case POA in games induced by polynomial game
plans. The strength of the complexity assumption required
depends on the equilibrium concept and on the queries sup-
ported by the games produced by the game plan, although all
of the complexity assumptions employed in this section are
weaker than NP 6= coNP . We next discuss two conditional
POA lower bounds that follow from previous work on the
complexity of equilibria; we give further lower bounds of this
type in the full version.

The Expected Utility (EU) problem for a game G is the
following: given a mixed strategy xi for each player i of G,
presented as an explicit list of probabilities over the actions
Ai, compute the expected utility Ea∼x[ui(a)] of every player.
The EU problem is trivial for games represented in normal
form (where utilities are listed individually for each a ∈ A)
but can be non-trivial for succinctly represented games. We
say that the EU problem is tractable in a family G of games
if it can be solved in time polynomial in the description
of the game G and mixed strategies x. We say that it is
strongly tractable if it can be solved by a bounded division-free
straight-line program of polynomial length (see [29] for more
details). While there are classes of games for which the EU
problem is #P -hard, it is strongly tractable for almost all of
the succinctly represented games with polynomial-size action
sets that have been considered in the algorithmic game theory
literature. Examples include congestion games, scheduling
games, network design games, and facility location games;
see [29]–[31] for details.

The Expected Objective (EO) problem for a game G on an
instance I is the following: given a mixed strategy xi for each
player i of G, presented as an explicit list of probabilities,
compute the expected objective function value Ea∼x[Γ] (a),
where Γ is the mapping from action profiles of G to feasible
solutions of I . The same techniques used to solve the EU
problem for various games in [29]–[31] can also be used to
solve the EO problem for those games.



The following result is a consequence of [29, Theorem 2]
and a proof similar to that of Theorem I.1.

Theorem V.1 Let Π be an optimization problem such that the
optimal objective function value is NP -hard to approximate
better than a ρ factor. Assume that NP 6⊆ PPAD and that
Γ is a polynomial and H-bounded game plan onto Π that
induces games for which the EU problem is strongly tractable
and the EO problem can be solved in polynomial time. Then,
for every constant ε > 0, the worst-case POA of εH-MNE in
games induced by Γ is at least ρ.

Similarly, the following result is a consequence of [31,
Theorem 4.1] and a proof similar to that of Theorem I.1. Its
assumptions are weaker (relaxing NP 6⊆ PPAD to P 6= NP
and strong tractability of EU to tractability) and its conclusion
is incomparable (a lower bound for exact CE rather than εH-
MNE).

Theorem V.2 Let Π be an optimization problem such that the
optimal objective function value is NP -hard to approximate
better than a ρ factor. Assume that P 6= NP and that Γ is a
polynomial game plan onto Π that induces games for which
the EU problem is tractable and the EO problem can be solved
in polynomial time. Then, the worst-case POA of CE in games
induced by Γ is at least ρ.

VI. THE PRICE OF ANARCHY IN SIMPLE AUCTIONS:
LOWER BOUNDS FROM COMMUNICATION COMPLEXITY

This section uses communication complexity arguments to
give unconditional lower bounds on the worst-case POA of
approximate MNE.

A. Welfare Maximization in Combinatorial Auctions

Recall from Section I-B the problem of welfare-
maximization in combinatorial auctions. It is conventional and
useful to parameterize the problem by a set of allowable
valuation functions; see also [48]. Four well-studied special
cases, in decreasing order of generality, are:

1) General. The only assumptions here are that valuation
functions are nonnegative, nondecreasing (i.e., S ⊆ T
implies vi(S) ≤ vi(T )), with vi(∅) = 0.

2) Subadditive. Recall from Section I-B that a subadditive
valuation function vi satisfies: for every pair S, T ⊆ U
of bundles, vi(S ∪ T ) ≤ vi(S) + vi(T ).

3) XOS. An XOS valuation function vi can be repre-
sented as the pointwise maximum of additive valuations:
vi(S) = maxr`=1

∑
j∈S z

`
j , where each z` : U → R+ is

an additive valuation over U .
4) Submodular. A submodular valuation function vi satis-

fies: for every pair S ⊆ T and j /∈ T , vi(T ∪ {j}) −
vi(T ) ≤ vi(S ∪ {j})− vi(S).

As in Section I-B, we assume that every valuation is an integer
and bounded above by a value Vmax that is polynomial in n
and m; the relevant communication and computational lower
bounds continue to hold with these assumptions.

B. Mechanisms

Let Π(n,m,V) denote the welfare-maximization problem
with m items and n bidders with valuations in V . We identify
instances I of Π(n,m,V) with valuation profiles v ∈ Vn. By
a mechanism M for Π(n,m,V), we mean a game plan that
meets the following conditions.

1) For every game M(v) induced by an instance v ∈
Π(n,m,V), the players of M(v) correspond to the n
bidders of v.

2) For every player i, the action set Ai is finite and
independent of v−i.

3) For every player i and instances v = (vi,v−i) and v′ =
(vi,v′−i), the utility functions ui : A → R inM(v) and
in M(v′) are the same. That is, each bidder i’s utility
function in M(v) is independent of v−i.

4) The map Λ from action profiles A to feasible solutions
is the same for every induced game M(v). (Because n
and m are fixed, every instance v ∈ Π(n,m,V) has the
same set of feasible solutions, the allocations of the m
items to the n bidders.)

Encoding a S1A (Section I-B), for example, as such a mech-
anism is straightforward. We are not aware of any reasonable
auction formats for welfare-maximization in combinatorial
auctions that do not satisfy the above properties. There are
certainly unreasonable auction formats that do — for instance,
we do not require that the map Λ or the players’ utilities can
be evaluated in a reasonable amount of time.

C. Low-Communication Protocols

Generalizing the proof of Theorem I.11 yields the following.

Theorem VI.1 Let Π(n,m,V) be a welfare-maximization
problem with maximum valuation Vmax and M a Vmax-
bounded mechanism onto Π(n,m,V) such that, in every game
M(v) induced by M, the POA of εVmax-MNE is at most ρ.
Let N denote the largest number of actions available to a
player in M(v).

Then, there is a nondeterministic protocol that uses com-
munication polynomial in n, 1

ε , logN , and log Vmax, and for
every W distinguishes between instances of Π(n,m,V) with
optimal welfare at least W and instances of Π(n,m,V) with
optimal welfare less than W/ρ.

We show in the full version of the paper that, under the
stronger assumption that all ε-CCE of the induced games
M(v) are near-optimal, we can replace the nondeterministic
communication protocol of Theorem VI.1 with a randomized
protocol with one-sided error. The proof involves a low-
communication simulation of no-regret algorithms.

D. Implications for Simple Auctions

We saw in Section I-B how Theorem VI.1, in conjunction
with known exponential lower bounds for nondeterministic
communication protocols that approximately maximize wel-
fare with subadditive bidder valuations, implies that there is
no “simple” mechanism — meaning sub-doubly-exponential



(in m) action spaces — that only induces games with worst-
case POA (of approximate MNE) better than 2. Analogous
results are known for several other valuation classes.

1) Combining Theorem VI.1 with [38, Theorem 3] proves
a lower bound of min{n,m(1/2)−ε} on the worst-case
POA of simple mechanisms with general bidder valua-
tions, where ε > 0 is an arbitrarily small constant.

2) Combining Theorem VI.1 with [28, Theorem 4.2] proves
a lower bound of e/(e − 1) on the worst-case POA of
simple mechanisms with XOS bidder valuations.

3) Combining Theorem VI.1 with [43, Theorem 1.1] proves
a lower bound of 2e/(2e−1) on the worst-case POA of
simple mechanisms with submodular bidder valuations.

As in Section I-B, these lower bounds apply to the worst-case
POA of ε-MNE, where ε can be as small as inverse polynomial
in n and m.

For general valuations, the POA upper bounds for simple
greedy combinatorial auctions in [39]–[41] show that this
lower bound is nearly tight.11 For XOS valuations, the POA
upper bound for S1A’s in [27] shows that the lower bound of
e/(e − 1) is tight,12 and therefore S1A’s minimize the POA
over all simple mechanisms in this setting.

Sudmodular valuations pose an intriguing challenge. The
lower bound of e/(e− 1) in [6] on the POA of S1A’s applies
also to bidders with submodular valuations. Our lower bound
is incomparable: it is smaller (only 2e/(e− 1)) but applies to
all simple mechanisms. Since Feige and Vondrak [49] prove
that an approximation ratio (slightly) better than e/(e−1) can
be achieved for submodular bidder valuations with communi-
cation polynomial in n and m, Theorem VI.1 is incapable of
proving a lower bound of e/(e−1) for all simple mechanisms.
Is there a simple mechanism with worst-case POA strictly less
than e/(e− 1) when bidders have submodular valuations?

VII. THE PRICE OF ANARCHY IN TRACTABLE AUCTIONS:
LOWER BOUNDS FROM COMPUTATIONAL COMPLEXITY

This section considers the welfare-maximization problem
in combinatorial auctions with bidders that have succinctly
described valuations. Communication lower bounds are not
relevant for such problems. To derive (conditional) lower
bounds for the worst-case POA of “simple” mechanisms, we
need to impose computational restrictions on mechanisms.13

We call a mechanism M for Π(n,m,V) with valuations
bounded by Vmax tractable if ui(a) and Λ(a) can be evaluated
in time polynomial in n, m, and Vmax for every action profile
a of every induced game M(v).14 We say that M supports
approximate best responses if in every game M(v) induced
byM, maxa∈Ai Ea−i∼y−i [ui(ai,a−i)] can be computed, with

11Similar lower bounds for the special cases of S1A’s and greedy auctions
are given in [20] and [40], respectively.

12For the special case of S1A’s, this lower bound was proved previously
by Christodoulou et al. [6] using an explicit construction.

13Otherwise, we could take M to be a direct-revelation mechanism with
an NP -hard map Λ, like the VCG mechanism.

14Formally, throughout this section we should speak of problems
Π(n,m,V) and families of mechanisms M parameterized by n, m, and
V , with n,m→∞.

probability at least 1/n2 and up to additive loss εVmax, in
polynomial time (in n,m, 1

ε , log Vmax) whenever y−i is a
product distribution

∏
j 6=i yj with marginals yj that can be

sampled from in polynomial time.15 Supporting best responses
is arguably a minimal condition for the MNE equilibrium
concept to be meaningful in the game induced by a mechanism
— otherwise, players can’t efficiently realize that they are
playing an equilibrium.

We now prove a conditional lower bound on the POA of
εVmax-MNE of games induced by tractable mechanisms that
support approximate best responses. The idea is to use the
guaranteed existence of near-optimal εVmax-MNE to decide
nondeterministically a coNP -complete problem.

Theorem VII.1 Let Π(n,m,V) denote a welfare-
maximization problem with maximum valuation Vmax

such that, for some W ≥ Vmax and ρ, it is NP -hard to
decide whether or not an instance v has optimal welfare at
least W (a “yes” instance) or optimal welfare at most W/ρ (a
“no” instance). Assuming coNP 6⊆ MA, for every tractable
Vmax-bounded mechanism M that supports approximate best
responses and is onto Π(n,m,V), for all constants ε, δ > 0,
the worst-case POA of εVmax-MNE in games induced by M
is at least ρ− δ.

Theorem VII.1 transfers known NP -hardness results for
welfare-maximization with bidders with succinctly described
valuations — examples include single-minded, coverage, and
budgeted additive valuations — to lower bounds on the POA
of ε-MNE of tractable mechanisms that support approximate
best responses, assuming that coNP 6⊆MA.

VIII. CONCLUSION

This paper described several senses in which communi-
cation and computational lower bounds for algorithms for
optimization problems translate to lower bounds on the price
of anarchy in games derived from these problems. The most
straightforward use of our lower bound framework is to
prove POA lower bounds using reductions instead of explicit
constructions. Such lower bounds can apply both to specific
classes of games of interest, and more generally to all game
plans defined on a hard optimization problem. Knowing such
a fundamental limit on what is possible draws a “line in the
sand” for positive results. Just as the holy grail in polynomial-
time approximation algorithm design is to match the best-
known inapproximability result, we can now propose that the
natural goal in game design is to achieve a worst-case POA
that matches the corresponding (conditional or unconditional)
lower bound identified in this paper.
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