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Structured Prediction

•  structured prediction: predict labels of many 
objects at once, given information about 
relationships between objects

•  applications: 
–  computer vision (objects = pixels, prediction = 

image segmentation)

(Borkar et al., 2013)
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Structured Prediction

•  structured prediction: predict labels of many 
objects at once, given information about 
relationships between objects

•  applications: 
–  computer vision (objects = pixels, prediction = 

image segmentation)
–  NLP (objects = words, prediction = parse tree)
–  etc.

•  today’s focus: complexity of inference (given a 
model), not of learning a model
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Setup: (noiseless)
•  known graph G=(V,E)
•  unknown labeling X:V -> {0,1}
•  given parity of each edge

–  “+” if X(u)=X(v), “-” otherwise

Goal: recover X.

Solution: (for connected G) label some vertex 
arbitrarily and propagate.

Recovery From Exact Parities
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Setup: (with noise)
•  known graph G=(V,E)
•  unknown labeling X:V -> {0,1}
•  given noisy parity of each edge

–  flipped with probability p

Goal: (approximately) recover X.

Formally: want algorithm A: {+,-}E -> {0,1}V that 
minimizes worst-case expected Hamming error: 

Recovery From Noisy Parities
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maxX{EL~D(X )[error(A(L),X]}
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Formally: want estimator A: {+,-}E -> {0,1}V that 
minimizes worst-case expected Hamming error: 

•  (Info-theoretic) What is the minimum expected 
error possible? How does it depend on p? Or 
on the structure of the graph?

•  (Computational) When can approximate 
recovery be done efficiently?  How does the 
answer depend on p and the graph?

Research Agenda

maxX{EL~D(X )[error(A(L),X]}
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Stochasic Block Model Setup:                            
[Boppana 87], [Bui/Chaudhuri/Leighton/                                               
Sipser 92] [Feige/Killian 01], [McSherry 01],                                           
[Mossel/Neeman/Sly 13,14], [Massoulié 14],                                  
[Abbe/Bandeira/Hall 15], [Makarychev/Makarychev/Vijayaraghavan 
15,16], [Moitra/Perry/Wein 16]  ...

•  known vertices V, unknown labeling X:V -> {0,1}
•  for every pair v,w, get noisy signal if X(u)=X(v)

–  no noise => get two disjoint cliques
–  noise = 1-a/n if X(u)=X(v), = b/n if X(u)≠X(v)  [a > b]

Goal: (approximately) recover X.

Analogy: Stochastic Block Model

A B
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Example: G = path graph with n vertices.
•  ground truth = 1st i vertices are 0, last n-i 

vertices are 1 (i is unknown)

•  p = Θ(log n/n)  [very small]

•  w.h.p., input has Θ(log n) “-” edges; only one is 
consistent with the data

•  no algorithm can reliably guess the true “-” 
edge; Θ(n) expected error unavoidable

The Graph Matters

0 0 0 1 1 1 

- + + + + 
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The Grid: Empirical Evidence
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Definition: a family of graphs allows approximate 
recovery if there exists an algorithm with expected 
error f(p)n, where f(p)->0 as p->0 [for n large]
•  non-example: paths.
•  potential example: grids.

Questions:
•  which graphs admit approximate recovery?
•  in poly-time?  with what functions f(.)?

Approximate Recovery
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Our algorithm: compute labeling minimizing:
number of “+” edges with bichromatic endpoints

+
number of “-” edges with monochromatic endpoints

Fact: Can be implemented in polynomial time in 
planar (and bounded genus) graphs.

Fact: Not information-theoretically optimal.
–  optimal: marginal inference

MLE/Correlation Clustering



Definition: A bad set S is a maximal connected 
subgraph of mislabeled nodes.  (w.r.t. X, A(L))

12 

Flipping Lemma

S1 G

all wrong

S2

S3
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Definition: A bad set S is a maximal connected subgraph 
of mislabeled nodes. (w.r.t. X, A(L))

Lemma: S bad =>  at least half the                    
edges of δ(S) were corrupted.

Proof idea: (i) Our algorithm
gets ≥ half the edges of δ(S) correct
w.r.t. input (else flipping S 
improves alleged optimal solution).
(ii) But we get all the edges of δ(S) 
wrong w.r.t. the ground truth.

Flipping Lemma

S

V\S

all wrong

all wrong
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Graph family: d-regular expander graphs, with 
|δ(S)| ≥ c � d � |S|  (for constant c, for all |S| ≤ n/2)

Analysis: let bad sets = C1,...,Ck.
–  maximal connected subgraphs of mislabeled nodes

•  note: error = Σi |Ci|
•  flipping lemma => at least half of the                 
≥ c � d � |Ci| edges of δ(Ci) were corrupted

•  E[error] ≤ 4 � E[# corrupted edges]/(c � d)
        ≤ 2pn/c               [so f(p) = 2p/c] 

Warm-Up #1: Expanders
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Open Question #1: polynomial-time recovery.
–  correlation clustering NP-hard for expanders
–  roughly equivalent to min multicut [Demaine/Emanuel/

Fiat/Immorlica 05]
–  does semidefinite programming help?

Open Question #2: determine optimal error rate.
–  upper bound works even in a bounded adversary 

model (budget of p|E| edges to corrupt)
–  expected error O(pn) optimal for adversarial case
–  conjecture: O(pd/2n) is tight for random errors

Open Questions
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Graph family: graphs with global min cut Ω(log n).

Easy (Chernoff): for a connected subgraph S with 
|δ(S)| = i, Pr[S is bad] ≈ pi/2.

Key fact: (e.g., [Karger 93]) for every α ≥ 1, number 
of α-approximate minimum cuts is at most n2α.

Result:

Warm-Up #2: Large Min Cut

 
E[error]≤ | S | iPr[S  bad]

S:|δ (S )|=i
∑

i=c*

∞

∑
≤ n n2(i/c

* )

i=c*

∞

∑ pi/2 = o(1)
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Graph family: √n × √n grids.

Key properties: 
•  planar, each face has O(1) sides
•  weak expansion: for every S with                        

|S| ≤ n/2, |δ(S)| ≥ |S|c (some c > 0)

Theorem: computationally efficient recovery with 
expected Hamming error O(p2n).
•  information-theoretic lower bound: Ω(p2n)

–  4-regular => each node ambiguous with prob ≈p2 

Grid-Like Graphs
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Lemma: number of connected subgraphs S with   
|δ(S)|=i is at most ≈ n � 3i.

Proof sketch:  suffices to count cycles in the dual 
graph (also a grid).  n choices for first vertex; ≤ 3 
choices for each successive vertex.

Result:

Grid-Like Graphs: Analysis

 
E[error]≤ | S | iPr[S  bad]

S:|δ (S )|=i
∑

i=4

∞

∑

≤ n 3i
i=4

∞

∑ pi/2 =O(np2 )



Bug: forgot about connected sets S like
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A Subtlety and a Fix

G
S



Generalized Flipping Lemma:
for connected sets S “with                             
holes,” at least half of edges                                 
of outer boundary corrupted.
[else, flip all labels inside outer boundary]
=> charge errors in S to its “filled-in version” F(S)
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A Subtlety and a Fix

G
S

 
E[error]≤ | S | iPr[S  bad]

S:|δ (S )|=i
∑

i=4

∞

∑

≤ n 3i
i=4

∞

∑ pi/2 =O(np2 )
sum only over 
filled-in sets

corrupted



1.  Characterize graphs where good approximate 
recovery is possible (as noise -> 0).

–  is “weak expansion” sufficient?

2.  Computationally efficient recovery beyond 
planar graphs. (or hardness results)

–  does semidefinite programming help?

3.  Take advantage of noisy node labels.
–  major progress: [Foster/Reichman/Sridharan 16]

4.  More than two labels.
21 

More Open Questions


