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Two Case Studies 

Case Study #1: approximation guarantees for            
game-theoretic equilibria (“price of  anarchy”). 

•  Issue: Non-existence, intractability of  Nash equilibria. 

•  Solution: prove guarantees for no-regret learners. 

Case Study #2: optimal auction design. 

•  Issue: traditional reliance on a common prior. 

•  Solution: learn a near-optimal auction from samples. 
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The Price of  Anarchy 

  Network with 2 players: 
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The Price of  Anarchy 

      Nash Equilibrium: 
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The Price of  Anarchy 

      Nash Equilibrium:               To Minimize Cost: 

 

 

 

 

 
 

Price of  anarchy (POA) = 28/24 = 7/6. 

•  if  multiple equilibria exist, look at the worst one 
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POA Bounds Without Convergence 

Meaning of  a POA bound: if the game is at an 
equilibrium, then outcome is near-optimal. 

 

Problem: what if  can’t reach an equilibrium? 

•  non-existence (pure Nash equilibria) 

•  intractability (mixed Nash equilibria) 
[Daskalakis/Goldberg/Papadimitriou 06], 
[Chen/Deng/Teng 06],[Etessami/Yannakakis 07] 

 

Worry: are our POA bounds “meaningless”? 



11 

Robust POA Bounds 

High-Level Goal: worst-case bounds that apply even 
to non-Nash equilibrium outcomes!  

•  best-response dynamics, pre-convergence 
•  [Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/

Azar/Epstein/Mirrokni/Skopalik 08] 

•  correlated equilibria 
•  [Christodoulou/Koutsoupias 05] 

•  no-regret learners (“coarse correlated equilibria”)  
•  [Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08] 
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POA Bounds Without Convergence 

Theorem: [Roughgarden 09] most known POA 
bounds hold for all no-regret sequences (not just 
for Nash equilibria). 
•  eludes non-existence/intractability critiques. 
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POA Bounds Without Convergence 

Theorem: [Roughgarden 09] most known POA 
bounds hold for all no-regret sequences (not just 
for Nash equilibria). 
•  eludes non-existence/intractability critiques. 

Part I: [extension theorem] every POA bound 
proved for pure Nash equilibria in a prescribed way 
extends automatically to all no-regret sequences. 

 

Part II: most known POA bounds can be proved in 
this way (so extension theorem applies). 
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Extension Theorems 

permissive equilibrium 
concept (e.g., no-regret 
outcomes) 

what we care about 
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The Math 

•  n players, each picks a strategy si 

•  player i incurs a cost Ci(s) 
 

Assume: objective function is cost(s) := Σi Ci(s) 
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The Math 

•  n players, each picks a strategy si 

•  player i incurs a cost Ci(s) 
 

Assume: objective function is cost(s) := Σi Ci(s) 

To Bound POA: (let s =a Nash eq; s* =optimal) 

  cost(s)      =  Σi Ci(s)         [defn of  cost]                 

                     ≤  Σi Ci(s*
i,s-i)    [s a Nash eq] 
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Smooth Games 
Key Definition: A game is (λ,μ)-smooth  if, for every pair 

s,s* of  outcomes (λ > 0; μ < 1): 

    Σi Ci(s*
i,s-i) ≤  λ�cost(s*) + μ�cost(s)    [(*)] 

 

 

Implies: cost(s)  ≤  Σi Ci(s*
i,s-i)         [s a Nash eq]  

                           ≤  λ�cost(s*) + μ�cost(s)   [(*)] 
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Smooth Games 
Key Definition: A game is (λ,μ)-smooth  if, for every pair 

s,s* of  outcomes (λ > 0; μ < 1): 

    Σi Ci(s*
i,s-i) ≤  λ�cost(s*) + μ�cost(s)    [(*)] 

 

 

Implies: cost(s)  ≤  Σi Ci(s*
i,s-i)         [s a Nash eq]  

                           ≤  λ�cost(s*) + μ�cost(s)   [(*)] 

So: POA (of  pure Nash equilibria)  ≤ λ/(1-μ). 
 

Note: only needed (*) to hold in special case where                    
s = a Nash equilibrium and s* = optimal outcome. 
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Some Smoothness Bounds 
•  selfish routing + related models  [Roughgarden/Tardos 00], 

[Perakis 04], [Correa/Schulz/Stier Moses 05], [Awerbuch/Azar/Epstein 
05], [Christodoulou/Koutsoupias 05], [Aland/Dumrauf/Gairing/Monien/
Schoppmann 06], [Roughgarden 09], [Bhawalkar/Gairing/Roughgarden 10] 

•  submodular maximization games  [Vetta 02],  [Marden/
Roughgarden 10] 

•  coordination mechanisms [Cole/Gkatzelis/Mirrokni 10] 

•  auctions [Christodoulou/Kovacs/Schapira 08], [Lucier/Borodin 10], 
[Bhawalkar/Roughgarden 11], [Caragiannis/Kaklamanis/Kanellopolous/
Kyropoulou/Lucier/Paes Leme/Tardos 12], [Lucier/Singer/Syrgkanis/
Tardos 11], [Markakis/Telelis 12], [Paes Leme/Syrgkanis/Tardos 12], 
[Bhawalkar/Roughgarden 12], [Feldman/Fu/Gravin/Lucier 13], 
[Syrgkanis/Tardos 13], [de Keijzer/Markakis/Schaefer/Telelis 13], 
[Duetting/Henzinger/Starnberger 13], [Babaioff/Lucier/Nisan/Paes Leme 
13], [Devanur/Morgenstern/Syrgkanis 15], … 
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Canonical Example 
Claim [Christodoulou/Koutsoupias 05]: routing games with 

affine cost functions are (5/3,1/3)-smooth. 
•    

•  for all integers y,z: y(z+1)  ≤ (5/3)y2 + (1/3)z2 

•  so: ay(z+1)  + by ≤ (5/3)[ay2 + by] + (1/3)[az2 + bz] 
•  for all integers y,z and a,b ≥ 0 

•  so: Σe [ae(xe+1)  + be)xe
*] ≤ (5/3) Σe [(aexe

* + be)xe
*]  

               + (1/3) Σe [(aexe + be)xe] 

•  so: Σi Ci(s*
i,s-i) ≤ (5/3)�cost(s*) + (1/3)�cost(s) 



An Out-of-Equilibrium Bound 

 

Theorem: [Roughgarden 09] in a (λ,μ)-
smooth game, the average cost of  every no-
regret sequence is at most   

                            

  [λ/(1-μ)] � cost of  optimal outcome. 

 

 (the same bound as for pure Nash equilibria!) 
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No-Regret Sequences 

Definition: a sequence s1,s2,...,sT of  outcomes of  a 
game is no-regret if:  

•  for each i, each (time-invariant) deviation qi: 
 

(1/T) Σt Ci(st)  ≤  (1/T) Σt Ci(qi,st
-i)  [+ o(1)] 

 

Fact: simple hedging strategies can be used by 
players to enforce this (as T grows large). 
•  [Blackwell 56], [Hannan 57], …, [Freund/Schapire 99], 

… 
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Smooth => No-Regret Bound 
•  notation: s1,s2,...,sT = no regret; s* = optimal 

Assuming (λ,μ)-smooth:  

 Σt cost(st)  = Σt Σi Ci(st)               [defn of  cost] 
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Smooth => No-Regret Bound 
•  notation: s1,s2,...,sT = no regret; s* = optimal 

Assuming (λ,μ)-smooth:  

 Σt cost(st)  = Σt Σi Ci(st)               [defn of  cost] 
                 

      = Σt Σi  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)] 
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Smooth => No-Regret Bound 
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Smooth => No-Regret Bound 
•  notation: s1,s2,...,sT = no regret; s* = optimal 

Assuming (λ,μ)-smooth:  

 Σt cost(st)  = Σt Σi Ci(st)               [defn of  cost] 
                 

      = Σt Σi  [Ci(s*
i,st

-i) + ∆i,t]    [∆i,t:= Ci(st)- Ci(s*
i,st

-i)] 
  

      ≤ Σt [λ�cost(s*) + μ�cost(st)] + Σi Σt ∆i,t   [(*)] 

No regret: Σt ∆i,t ≤ 0 for each i. 
 

To finish proof: divide through by T. 
 

 



Two Case Studies 

Case Study #1: approximation guarantees for            
game-theoretic equilibria (“price of  anarchy”). 

•  Issue: Non-existence, intractability of  Nash equilibria. 

•  Solution: prove guarantees for no-regret learners. 

Case Study #2: optimal auction design. 

•  Issue: traditional reliance on a common prior. 

•  Solution: learn a near-optimal auction from samples. 
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Myerson’s Auction (i.i.d.) 

•  one seller with one item 

•  n bidders, bidder i has private valuation vi 

•  valuations vi drawn i.i.d. from known prior F 

•  goal: maximize seller’s expected revenue 
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Myerson’s Auction (i.i.d.) 

•  one seller with one item 

•  n bidders, bidder i has private valuation vi 

•  valuations vi drawn i.i.d. from known prior F 

•  goal: maximize seller’s expected revenue 

•  [Myerson 81] solution = 2nd-price auction + reserve 
•  reserve price r = monopoly price for F  [i.e., argmaxp p(1-F(p))] 
•  winner = highest bidder above r (if  any) 
•  price = maximum of  r and 2nd-highest bid 
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Optimal Single-Item Auctions 

[Myerson 81]: characterized the optimal auction, as a 
function of  the prior distributions F1,...,Fn. 

•  Step 1: transform bids to virtual bids: 
•  formula depends on distribution:  

•  Step 2: winner = highest positive virtual bid (if  any) 

•  Step 3: price = lowest bid that still would’ve won 

I.i.d. case: 2nd-price auction with monopoly reserve price. 

General case: requires full knowledge of  F1,...,Fn. 
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bi →ϕi(bi)
ϕi (bi ) = bi − [1− Fi (bi )] / fi (bi )



Motivating Question 

Question: Does a near-optimal single-item auction 
require detailed distributional knowledge?  
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Motivating Question 

Question: Does a near-optimal single-item auction 
require detailed distributional knowledge?  

Reformulation: How much data is necessary and 
sufficient to justify revenue-optimal auction theory? 

•  “data” = samples from unknown F1,...,Fn  
•  inspired by PAC/statistical learning [Vapnik, Valiant, ...] 
•  Yahoo! example: [Ostrovsky/Schwarz 09] 

•  benchmark: Myerson’s optimal auction for F1,...,Fn  
•  want expected revenue at least (1-ε) times benchmark 
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Formalism: Single Buyer 

Step 1: seller gets s samples v1,...,vs from unknown F  

Step 2: seller picks a price p = p(v1,...,vs) 

Step 3: price p applied to a fresh sample vs+1 from F 

 

 

 

 

Goal: design p so that                       
is close to        (no matter what F is)  
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m samples 
v1,...,vs  

price 
p(v1,...,vs) 

valuation vs+1 

revenue of  
p on vs+1 

 Ev1,...,vs
[p(v1,...,vs ) i (1− F(p(v1,...,vs ))]

 max p[p i (1− F(p)]



Results for a Single Buyer 

1.  no assumption on F: no finite number of  samples 
yields non-trivial revenue guarantee (for every F) 
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Results for a Single Buyer 

1.  no assumption on F: no finite number of  samples 
yields non-trivial revenue guarantee (for every F) 

2.  if  F is “regular”: with s=1, setting p(v1) = v1 yields a 
½-approximation (consequence of  [Bulow/Klemperer 96]) 

3.  for regular F, arbitrary ε:      
≈ (1/ε)3 samples necessary and sufficient for (1-ε)-
approximation [Dhangwatnotai/Roughgarden/Yan 10], 
[Huang/Mansour/Roughgarden 14]  

4.  for F with a montone hazard rate, arbitrary ε:              
≈ (1/ε)3/2 samples necessary and sufficient for (1-ε)-
approximation [Huang/Mansour/Roughgarden 14] 



Formalism: Multiple Buyers 

Step 1: seller gets s samples v1,...,vs from  

•  each vi an n-vector (one valuation per bidder) 

Step 2: seller picks single-item auction A = A(v1,...,vs) 

Step 3: auction A is run on a fresh sample vs+1 from F 

 

 

 

 

Goal: design A so        close to OPT 
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F = F1 ×!×Fn

m samples 
v1,...,vs  

auction 
A(v1,...,vs) 

valuation profile vs+1 

revenue of  
A on vs+1 

Ev1,...,vs
[Evs+1

[Rev(A(v1,...,vs )(vs+1))]]



Positive Results 

One sample (s=1) still suffices for ¼-approximation 
•  2nd-price auction with reserves = samples 
•  consequence of  [Hartline/Roughgarden 09] 

Polynomial (in ε-1 only) samples still suffice for (1-ε)-
approximation if  bidders are i.i.d. 
•  only need to learn the optimal reserve price 

Take-away: for these cases, 
•  modest amount of  data (independent of  n) suffices 
•  modest distributional dependence suffices 
 40 



Negative Results 

Theorem: [Cole/Roughgarden 14] at least                         
samples are necessary for (1-ε)-approximation. 

•  for every sufficiently small constant ε 

•  even when distributions are truncated exponential 
distributions 

Corollary (of  proof): near-optimal auctions require 
detailed knowledge of  the valuation distributions. 
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Recent Developments 

[Morgenstern/Roughgarden 15] 
•  view a set C of  auctions = real-valued functions 
•  (from valuation profiles to revenue) 
•  see also [Medina/Mohri ICML 14] 

•  sample complexity bounds reduce to pseudo-
dimension bounds 

 

Main Result: in  all “single-parameter settings”, can 
learn a (1-ε)-approximate auction from poly samples. 
•  can choose C to simultaneously have small 

representation error and small pseudo-dimension 
42 
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Open Directions 

•  computationally efficient algorithms for learning near-
optimal auctions 
•  [Morgenstern/Roughgarden 15] only bounds sample complexity 
•  [Cole/Roughgarden 14] efficient for the single-item case 

•  partial feedback settings [Awerbuch/Kleinberg 03], [Cesa-
Bianchi/Gentile/Mansour 13], ... 

•  strategic data providers (e.g. [Cai/Daskalakis/Papadimitriou 
COLT 15]) 
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