
Networks,            
Potential Functions,       

and the Price of Anarchy

Tim Roughgarden
Stanford University



PRICE OF ANARCHY (1G)
2 



3 

Pigou's Example

Example: one unit of traffic wants to go from s to t

Question: what will selfish network users do?
•  assume everyone wants smallest-possible cost
•  [Pigou 1920]

s t

c(x)=x

c(x)=1

cost depends on congestion

no congestion effects
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Motivating Example

Claim: all traffic will take the top link.

Reason:
•  Є > 0  traffic on bottom is envious
•  Є = 0  equilibrium

–  all traffic incurs one unit of cost

s t

c(x)=x

c(x)=1

Flow = 1-Є

Flow = Є
this flow     
is envious!
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Can We Do Better?

Consider instead: traffic split equally

Improvement:
•  half of traffic has cost 1 (same as before)
•  half of traffic has cost ½ (much improved!)

s t

c(x)=x

c(x)=1

Flow = ½

Flow = ½
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Braess’s Paradox
   Initial Network:

s t
x 1

½

x1
½

½

½

 Cost = 1.5
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Braess’s Paradox
   Initial Network:              Augmented Network:

s t
x 1

½

x1
½

½

½

 Cost = 1.5

s t
x 1
½

x1
½

½

½0

 Now what?
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Braess’s Paradox
   Initial Network:              Augmented Network:

s t
x 1

½

x1
½

½

½

 Cost = 1.5  Cost = 2

s t
x 1

x1
0
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Braess’s Paradox
   Initial Network:              Augmented Network:

All traffic incurs more cost! [Braess 68]

•   also has physical analogs [Cohen/Horowitz 91]

s t
x 1

½

x1
½

½

½

 Cost = 1.5  Cost = 2

s t
x 1

x1
0
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High-Level Overview
Motivation: equilibria of noncooperative network 

games typically inefficient
•  e.g., Pigou's example + Braess's Paradox
•  don't optimize natural objective functions

Price of anarchy: quantify inefficiency with respect 
to an objective function

Our goal: when is the price of anarchy small?
–  when does competition approximate cooperation?
–  benefit of centralized control is small
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Nonatomic Selfish Routing
•  directed graph G = (V,E)
•  source-destination pairs (s1,t1), …, (sk,tk)
•  ri = amount of traffic going from si to ti
•  for each edge e, a cost function ce(•)

–  assumed continuous and nondecreasing

Defn: a multicommodity flow is an equilibrium if 
all traffic routed on shortest paths.

xs t
1

s t
1
x

½

½
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The Price of Anarchy

Defn:

–  definition from [Koutsoupias/Papadimitriou 99]

price of
anarchy 
of a game

=
obj fn value of worst equilibrium

optimal obj fn value

x
s t

1
s t

1

x

Example: POA = 4/3 in Pigou's example
½

½

1

 Cost = 1 Cost = 3/4
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A Nonlinear Pigou Network
Bad Example:                           (d large)

equilibrium has cost 1, min cost  0 

s t

xd

1
0

1 1-Є

Є
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A Nonlinear Pigou Network
Bad Example:                           (d large)

equilibrium has cost 1, min cost  0 

 price of anarchy unbounded as d -> infinity

Goal: weakest-possible conditions under which 
the price of anarchy is small.

s t

xd

1
0

1 1-Є

Є
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When Is the Price of Anarchy 
Bounded?

Examples so far:

Hope: imposing additional structure on the cost 
functions helps
–  worry: bad things happen in larger networks

s t
x
1

s t
xd

1
s t

x 1

x1
0
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Polynomial Cost Functions

Defn: linear cost function is of form ce(x)=aex+be

Theorem: [Roughgarden/Tardos 00] for every 
network with linear cost functions: 

                        ≤  4/3 ×  cost of 
Nash flow

cost of            
opt flow

s t
x
1
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Polynomial Cost Functions

Defn: linear cost function is of form ce(x)=aex+be

Theorem: [Roughgarden/Tardos 00] for every 
network with linear cost functions: 

                        ≤  4/3 × 

Bounded-degree polynomials: replace 4/3 by       
≈ d/ln d

 cost of 
Nash flow

cost of            
opt flow

s t
xd

1
tight
example

s t
x
1
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A General Theorem
Thm: [Roughgarden 02], [Correa/Schulz/Stier Moses 03] 

fix any set of cost functions. Then, a Pigou-like 
example --- 2 nodes, 2 links, 1 link w/a constant 
cost function --- achieves the worst P.O.A.

s t
xd

1
tight
example
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Interpretation
Bad news: inefficiency of selfish routing grows as 

cost functions become "more nonlinear".
–  think of "nonlinear" as "heavily congested"
–  recall nonlinear Pigou's example

Good news: inefficiency does not grow with 
network size or # of source-destination pairs.
–  in lightly loaded networks, no matter how large,   

selfish routing is nearly optimal

s t
xd

1
tight
example
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Benefit of Overprovisioning
Suppose: network is overprovisioned by              
β > 0 (i.e., β fraction of each edge unused).

Then: Price of anarchy is                                     
at most ½(1+1/√β). 

•  arbitrary network size/topology,                              
traffic matrix

Moral: Even modest (10%) over-provisioning 
sufficient for near-optimal routing.

fe

ce(fe)
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Potential Functions
•  potential games: equilibria are actually optima 

of a related optimization problem
–  has immediate consequences for existence, 

uniqueness, and inefficiency of equilibria

–  see [Beckmann/McGuire/Winsten 56], [Rosenthal 
73], [Monderer/Shapley 96], for original references

–  see [Roughgarden ICM 06] for survey
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The Potential Function
Key fact: [BMV 56] Nash flows                   

minimize “potential function”                              
e ∫f   ce(x)dx  (over all flows).

ce(fe)

0
0 fe0

e
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The Potential Function
Key fact: [BMV 56] Nash flows                   

minimize “potential function”                           
e ∫f   ce(x)dx  (over all flows).

Lemma 1: locally optimal solutions are precisely 
the Nash flows (derivative test).

Lemma 2: all locally optimal solutions are also 
globally optimal (convexity).

Corollary: Nash flows exist, are unique.

ce(fe)

0
0 fe0

e
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Consequences for the      
Price of Anarchy

Example: linear cost functions.

Compare cost and potential functions:

C(f) = e fe • ce(fe) = e [ae fe  + be fe]
PF(f) = e ∫f  ce(x)dx = e [(ae fe)/2  + be fe]

2

0
e

2
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Consequences for the      
Price of Anarchy

Example: linear cost functions.

Compare cost and potential functions:

C(f) = e fe • ce(fe) = e [ae fe  + be fe]
PF(f) = e ∫f  ce(x)dx = e [(ae fe)/2  + be fe]

•  cost, potential functions differ by factor of ≤ 2
•  gives upper bound of 2 on price on anarchy

– C(f) ≤ 2×PF(f) ≤ 2×PF(f*) ≤ 2×C(f*)

2

0
e

2
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Better Bounds?
Similarly: proves bound of d+1 for degree-d 

polynomials (w/nonnegative coefficients).

•  not tight, but qualitatively accurate 
–  e.g., price of anarchy goes to infinity with degree 

bound, but only linearly

•  to get tight bounds, need "variational 
inequalities"
–  see my ICM survey for details
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POA Bounds Without Convergence

Meaning of a POA bound: if the game is at an 
equilibrium, then outcome is near-optimal.

Problem: what if can’t reach an equilibrium?
•  non-existence (pure Nash equilibria)
•  intractability (mixed Nash equilibria) 

[Daskalakis/Goldberg/Papadimitriou 06],           
[Chen/Deng/Teng 06]

Worry: are our POA bounds “meaningless”?



29 

POA Bounds Without Convergence

Theorem: [Roughgarden STOC 2009] most 
known POA bounds hold even if the 
game is not at Nash equilibrium!  
– e.g., if game is played repeatedly, no-

regret conditions or a few myopic best 
responses are enough



Concluding Remarks
•  lens of approximation gives new insights into 

fundamental mathematical models

•  good bounds for many games of interest,                
even out-of-Nash-equilibrium
–  refutes non-existence/intractability critiques

•  routing games: worst-case price of anarchy 
depends only on “nonlinearity” of cost functions
–  parameterize POA bounds via worst-case examples
–  equilibria inadvertently optimize a potential function
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