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PRICE OF ANARCHY (1G)




Pigou's Example

Example: one unit of traffic wants to go from s to t
c(x)=x __— cost depends on congestion

"™ no congestion effects

Question: what will selfish network users do?
« assume everyone wants smallest-possible cost
 [Pigou 1920]



Motivating Example

Claim: all traffic will take the top link.

this flow S CX)=1

IS envious!
Reason:
- € >0 [¥] traffic on bottom is envious
« € =0 [¥] equilibrium

— all traffic incurs one unit of cost




Can We Do Better?

Consider instead: traffic split equally

c(x)=x __— Flow = V2

~\" ==

\
Flow = 12

Improvement:
- half of traffic has cost 1 (same as before)
- half of traffic has cost ¥2 (much improved!)



Braess’s Paradox

Initial Network:

173 Iz




Braess’s Paradox

Initial Network: Augmented Network:

173 Iz

Cost=1.5 Now what?
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Braess’s Paradox

Initial Network: Augmented Network:

X 1
TSy
Cost=2

All traffic incurs more cost! [Braess 68]

also has physical analogs [Cohen/Horowitz 91]



High-Level Overview

Motivation: equilibria of noncooperative network
games typically inefficient

* e.g., Pigou's example + Braess's Paradox
- don't optimize natural objective functions

Price of anarchy: quantify inefficiency with respect
to an objective function

Our goal: when is the price of anarchy small?
— when does competition approximate cooperation?

— benefit of centralized control is small
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Nonatomic Selfish Routing

- directed graph G = (V,E)
- source-destination pairs (s;,t,), ..., (S.t,)
* 1, = amount of traffic going from s, to t.

- for each edge e, a cost function c(*)
— assumed continuous and nondecreasing

Defn: a multicommodity flow is an equilibrium if
all traffic routed on shortest paths.

2 —
> = r
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The Price of Anarchy

Defn: price of
anarchy =
of a game

obj fn value of worst equilibrium

optimal obj fn value

— definition from [Koutsoupias/Papadimitriou 99]
Example: POA = 4/3 in Pigou's example
Yo —_—
L -
Y2

Cost = 3/4 Cost =1
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A Nonlinear Pigou Network

Bad Example: d (d large)

0 €

equilibrium has cost 1, min cost {¥] O
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A Nonlinear Pigou Network

Bad Example: xd (d large)

0 €

equilibrium has cost 1, min cost {¥] O

price of anarchy unbounded as d -> infinity

Goal: weakest-possible conditions under which
the price of anarchy is small.
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When Is the Price of Anarchy
Bounded?

Examples so far:

Hope: imposing additional structure on the cost
functions helps

— worry: bad things happen in larger networks

15



Polynomial Cost Functions

Defn: linear cost function is of form c_(x)=a_x+b,

Theorem: [Roughgarden/Tardos 00] for every
network with linear cost functions:

cost of cost of
Nash flow < 413 % opt flow 900
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Polynomial Cost Functions

Defn: linear cost function is of form c_(x)=a_x+b,

Theorem: [Roughgarden/Tardos 00] for every
network with linear cost functions:

cost of cost of 0
Nash flow = 413 x opt flow @ o
Bounded-degree polynomials: replace 4/3 by

=d/Ind tight
e o example
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A General Theorem

Thm: [Roughgarden 02], [Correa/Schulz/Stier Moses 03]
fix any set of cost functions. Then, a Pigou-like
example --- 2 nodes, 2 links, 1 link w/a constant
cost function --- achieves the worst P.O.A.

@eo 4—222:an9
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Interpretation

Bad news: inefficiency of selfish routing grows as
cost functions become "more nonlinear".
— think of "nonlinear" as "heavily congested"
— recall nonlinear Pigou's example

Good news: inefficiency does not grow with
network size or # of source-destination pairs.

— in lightly loaded networks, no matter how large,
selfish routing is nearly optimal

e“o <—tei>g<2:nple
19



Benefit of Overprovisioning

Suppose: network is overprovisioned by
B >0 (i.e., B fraction of each edge unused).

Then: Price of anarchy is

at most %2(1+1/VB). o)
- arbitrary network size/topology,
traffic matrix :

f

»

e

Moral: Even modest (10%) over-provisioning
sufficient for near-optimal routing.
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Potential Functions

 potential games: equilibria are actually optima
of a related optimization problem

— has immediate consequences for existence,
uniqueness, and inefficiency of equilibria

— see
73],

— See

‘Beckmann/McGuire/Winsten 56], [Rosenthal
Monderer/Shapley 96], for original references

Roughgarden ICM 06] for survey
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The Potential Function

Key fact: [BMV 56] Nash flows
minimize “potential function” ete
] f" c.(x)dx (over all flows). 0
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The Potential Function

Key fact: [BMV 56] Nash flows

minimize “potential function” Celfe) - = —=

. f c.(x)dx (over all flows). -

Lemma 1: locally optimal solutions are precisely
the Nash flows (derivative test).

e

Lemma 2: all locally optimal solutions are also
globally optimal (convexity).

Corollary: Nash flows exist, are unique.

23



Consequences for the
Price of Anarchy

Example: linear cost functions.

Compare cost and potential functions:

C() = @, f.c.(f.) = @.[4.f, +b,f]
PF(f) = @, c.(x)dx = [, [(a,f.)/2 +b,f,]
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Consequences for the
Price of Anarchy

Example: linear cost functions.

Compare cost and potential functions:

C() = @, f.c.(f.) = @.[4.f, +b,f]
PF(f) = @, c.(x)dx = [, [(a,f.)/2 +b,f,]

« cost, potential functions differ by factor of < 2
* gives upper bound of 2 on price on anarchy
— C(f) = 2xPF(f) = 2xPF(f") < 2xC(f")
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Better Bounds?

Similarly: proves bound of d+1 for degree-d
polynomials (w/nonnegative coefficients).

* not tight, but qualitatively accurate

— e.g., price of anarchy goes to infinity with degree
bound, but only linearly

- to get tight bounds, need "variational
inequalities”
— see my ICM survey for details
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PRICE OF ANARCHY (2G)




POA Bounds Without Convergence

Meaning of a POA bound: ifthe game is at an
equilibrium, then outcome is near-optimal.

Problem: what if can’t reach an equilibrium?
* non-existence (pure Nash equilibria)

- intractability (mixed Nash equilibria)
[Daskalakis/Goldberg/Papadimitriou 06],
[Chen/Deng/Teng 06]

Worry: are our POA bounds “meaningless”?

28



POA Bounds Without Convergence

Theorem: [Roughgarden STOC 2009] most
known POA bounds hold even if the
game Is not at Nash equilibrium!

—e.g., if game is played repeatedly, no-
regret conditions or a few myopic best
responses are enough
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Concluding Remarks

* lens of approximation gives new insights into
fundamental mathematical models

« good bounds for many games of interest,
even out-of-Nash-equilibrium
— refutes non-existence/intractability critiques

 routing games: worst-case price of anarchy
depends only on “nonlinearity” of cost functions

— parameterize POA bounds via worst-case examples
— equilibria inadvertently optimize a potential function
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