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Algorithm Selection 

 

 

“I need to solve problem X.  Which algorithm should I use?” 

 

 

Answer usually depends on the details of  the 
application (i.e., the instances of  interest). 

•  for most problems, no “silver bullet” 
algorithm 
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Graph Coloring 

SVMs to predict the boundaries of each algorithm's footprint,
achieving better results, although still not perfect due to the many
contradictory instances within a region. The out-of-sample test set
accuracies ranged from 90% for the DSATUR and Bktr predictions
(easier to predict since they tend to be quite consistent in regions
where they do not perform well) down to 73% accuracy for the
AntCol prediction. The SVM prediction model for HEA was 82%
accurate. Combining these eight SVM predictions, we can identify for
each instance the algorithm that is predicted to be the best.
In the event that multiple algorithms are predicted to be the best,
we recommend adopting the algorithmwhich has the highest model
accuracy (although shortest run-time could be another criterion).
This approach leads to the algorithm recommendations shown in
Fig. 4, including a region near the upper right portion where no SVM
model predicted any algorithm to be best. Since at least one
algorithm is best, by definition, this is clearly a failing of a sophis-
ticated machine learning method in this region. While this depiction
of algorithm strength across the instance space is interesting and
somewhat enlightening, it should be used with caution, since it is
only as accurate as the machine learning models we are relying upon.

4.5. Insights into algorithm strengths and weaknesses

The instance space affords us the opportunity to explore more
than algorithm footprints, but also to develop a good

understanding of where the unique strengths and weaknesses of
each algorithm lie. If an algorithm is only good where many other
algorithms are good, then this is useful information to assess the
relative power of algorithms. We wish to visualize where each
algorithm offers a unique advantage, and where it might struggle
where other algorithms succeed. These kinds of insights are
critical to inform better algorithm design, and to help automated
algorithm selection where machine learning methods may not be
accurate enough.

For each instance, we now count how many of the eight
algorithms in the portfolio are ε-good with ε¼0. Fig. 5 shows the
location of the instances that are easily solved by all algorithms
(shown as red on the color scale, with 8 algorithms finding the
best number of colors of the graph), and the instances that are
more challenging since only one algorithm attains the best result
(shown as dark blue in the upper right portion). For these harder
instances, we are interested to know which algorithm provides the
unique advantage over others, and this is shown in Fig. 6. Only
three algorithms show clearly consistent regions where they are
uniquely best: AntCol (red), HEA (blue) and HillClimb (green).
These are all methods that combine local search strategies with
global operators that allow much larger changes to be made to a
solution. Understandably, DSATUR and RandGr are never uniquely
best, since the other algorithms can be considered extensions of

Table 2
Relative areas of algorithm footprints for ε¼0% and
ε¼5% , expressed as a percentage of the total area of
the instance space, calculated using Algorithm 1.

Algorithm Area (%)

ε¼0% ε¼5%

AntCol 19.35 34.9
Bktr 11.63 14.17
DSATUR 7.11 12.84
HEA 41.17 57.14
HillClimb 32.97 52.08
PartialCol 30.86 51.84
RandGr 0.90 3.13
TabuCol 36.05 48.7

Fig. 4. Machine learning (SVM) recommendations about which algorithm to use in
each region.

Fig. 3. Algorithm footprints showing in blue where an algorithm achieves ε-good performance, with ε¼0 . Red instances are not within the algorithm footprint. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

K. Smith-Miles et al. / Computers & Operations Research 45 (2014) 12–24 21
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Example #1: SATzilla 

SAT competition: enter your best SAT solver, 
will be run on instances from diverse domains. 

Bold idea: [Xu/Hutter/Hoos/Leyton-Brown]  
design “meta-algorithm” for smartly deploying 
a portfolio of  existing solvers. 

•  uses coarse features of  an            
instance to select a solver 

          (spoiler: won multiple  

              SAT competitions) 
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Example #1: SATzilla 

[Xu/Hutter/Hoos/Leyton-Brown] 

•  Portfolio =  7 SAT solvers 
•  widely varying performance 

•  Identify coarse features of  SAT instances 
•  clause/variable ratio, Knuth’s search tree estimate, ... 

•  Use regression to learn good “empirical 
performance models (EPMs),” mapping input 
features to predicted solver running time. 

•  Run solver predicted to be fastest by EPMs. 
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Example #2: FCC Auctions 

Broadcast Television Incentive Auction (ongoing): 
•  Reverse Auction: buy TV broadcast licenses  
•  CBO estimate: $15 billion cost 

•  Forward Auction: sell 4G wireless licenses. 
•  CBO estimate: $40 billion revenue. 

•  Revenue to cover auction costs, fund a new 
first responder network, reduce the deficit (!) 
•  “Middle Class Tax Relief  and Job Creation Act” 
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Reverse Auction Algorithm 

Question: which stations stay on the air? 

[Milgrom/Segal 14] use a greedy       
algorithm (“descending clock auction”) 

•  good: higher value for broadcasting 

•  bad: more interference  

•  scoring rule: rank by       
(value)/(# conflicting stations)1/2 

•  a la [Lehmann/O’Callaghan/Shoham 02] 

7 

Milgrom 

Segal 



On Parameter Tuning 

Case Study #1: machine learning. 

•  e.g., choosing the step size in gradient descent 

•  e.g., choosing a regularization parameter 

Case Study #2: CPLEX. (LP/IP solver). 

•  135 parameters!  (221-page reference manual) 

•  manual’s advice: “you may need to 
experiment with them”  (gee, thanks...) 
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Model: receive sequence of  inputs drawn 
independently from unknown input distribution F. 

Goal: quickly converge to a near-optimal algorithm 
(w.r.t. F).  [using small space] 
•  sorting  
•  [Ailon/Chazelle/Liu/Seshadhri 06]  

•  Delaunay triangulations   
•  [Clarkson/Seshadhri 08] 

•  convex hulls   
•  [Clarkson/Mulzer/Seshadhri 10] 
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A Theory of  Algorithm Selection? 

Question: what would a theory of  “application-
specific algorithm selection” look like? 

•  need to go “beyond worst-case analysis” 

10 



11 

Worst-Case Analysis 

Worst-case analysis: cost(A):= supz cost(A,z) 

•  cost(A,z) = performance of  algorithm A on input z 

Pros of  WCA: universal applicability (no input assumptions) 

•  countless killer applications 

•  relatively analytically tractable 
 

Cons of  worst-case analysis: overly pessimistic 

•  can rank algorithms inaccurately (LP, paging) 

•  no data model (rather: “Murphy’s Law” model) 

 



A Theory of  Algorithm Selection? 

Question: what would a theory of  “application-
specific algorithm selection” look like? 

•  need to go “beyond worst-case analysis” 

Idea: model as a learning problem. 

•  algorithms play role of  concepts/hypotheses 

•  algorithm performance acts as loss function 

•  two models: offline (batch) learning and 
online learning (i.e., regret-minimization) 
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Formalism 

Given: a class C of  algorithms for some problem π. 
•  could be finite (coloring, SAT) or infinite (parameter-tuning) 
•  no single “silver bullet” algorithm 

Given: a cost function cost(A,z) of  algorithm A on input 
z  (running time, solution quality, etc.)  (range = [0,H]) 

Perspective: think of  each algorithm A as a real-valued 
function: 

  z     è        cost(A,z) 

           input         performance of  A on input 
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Example: Independent Set 
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Greedy algorithm #1: process vertices in decreasing 
order of wv.

4
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Example: Independent Set 
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Greedy algorithm #2: process vertices in decreasing 
order of wv/(1+deg(v)).

(no adjacent 
vertices allowed)



Example: Independent Set 
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Example class C of algorithms: all greedy algorithms 
that rank by wv/(1+deg(v))p for a parameter p ≥ 0.
•  can be adaptive or non-adaptive

4

233
(no adjacent 
vertices allowed)



Model #1: Unknown Distribution 

Offline (“Batch”) Learning Model: (≈ PAC learning) 

•  unknown distribution F over inputs z of  problem π  

•  receive s i.i.d. samples z1,...,zs from F 

•  based on sample, choose an algorithm A of  C to use 
on all future inputs 
•  extension: choose mapping from instance features to 

algorithms (a la SATZilla) 

Goal: identify A* that (approximately) minimizes  

       Ez~F[cost(A,z)]     (over A in C) 
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High-Level Plan 

Lesson from learning theory: sample complexity scales 
with “complexity” of  the “hypothesis class.” 
•  e.g., VC dimension 

Corollary: the best “simple” hypothesis can be learned 
from a modest amount of  data. 

Proposed simplicity measure of  a class C of  algorithms: 
pseudodimension of  the real valued functions (from inputs 
to performance) induced by C.  



Bounding the Sample Complexity 

Theorem: [Haussler 92], [Anthony/Bartlett 99] if  C has low 
pseudodimension, then it is easy to learn from data the best 
algorithm in C. 
•  obtain     samples z1,...,zs from F,     

where d = pseudodimension of  C (range of  cost = [0,H]) 

•  let A* = algorithm of  C with minimum average cost on 
the samples 

Guarantee: with high probability, expected cost of  A* 
(w.r.t. F) withinε of  optimal algorithm in C. 
  

 s =
!Ω(H 2ε −2d)



Pseudodimension: Examples 

$64K question: do interesting classes of  algorithms have 
small pseudodimension? 

Examples:  

•  finite set C     O(log |C|) 

•  single-parameter greedy algorithms  O(log n) 

•  local search with neighborhood size nk  O(k log n) 

•  “bucket-based” sorting algorithms  O(n log n) 

•  per-instance algorithm selection   O(|F|� pd(C)) 
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Pseudodimension: Definition 

[Pollard 84]  Let F = set of  real-valued functions on X. 
(for us, X = instances, F = algorithms, range = cost(A,z)) 

F shatters a finite subset S={v1,...,vs} of  X if: 

•  there exist real-valued thresholds t1,...,ts such that: 

•  for every subset T of  S 

•  there exists a function f  in F such that: 

Pseudodimension: maximum size of  a shattered set. 
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f(vi) ≥ ti  ó  vi in T  



Pseudodimension: Example 

Let C = WIS greedy algorithms with scoring rule of  the 
form wv/(deg(v)+1)p  (e.g. for p ≥ 0) 

Claim: C can only shatter a subset S={z1,...,zs} if  s = 
O(log n).   (hence pseudodimension O(log n)) 

Proof  idea: Fix S.  Call p,q equivalent if  they induce 
identical executions on all inputs of  S. 

•  Lemma: number of  equivalence classes can only grow 
polynomially with n,s (uses “single-parameter” property) 

•  Since need 2s labelings to shatter S, s = O(log n).  
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Proof  of  Lemma 

Lemma: number of  equivalence classes can only grow 
polynomially with n,s (uses “single-parameter” property). 

Proof  idea: Fix sample S of  size s. 

•  greedy alg depends only on results of  comparisons 

•  single-crossing property: for each possible comparison 
(between two vertices), flips at most one as p goes from 
0 to infinity  [wv/(deg(v)+1)p vs. wx/(deg(x)+1)p] 

•  # possible comparisons = poly(n,s) 

•  only poly(n,s) distinct algorithms (w.r.t. S) 
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Pseudodimension: Upshot 

Examples:  

•  finite set C     O(log |C|) 

•  single-parameter greedy algorithms  O(log n) 

•  local search with neighborhood size nk  O(k log n) 

•  “bucket-based” sorting algorithms  O(n log n) 

•  per-instance algorithm selection   O(|F|� pd(C)) 

Recall: Can learn the best algorithm with sample 
complexity polynomial in the pseudodimension. 

•  also: running time at most exponential in dimension 
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Gradient Descent 

Recall: for strongly convex functions, have convergence 
guarantee for all sufficiently small step sizes. 

In practice: use much more aggressive step sizes in hopes 
of  converging more quickly. 

Result: can learn the best step size (to minimize expected  
# of  iterations) from few samples. 

Open: more generally, hyperparameter optimization? 
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Selecting an Algorithm Online 

Online learning setup:  (fix a problem π) 

•  set of  actions known up front (for us, algorithms of  C) 

•  each time step t=1,2,...,T: 
•  we commit to a distribution pt over actions/algorithms 

•  adversary picks a cost vector (here, induced by an instance z of  P) 

•  algorithm A selected according to pt 

•  incur cost(A,z) 

Details: see Rishi Gupta’s talk at BWCA workshop (Nov 16) 
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Regret-Minimization  

Benchmark: best fixed algorithm A of  C (in hindsight) for 
the adversarially chosen inputs z1,...,zT 

Goal: online algorithm that, in expectation, always incurs 
cost at most benchmark, plus o(T) error term.  

Question #1: Weighted Majority/Multiplicative Weights? 

•  issue: what if  A an infinite set? 

Question #2: extension to Lipschitz cost vectors? 

•  issue: not at all Lipschitz!  (e.g., for greedy WIS) 
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A Negative Result 

Theorem: for a sufficiently large constant n and arbitrary 
nonnegative vertex weights, there is no online algorithm 

with a non-trivial regret guarantee for the greedy WIS 
algorithm selection problem. 

•  idea: each day t, learning algorithm knows an interval of  
length 2-t that contains the optimal value of  p, but if  it 

guesses the wrong half  it incurs high cost 

•  (crucially exploits non-Lipschitzness) 
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A Smoothed Guarantee 

Theorem: for “smoothed WIS instances” (a la 
[Spielman/Teng 01]), can achieve expected regret         

1/poly(n) as T -> infinity 

Idea: 

•  run a no-regret algorithm using a “net” of  the space 
of  algorithms 

•  smoothed instances => the optimal algorithm is 
typically equivalent to one of  the net algorithms 

29 



Open Questions 

•  non-trivial learning algorithms?  (or a proof  that, 
under complexity assumptions, none exist) 

•  extend gradient descent result to more general 
hyperparameter optimization problems 

•  trade-offs between representation and learning error 

•  connections to more traditional measures of  
“algorithm/problem complexity”? 
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Summary 

•  application-specific algorithm selection naturally 
modeled as a learning problem (offline or online) 

•  for the offline/distributional model, use 
pseudodimension to bound the sample complexity of  
learning the best algorithm 
•  pseudodimension is low for many natural algorithm classes 
•  analytically tractable 

•  for the online/distribution-free model, no-regret 
impossible in worst case, possible for smooth 
instances 
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