Application-Specific
Algorithm Selection

Tim Roughgarden (Stanford)

joint work with Rishi Gupta




Algorithm Selection

“I need to solve problem X. Which algorithm should I use?”’

Answer usually depends on the details of the
application (1.e., the instances of interest).

» for most problems, no “silver bullet”
algorithm




Graph Coloring

0.2 04 0.6

None RndGrd Bktr HillClimb HEA PartCol TabuCol AntCol

(from Smith-Miles/Baatar/ Wreford/Lewis (2014))




Example #1: SATzilla

SAT competition: enter your best SAT solver,
will be run on instances from diverse domains.

Bold 1dea: [Xu/Hutter/Hoos/Leyton-Brown]
design “meta-algorithm” for smartly deploying
a portfolio of existing solvers. b

e uses coarse features of an
instance to select a solver

(spoiler: won multiple

SAT competitions) Leyton-Brown




Example #1: SATzilla

| Xu/Hutter/Hoos/Leyton-Brown]

Portfolio = 7 SAT solvers

widely varying performance

Identify coarse features of SAT instances
clause/variable ratio, Knuth’s search tree estimate, ...

Use regression to learn good “empirical
performance models (EPMs),” mapping input
features to predicted solver running time.

Run solver predicted to be fastest by EPMs.




Example #2: FCC Auctions

Broadcast Television Incentive Auction (ongoing):

* Reverse Auction: buy TV broadcast licenses
CBO estimate: $15 billion cost

 Forward Auction: sell 4G wireless licenses.

CBO estimate: $40 billion revenue.

* Revenue to cover auction costs, fund a new
first responder network, reduce the deficit (!)
“Middle Class Tax Relief and Job Creation Act”




Reverse Auction Algorithm

Question: which stations stay on the air?

[Milgrom/Segal 14] use a greedy
algorithm (“descending clock auction”)

» good: higher value for broadcasting
e bad: more interference

* scoring rule: rank by
(value)/(# conflicting stations)!/?

* ala [Lehmann/QO’Callaghan/Shoham 02]




On Parameter Tuning

Case Study #1: machine learning.
* e.g., choosing the step size in gradient descent

* e.g., choosing a regularization parameter

Case Study #2: CPLEX. (LP/IP solver).
* 135 parameters! (221-page reference manual)

* manual’s advice: “you may need to
experiment with them” (gee, thanks...)




Example #3: Self-Improving
Algorithms

Model: receive sequence of inputs drawn
independently from unknown input distribution F.

Goal: quickly converge to a near-optimal algorithm
(w.r.t. F). [using small space]

* sorting
[Ailon/Chazelle/Liu/Seshadhri 06]

* Delaunay triangulations
[Clarkson/Seshadhri 08]

* convex hulls
[Clarkson/Mulzer/Seshadhri 10]

Seshadhri

9




A Theory of Algorithm Selection?

Question: what would a theory of “application-
specific algorithm selection” look like?

* need to go “beyond worst-case analysis”




Worst-Case Analysis

Worst-case analysis: cost(A):= sup, cost(A,z)

* cost(A,z) = performance of algorithm A on input z

Pros of WCA.: universal applicability (no input assumptions)
 countless killer applications

 relatively analytically tractable

Cons of worst-case analysis: overly pessimistic
* can rank algorithms inaccurately (LP, paging)
* no data model (rather: “Murphy’s Law” model)

11




A Theory of Algorithm Selection?

Question: what would a theory of “application-
specific algorithm selection” look like?

* need to go “beyond worst-case analysis”

Idea: model as a learning problem.
 algorithms play role of concepts/hypotheses
* algorithm performance acts as loss function

* two models: offline (batch) learning and
online learning (1.e., regret-minimization)




Formalism

Given: a class C of algorithms for some problem .
could be finite (coloring, SAT) or infinite (parameter-tuning)

no single “silver bullet” algorithm

Given: a cost function cost(A,z) of algorithm A on input
z (running time, solution quality, etc.) (range = [0,H])

Perspective: think of each algorithm A as a real-valued
function:

zZ > cost(A,z)

input performance of A on input




Example: Independent Set

(no adjacent
vertices allowed)

Greedy algorithm #1: process vertices in decreasing
order of w,,.




Example: Independent Set

3

(no adjacent
vertices allowed)

—@

Greedy algorithm #2: process vertices in decreasing
order of w /(1+deg(v)).




Example: Independent Set

©

(no adjacent
vertices allowed)

Example class C of algorithms: all greedy algorithms
that rank by w,/(1+deg(v))? for a parameter p = 0.

« can be adaptive or non-adaptive

16




Model #1: Unknown Distribution

Offline (“Batch”) Learning Model: (= PAC learning)
* unknown distribution F over inputs z of problem =
* receive s 1.1.d. samples z,,...,z, from F

* based on sample, choose an algorithm A of C to use

on all future inputs

extension: choose mafﬁnng from instance features to
algorithms (a la SAT

Goal: identify A" that (approximately) minimizes
E, g[cost(A,z)] (over A in C)




High-Level Plan

Lesson from learning theory: sample complexity scales
with “complexity” of the “hypothesis class.”

* e.g., VC dimension

Corollary: the best “simple” hypothesis can be learned
from a modest amount of data.

Proposed simplicity measure of a class C of algorithms:
pseudodimension of the real valued functions (from inputs
to performance) induced by C.




Bounding the Sample Complexity

Theorem: [Haussler 92], [Anthony/Bartlett 99] 1f C has low
pseudodimension, then 1t 1s easy to learn from data the best
algorithm in C.

* obtain §= Q(st_zd) samples z,,...,z, from F,
where d = pseudodimension of C (range of cost = [0,H])

« let A" = algorithm of C with minimum average cost on
the samples

Guarantee: with high probability, expected cost of A*
(w.r.t. F) within € of optimal algorithm in C.




Pseudodimension: Examples

$64K question: do interesting classes of algorithms have
small pseudodimension?

Examples:
* finite set C O(og |C|)
* single-parameter greedy algorithms O(log n)

* local search with neighborhood size n* O(k log n)
* “bucket-based” sorting algorithms O(n log n)
* per-instance algorithm selection O(|F | pd(O))




Pseudodimension: Definition

|Pollard 84] Let F = set of real-valued functions on X.
(for us, X = instances, F = algorithms, range = cost(A,z))

F shatters a finite subset S={vy,...,v } of X if:

* there exist real-valued thresholds t,,...,t, such that:

* for every subset T of S

* there exists a function f in F such that:

flv)>t & v,inT

Pseudodimension: maximum size of a shattered set.




Pseudodimension: Example

Let C = WIS greedy algorithms with scoring rule of the
form w_ /(deg(v)+1)P (e.g. for p>0)

Claim: C can only shatter a subset S={z,,...,z} if s =
O(log n). (hence pseudodimension O(log n))

Proof 1dea: Fix S. Call p,q equivalent if they induce
identical executions on all inputs of S.

* Lemma: number of equivalence classes can only grow
polynomially with n,s (uses “single-parameter” property)

Since need 2% labelings to shatter S, s = O(log n).




Proof of Lemma

Lemma: number of equivalence classes can only grow
polynomially with n,s (uses “single-parameter” property).

Proof 1dea: Fix sample S of size s.
» greedy alg depends only on results of comparisons

* single-crossing property: for each possible comparison
(between two vertices), flips at most one as p goes from
0 to infinity [w,/(deg(v)+1)P vs. w /(deg(x)+1)P]

* # possible comparisons = poly(n,s)

* only poly(n,s) distinct algorithms (w.r.t. S)




Pseudodimension: Upshot

Examples:
 finite set C O(og |C|)
* single-parameter greedy algorithms O(log n)

* local search with neighborhood size n* O(k log n)
* “bucket-based” sorting algorithms O(n log n)
* per-instance algorithm selection O(|F|e* pd(C))

Recall: Can learn the best algorithm with sample
complexity polynomial in the pseudodimension.

* also: running time at most exponential in dimension




Gradient Descent

Recall: for strongly convex functions, have convergence
guarantee for all sufficiently small step sizes.

In practice: use much more aggressive step sizes in hopes
of converging more quickly.

Result: can learn the best step size (to minimize expected
# of iterations) from few samples.

Open: more generally, hyperparameter optimization?




Selecting an Algorithm Online

Online learning setup: (fix a problem n)
* set of actions known up front (for us, algorithms of C)
* each time step t=1,2,...,T:

we commit to a distribution pt over actions/algorithms

adversary picks a cost vector (here, induced by an instance z of P)

algorithm A selected according to pt

incur cost(A,z)

Details: see Rishi Gupta’s talk at BWCA workshop (Nov 16)




Regret-Minimization

Benchmark: best fixed algorithm A of C (in hindsight) for
the adversarially chosen mputs z,...,zy

Goal: online algorithm that, in expectation, always incurs
cost at most benchmark, plus o(T) error term.

Question #1: Weighted Majority/Multiplicative Weights?
* 1ssue: what if A an infinite set?
Question #2: extension to Lipschitz cost vectors?

 1ssue: not at all Lipschitz! (e.g., for greedy WIS)




A Negative Result

Theorem: for a sufficiently large constant n and arbitrary
nonnegative vertex weights, there 1s no online algorithm
with a non-trivial regret guarantee for the greedy WIS
algorithm selection problem.

* 1dea: each day t, learning algorithm knows an interval of
length 2t that contains the optimal value of p, but if it
guesses the wrong half 1t incurs high cost

(crucially exploits non-Lipschitzness)




A Smoothed Guarantee

Theorem: for “smoothed WIS instances” (a la
[Spielman/Teng 01]), can achieve expected regret
1/poly(n) as T -> infinity

Idea:

* run a no-regret algorithm using a “net” of the space
of algorithms

* smoothed instances => the optimal algorithm 1s
typically equivalent to one of the net algorithms




Open Questions

non-trivial learning algorithms? (or a proof that,
under complexity assumptions, none exist)

extend gradient descent result to more general
hyperparameter optimization problems

trade-offs between representation and learning error

connections to more traditional measures of
“algorithm/problem complexity”?




Summary

* application-specific algorithm selection naturally
modeled as a learning problem (offline or online)

 for the offline/distributional model, use
pseudodimension to bound the sample complexity of

learning the best algorithm
pseudodimension is low for many natural algorithm classes

analytically tractable

 for the online/distribution-free model, no-regret
impossible in worst case, possible for smooth
instances




