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1 Review of Single-Parameter Revenue Maximization

With this lecture we commence the fifth and final part of the course. All previous lectures
focused on the objective of maximizing the welfare

∑n
i=1 vi(Si) of an auction. In these last

three lectures, we study the objective of maximizing the revenue
∑n

i=1 pi of an auction.
Of course, all of the auctions that we’ve studied to generate revenue, but only as a side
effect of the quest for incentive-compatible welfare-maximization. In effect, are we switching
perspectives from that of a non-profit-maximizing entity (like a government) to that of a
monopolist. Alternatively, we’re moving from a competitive market, where competition
might prevent monopoly pricing, to a non-competitive market. This change in objective
leads to a quite different theory. One thing in common between this part and previous
ones is that major progress has been made just in the past few years, in particular in the
theoretical computer science literature.

1.1 The Challenges of Revenue-Maximization

The first reason that we’ve be so obsessed with welfare-maximization is that it is a funda-
mental objective. Many real-world combinatorial auction designs, for example for wireless
spectrum licenses, are guided explicitly by welfare-maximization concerns.

The second reason is pedagogical. Welfare-maximization is special and, the difficulties
of the last 17 lectures notwithstanding, offers fewer conceptual challenges than revenue-
maximization. For example, if complexity is not a concern, then the VCG mechanism offers
an astonishing guarantee: the mechanism is dominant-strategy incentive compatible (DSIC)
and maximizes the welfare for every valuation profile (assuming truthful reporting). In this
sense, the VCG mechanism reduces welfare maximization with privately held valuations to
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the same problem with publicly known valuations — the strong DSIC guarantee comes “for
free.”

Revenue maximization is different. By definition, welfare is defined extrinsic to any
particular mechanism; revenue is a property of the mechanism itself. As a result, even in
a trivial scenario with a single buyer and a single item, there is no “optimal” mechanism.
(To maximize welfare, one would just give the item away for free.) Is a take-it-or-leave-
it offer at $20 better than one at $10? The answers depends on the bidder’s valuation,
which is unknown to the seller. The most common way of comparing the revenue of two
different mechanisms — inevitably, one has higher revenue on some inputs, the other on other
inputs — is to use a prior distribution. There is then an unequivocally “optimal” incentive-
compatible mechanism — the one with the highest expected revenue with respect to the
prior distribution. Of course, changing the prior generally changes the optimal mechanism
(cf. welfare-maximization, where the VCG mechanism is always optimal).1

For example, adopting a prior makes the single-buyer single-item revenue-maximization
problem very easy to think about. The direct-revelation incentive-compatible mechanisms
correspond to probability distributions over take-it-or-leave-it-offers.2 The optimal mecha-
nism for a prior distribution F to make a take-it-over-leave it offer in

argmax
r≥0

r · (1− F (r)),

since r is the revenue from a sale and 1− F (r) is the probability of a sale. Recall that such
a price is called a monopoly price for F . Changing the prior F changes only the monopoly
price, and not the structure of the optimal mechanism.

1.2 Recap: Myerson’s Optimal Auction Theory

We saw last quarter that Myerson [1] gave a complete solution to Bayesian revenue-maximization
in single-parameter environments.3 For example, consider a single-item auction with n bid-
ders, where bidder i’s valuation is drawn independently from a distribution Fi. The optimal
auction awards the item to the bidder with the highest “virtual valuation” ϕi(vi), where

ϕi(z) = z − 1− Fi(z)

fi(z)
,

1In CS364A, Lectures #5 and #6, we used a prior distribution for exactly this purpose. We only studied
DSIC mechanisms, so the bidders did not need to know the prior distribution. Here, we study Bayesian
incentive-compatible (BIC) mechanisms as well, so we use the prior also to model how bidders reason about
what action to take.

2With only one buyer, there is no need to differentiate between DSIC and BIC mechanisms. Since there
are no other valuations to average over, the two concepts coincide.

3Recall that a single-parameter environment with n bidders can be represented as a feasible set X of
n-vectors, with bidder i’s welfare in outcome x given by vi · xi for a private parameter vi. For example,
a single-item auction environment can be represented by the n standard basis n-vectors (designating the
winner) and the all-zero vector (designating no winner).
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with no sale of all bidders’ virtual valuations are negative.4 For example, if Fi is uniform
on [0, 1], then ϕi(z) = 2z − 1, which is negative on [0, 1

2
) and positive on (1

2
, 1] Payments

are uniquely determined by “Myerson’s Lemma” (see CS364A, Lecture #3). When bidders
are i.i.d. and regular, meaning all Fi’s are the same and regular, then the optimal auction
is particularly simply. With identical and strictly increasing virtual valuation functions,
the optimal auction awards the item to the highest bidder (unless all virtual valuations are
nonpositive, leading to no sale). This auction is equivalent to the Vickrey auction with a
reserve price of ϕ−1(0) — informally, an eBay auction with a judiciously chosen opening bid.

In general, when bidders are single-parameter with regular valuation distributions, the
optimal auction simple maximizes the virtual welfare:

1. For each bidder i with report bi, use the publicly known distribution Fi to compute its
virtual bid ϕi(bi).

2. Choose the feasible outcome x ∈ X that maximizes
∑n

i=1 ϕi(b)xi, the virtual welfare
according to the reported valuations.

3. Charge payments according to Myerson’s Lemma to ensure that the mechanism is
DSIC.

In other words, revenue-maximization in single-parameter environments reduces to virtual
welfare-maximization.

The first reason this reduction is interesting is conceptual: it gives us a solid handle
on what optimal mechanisms look like. A remarkable corollary of this reduction is that,
even if we optimize over the space of all BIC mechanisms, there is an optimal mechanism
that satisfies the much stronger DSIC guarantee.5 Equally remarkably, with regular valu-
ation distributions, optimizing over the space of randomized mechanisms yields an optimal
mechanism that is deterministic.

The second reason to care about Myerson’s reduction is computational. It implies that
in every problem domain where welfare maximization is computationally tractable, revenue
maximization is equally tractable — to solve the latter, one just forms the virtual valuations
and feeds them into your favorite welfare-maximization algorithm.

In summary, for single-parameter problems, there is a very satisfying theory of revenue-
maximizing auction. But the problems studied in this class, combinatorial auctions, are
generally not single-parameter problems. The goal of this part of the course is to understand
the extent to which a “Myerson-like” theory of revenue-maximizing auctions is possible for
multi-parameter problems. We’ve seen some remarkable progress on this goal over the past
couple of years, more than 30 years after Myerson’s paper [1]. The goal of this lecture is to

4The fine print: we’re assuming that each distribution has positive density on its support. We’re also
assuming that each distribution Fi is regular, which means that the corresponding virtual valuation function
is strictly increasing. Myerson’s optimal auction theory holds more generally for irregular distributions,
although it involves additional details that we won’t discuss here.

5We didn’t actually prove this last quarter because we never discussed BIC mechanisms. Just as it’s not
difficult to extend Myerson’s lemma and its proof to interim allocation rules (Lecture #12), it’s not difficult
to extend Myerson’s optimality of virtual welfare maximization to the space of BIC mechanisms.
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get a feel for the challenges involved. In the next two lectures we’ll sink our teeth into the
latest results.

2 Examples and Challenges in Multi-Parameter Revenue-

Maximization

A single-buyer scenario already indicates the much greater complexity of optimal revenue-
maximization in multi-parameter settings. Consider;

1. A single buyer and m = 2 non-identical items.

2. A prior distribution over additive valuations (v1, v2). Moreover, assume that vi, v2 are
i.i.d. draws from a distribution F .

Have we simplified the problem to the point that it’s trivial? After all, we know how to
do revenue-maximization with one buyer and one item, and since the buyer’s valuation
is additive over the goods the obvious thing to do is to sell each item separately (at the
monopoly price for F ).

Example 2.1 (Bundling can be better) Consider the simplest imaginable distribution
where each of v1, v2 is equally like to be 1 or 2 (independently). Selling the items separately
yields an expected revenue of 2 (the price can 1 or 2, it doesn’t matter). Another, equally
legitimate incentive-compatible mechanism bundles the two items together and offers a take-
it-or-leave-it offer for them. If prices at 3, this mechanism yields an expected revenue of 9/4
— the buyer buys the bundle except in the 1 in 4 chance that v1 = v2 = 1 — and is thus
better than selling the items separately!

It should be clear that Example 2.1 is not at all pathological. Indeed, the lesson that
bundling is better than selling items separately is particularly clear in the i.i.d. case as the
number of items m goes to infinity: for large enough m the sum of the buyer’s valuations
for all items becomes highly concentrated, so offering only the “grand bundle” at a price
slightly below the buyer’s value for it has expected revenue almost equal to the expected
welfare — an upper bound on the expected revenue of any mechanism, and well more than
one can typically be achieved by selling items separately.

Perhaps bundling the items together is always optimal, at least in simple scenario that
we’re currently discussing?

Example 2.2 (Better than bundling) Consider a distribution F that is equally likely to
take on the values 0, 1, or 2. Selling items separately at a price of 1 or 2 yields expected
revenue 4/3. Selling the only as a bundle also yields expected revenue 4/3 (at a price of 2,
with selling probability 2/3).

On the other hand, suppose we offer any one item at a price of 2, of both items together
at the discounted price of 3. The buyer chooses its utility maximizing bundle given these
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v1\v2 0 1 2
0 0 0 2
1 0 0 3
2 2 3 3

Table 1: The revenue matrix of Example 2.2
.

choices and prices.6 To compute the expected revenue of this mechanism, consider the matrix
in Table 1. It is obvious that buyer will buy nothing if v1, v2 ≤ 1 — all three options yield
negative utility. If the buyer has value 2 for 1 item and 0 for the other, than it purchases
the item it wants at a price of 2. If is has value 2 for one item and at least 1 for the other,
then it purchases the bundle of both items at a price of 3.7 The resulting expected revenue
is 3

9
· 3 + 2

9
· 2 = 13

9
> 4

3
, which is better than either selling items separately or selling only

the grand bundle.

What happens in the next example is even weirder.

Example 2.3 (Randomization can be necessary) Suppose now that each of v1, v2 is
drawn i.i.d. from a distribution F that 1 with probability 1

6
, 2 with probability 1

2
, and 4

with probability 1
3
. Consider the mechanism where the buyer has three options: pay 1 for

a lottery ticket that yields a 50% probability of winning the first item; pay 1 for a lottery
ticket that yields a 50% probability of winning the second item; or pay 4 to get both items
with 100% probability. As usual, the buyer chooses its utility-maximizing bundle, and we
can assume that ties are broken in favor of the highest-price bundle. We leave the following
assertions as exercises:

(a) the auction above has expected revenue 317
36

;

(b) every deterministic auction — where every outcome awards either nothing, the first
item, the second item, or both items — has strictly less expected revenue.

In particular, selling a lottery ticket with a 50% probability of a realization at price 1 is
not the same as selling an item at price 2. Prices affect the buyer’s utility additively; the
probability of item realization affects the buyer’s value multiplicatively.

The upshot of these examples is that revenue-maximizing auctions are much more compli-
cated in multi-parameter settings, even with just one buyer with an additive valuation over
two items, than in single-parameter settings. The format of the optimal auction varies signif-
icantly with the prior F and, even with a very simple prior distribution, the optimal auction

6In the direct-revelation version of this mechanism, the buyer reports its valuation, and the auction picks
the utility-maximizing choice on behalf of the buyer.

7We are assuming that ties are broken in favor of the seller. This is without loss of generality, in the
sense that the seller can perturb prices by an arbitrarily small amount (e.g., from 2 to 2 − ε and from 3 to
3− 2ε) to ensure the desired tie-breaking.
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need not be deterministic. This is sharp contrast with the single-parameter case, where with
a single-buyer the optimal auction is just a suitably (deterministic) take-it-or-leave-it offer.

3 A Linear Programming Approach

How can we make sense of the complex dependence between the optimal auction and the
prior distribution, even in the very simple setups in Examples 2.1–2.3? Closed-form explicit
formulas, analogous to single-parameter virtual valuations, seem too simple to hope for. The
problem would seem to require more powerful machinery, and we turn to linear programming
to help us.

3.1 The Single-Buyer Case

A straightforward observation is that the revenue-maximizing mechanism with respect to a
prior can be characterized as the solution to a linear program. This is not very explicit, but
we’ve got to start somewhere.

Here is the new setup:

• a single buyer;

• a set U of m items;

• a finite set V = {v1, . . . , vr} of possible additive valuations (each an m-vector);

• a probability mass f(v) for each v ∈ V ; the f(v)’s are nonnegative and sum to 1.

Additive valuations are interesting to start with — recall Examples 2.1–2.3 — and we’ll
generalize them later. We will not need to assume that the buyer’s values vj and vk for
different items are independent.

The Revelation Principle (CS364A, Lecture #4) holds in the present setting, so we can
restrict attention to direct-revelation mechanisms where truthful reports are always utility-
maximizing. Then, we can formulate the following linear program. There is variable xj(v)
for each j ∈ U and v ∈ V , indicating the probability that the buyer receives the item j
when it reports the valuation v. For example, in a mechanism that only offers the grand
bundle at some price r, xj(v) = 1 for all j when

∑
j∈U vj ≥ r and xj(v) = 0 for all j

when
∑

j∈U vj < r. The xj(v)’s are 0 or 1 in a deterministic mechanism, but Example 2.3
shows that it’s essential that we allow randomized allocation rules. There is also a decision
variable p(v) for each v ∈ V , indicating the payment from the buyer to the mechanism when
its reports the valuation v.8

8The mechanism can use a randomized payment rule, but with a risk-neutral buyer and seller the only
relevant quantity is the expected payment p(v) when the buyer reports v. Also, there is no need to keep
track of a separate payment for each item.
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The objective function is to maximize revenue, which can be written as

max
∑
v∈V

f(v)p(v). (1)

Since the f(v)’s are given, this is a linear objective function. The incentive-compatibility
(IC) constraints, asserting that truthful reporting is utility-maximizing, can be written as∑

j∈U

vjxj(v)− p(v) ≥
∑
j∈U

vjxj(v
′)− p(v′) (2)

for every v, v′ ∈ V . Note we are using the additivity of the buyer’s valuation. Since the v’s
are given, there are linear constraints. The individual rationality (IR) constraints, requiring
non-negative utility for a truthful buyer, can be expressed as the linear constraints∑

j∈U

vjxj(x)− p(v) ≥ 0 (3)

for every v ∈ V . Naturally, we also require that

0 ≤ xj(v) ≤ 1 (4)

for every j ∈ U and v ∈ V .
There is a natural correspond between IC and IR direct-revelation mechanisms and fea-

sible solutions to the linear program (1)–(4). Given such a mechanism, defining the xj(v)’s
and p(v)’s according to their intended semantics yields a feasible solution. Given a feasible
solution, one can define a mechanism in the obvious way: given a report v, allocate each item
j ∈ U to the buyer with probability xj(v), and charge a payment of p(v).9 This mechanism
is well defined by (4), and is IC (by (2)) and IR (by (3)). This expected revenue of the
mechanism and the objective function value of the corresponding feasible solution coincide.

The number of variables and constraints in the linear program (1)–(4) is polynomial in
the size |V | of the valuation space. This is large in some cases, but it’s hard to see how one
could ever encode the IC constraints with a much smaller formulation.

3.2 Multiple Buyers

An advantage of the linear programming approach is it can be easily extended in many
different ways. For example, a buyer with a budget constraint B can be modeled by adding
the constraints p(v) ≤ B) for every v ∈ V . We also easily extends from one many buyers, in
the following setup:

• n bidders;

• a set U of m items;

9Items can be allocated independently, or according to any other distribution with the correct marginals
— that’s all that a risk-neutral buyer with an additive valuation cares about.
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• for each i = 1, 2, . . . , n, a finite set Vi = {v1
i , . . . , v

ri
i } of possible additive valuations

(each an m-vector);

• for each i = 1, 2, . . . , n, a probability mass fi(v) for each v ∈ Vi; the fi(v)’s are
nonnegative and sum to 1.

We are assuming that bidder’s valuations are independent, although the following linear
program extends easily to correlated valuation distributions as well.

Let V = V1 × · · · × Vn denote the set of possible valuation profiles. There is a variable
xij(v) for each bidder i, item j, and valuation profile v ∈ V , indicating the probability that
i gets j when the reported valuations are v. There is a variable pi(v) for each bidder i and
profile v, indicating i’s expected payment when the reported valuations are v. The objective
is still to maximize revenue: ∑

v∈V

F(v)
n∑

i=1

pi(v). (5)

With multiple bidders, there is a distinction between Bayesian incentive compatibility and
dominant-strategy incentive compatibility. We are interesting in the former, and they can
be encoded as follows:∑
v−i∈V−i

F−i(v−i)

(∑
j∈U

vijxij(v)− pi(v)

)
≥

∑
v−i∈V−i

F−i(v−i)

(∑
j∈U

vijxij(vi
′,v−i)− pi(vi

′,v−i)

)
(6)

for every bidder i, true valuation vi, and reported valuation vi
′.10

Similarly, the IR constraints – in this form usually called interim individual rationality
(IIR) — can be written as

∑
v−i∈V−i

F−i(v−i)

(∑
j∈U

vijxij(v)− pi(v)

)
≥ 0 (7)

for all i and vi ∈ Vi. Finally, since each item is allocated to at most one bidder, we have the
following feasibility constraints:

n∑
i=1

xij(v) ≤ 1 (8)

for every j ∈ U and v ∈ V . (And of course, all the xij(v)’s should be nonnegative.)
There is again a natural correspondence between the feasible solutions of the linear pro-

gram (5)–(8) and the BIC and IIR direct-revelation mechanisms. A feasible solution to (5)–
(8) indicates what a mechanism should do: given reported valuations v, assign each item
j to a bidder i with probability xij(v), and charge each bidder i a payment of pi(v). This

10With a non-product distribution F, the only difference would be to average over v−i with respect to the
conditional distribution on v−i given vi.

The DSIC constraints corresponding to (6) would quantify over all possible reported valuations v−i, rather
than averaging over the (truthfully reported) valuations v−i.
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mechanism is well defined by (8) — each item j can assigned independently, for example —
and is BIC and IIR by (6) and (7).

While the linear program (1)–(4) has size polynomial in the number |V | of valuations
of the single buyer, the linear program (5)–(8) has size polynomial in the number |V| of
valuation profiles. The size of V scales exponentially with with the number of bidders n. This
linear program is useless from a computational perspective for all but very small problems.
In the next lecture, we show how to capture the set of BIC and IIR mechanisms with a
much smaller set of variables, with size scaling polynomially in n. In addition to being more
meaningful computationally, the quest for a smaller linear program will yield conceptually
insights about the structure of revenue-maximizing mechanisms in multi-parameter settings.
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