
CS261: A Second Course in Algorithms
Lecture #11: Online Learning and the Multiplicative

Weights Algorithm∗

Tim Roughgarden†

February 9, 2016

1 Online Algorithms

This lecture begins the third module of the course (out of four), which is about online
algorithms. This term was coined in the 1980s and sounds anachronistic there days — it has
nothing to do with the Internet, social networks, etc. It refers to computational problems of
the following type:

An Online Problem

1. The input arrives “one piece at a time.”

2. An algorithm makes an irrevocable decision each time it receives a new
piece of the input.

For example, in job scheduling problems, one often thinks of the jobs as arriving online (i.e.,
one-by-one), with a new job needing to be scheduled on some machine immediately. Or in a
graph problem, perhaps the vertices of a graph show up one by one (with whatever edges are
incident to previously arriving vertices). Thus the meaning of “one piece at a time” varies
with the problem, but it many scenarios it makes perfect sense. While online algorithms
don’t get any airtime in an introductory course like CS161, many problems in the real world
(computational and otherwise) are inherently online problems.

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

2 Online Decision-Making

2.1 The Model

Consider a set A of n ≥ 2 actions and a time horizon T ≥ 1. We consider the following
setup.

Online Decision-Making

At each time step t = 1, 2, . . . , T :

a decision-maker picks a probability distribution pt over her actions
A

an adversary picks a reward vector rt : A→ [−1, 1]

an action at is chosen according to the distribution pt, and the
decision-maker receives reward rt(at)

the decision-maker learns rt, the entire reward vector

An online decision-making algorithm specifies for each t the probability distribution pt,
as a function of the reward vectors r1, . . . , rt−1 and realized actions a1, . . . , at−1 of the first
t − 1 time steps. An adversary for such an algorithm A specifies for each t the reward
vector rt, as a function of the probability distributions p1, . . . ,pt used by A on the first t
days and the realized actions a1, . . . , at−1 of the first t− 1 days.

For example, A could represent different investment strategies, different driving routes
between home and work, or different strategies in a zero-sum game.

2.2 Definitions and Examples

We seek a “good” online decision-making algorithm. But the setup seems a bit unfair, no?
The adversary is allowed to choose each reward function rt after the decision-maker has
committed to her probability distribution pt. With such asymmetry, what kind of guarantee
can we hope for? This section gives three examples that establish limitations on what is
possible.1

The first example shows that there is no hope of achieving reward close to that of the
best action sequence in hindsight. This benchmark

∑T
t=1 maxa∈A r

t(a) is just too strong.

Example 2.1 (Comparing to the Best Action Sequence) Suppose A = {1, 2} and fix
an arbitrary online decision-making algorithm. Each day t, the adversary chooses the reward
vector rt as follows: if the algorithm chooses a distribution pt for which the probability on
action 1 is at least 1

2
, then rt is set to the vector (−1, 1). Otherwise, the adversary sets rt equal

1In the first half of the course, we always sought algorithms that are always correct (i.e., optimal). In an
online setting, where you have to make decisions without knowing the future, we expect to compromise on
an algorithm’s guarantee.

2

to (1,−1). This adversary forces the expected reward of the algorithm to be nonpositive,
while ensuring that the reward of the best action sequence in hindsight is T .

Example 2.1 motivates the following important definitions. Rather than comparing the
expected reward of an algorithm to that of the best action sequence in hindsight, we compare
it to the reward incurred by the best fixed action in hindsight. In words, we change our
benchmark from

∑T
t=1 maxa∈A r

t(a) to maxa∈A
∑T

t=1 r
t(a).

Definition 2.2 (Regret) Fix reward vectors r1, . . . , rT . The regret of the action sequence
a1, . . . , aT is

max
a∈A

T∑
t=1

rt(a)︸ ︷︷ ︸
best fixed action

−
T∑
t=1

rt(at)︸ ︷︷ ︸
our algorithm

. (1)

We’d like an online decision-making algorithm that achieves low regret, as close to 0 as
possible (and negative regret would be even better).2 Notice that the worst-possible regret
in 2T (since rewards lie in [−1, 1]). We think of regret Ω(T) as an epic fail for an algorithm.

What is the justification for the benchmark of the best fixed action in hindsight? First,
simple and natural learning algorithms can compete with this benchmark. Second, achieving
this is non-trivial: as the following examples make clear, some ingenuity is required. Third,
competing with this benchmark is already sufficient to obtain many interesting applications
(see end of this lecture and all of next lecture).

One natural online decision-making algorithm is follow-the-leader , which at time step t
chooses the action a with maximum cumulative reward

∑t−1
u=1 r

u(a) so far. The next example
shows that follow-the-leader, and more generally every deterministic algorithm, can have
regret that grows linearly with T .

Example 2.3 (Randomization Is Necessary for No Regret) Fix a deterministic on-
line decision-making algorithm. At each time step t, the algorithm commits to a single
action at. The obvious strategy for the adversary is to set the reward of action at to 0, and
the reward of every other action to 1. Then, the cumulative reward of the algorithm is 0
while the cumulative reward of the best action in hindsight is at least T (1− 1

n
). Even when

there are only 2 actions, for arbitrarily large T , the worst-case regret of the algorithm is at
least T

2
.

For randomized algorithms, the next example limits the rate at which regret can vanish
as the time horizon T grows.

Example 2.4 (
√

(lnn)/T Regret Lower Bound) Suppose there are n = 2 actions, and
that we choose each reward vector rt independently and equally likely to be (1,−1) or (−1, 1).
No matter how smart or dumb an online decision-making algorithm is, with respect to this
random choice of reward vectors, its expected reward at each time step is exactly 0 and its

2Sometimes this goal is referred to as “combining expert advice” — if we think of each action as an
“expert,” then we want to do as well as the best expert.

3

expected cumulative reward is thus also 0. The expected cumulative reward of the best fixed
action in hindsight is b

√
T , where b is some constant independent of T . This follows from

the fact that if a fair coin is flipped T times, then the expected number of heads is T
2

and

the standard deviation is 1
2

√
T .

Fix an online decision-making algorithm A. A random choice of reward vectors causes A
to experience expected regret at least b

√
T , where the expectation is over both the random

choice of reward vectors and the action realizations. At least one choice of reward vec-
tors induces an adversary that causes A to have expected regret at least b

√
T , where the

expectation is over the action realizations.
A similar argument shows that, with n actions, the expected regret of an online decision-

making algorithm cannot grow more slowly than b
√
T lnn, where b > 0 is some constant

independent of n and T .

3 The Multiplicative Weights Algorithm

We now give a simple and natural algorithm with optimal worst-case expected regret, match-
ing the lower bound in Example 2.4 up to constant factors.

Theorem 3.1 There is an online decision-making algorithm that, for every adversary, has
expected regret at most 2

√
T lnn.

An immediately corollary is that the number of time steps needed to drive the expected
time-averaged regret down to a small constant is only logarithmic in the number of actions.3

Corollary 3.2 There is an online decision-making algorithm that, for every adversary and
ε > 0, has expected time-averaged regret at most ε after at most (4 lnn)/ε2 time steps.

In our applications in this and next lecture, we will use the guarantee in the form of Corol-
lary 3.2.

The guarantees of Theorem 3.1 and Corollary 3.2 are achieved by the multiplicative
weights (MW) algorithm.4 Its design follows two guiding principles.

No-Regret Algorithm Design Principles

1. Past performance of actions should guide which action is chosen at each
time step, with the probability of choosing an action increasing in its
cumulative reward. (Recall from Example 2.3 that we need a randomized
algorithm to have any chance.)

3Time-averaged regret just means the regret, divided by T .
4This and closely related algorithms are sometimes called the multiplicative weight update (MWU) algo-

rithm, Polynomial Weights, Hedge, and Randomized Weighted Majority.

4

2. The probability of choosing a poorly performing action should decrease
at an exponential rate.

The first principle is essential for obtaining regret sublinear in T , and the second for optimal
regret bounds.

The MW algorithm maintains a weight, intuitively a “credibility,” for each action. At
each time step the algorithm chooses an action with probability proportional to its cur-
rent weight. The weight of each action evolves over time according to the action’s past
performance.

Multiplicative Weights (MW) Algorithm

initialize w1(a) = 1 for every a ∈ A
for each time step t = 1, 2, . . . , T do

use the distribution pt := wt/Γt over actions, where
Γt =

∑
a∈Aw

t(a) is the sum of the weights

given the reward vector rt, for every action a ∈ A use the formula
wt+1(a) = wt(a) · (1 + ηrt(a)) to update its weight

For example, if all rewards are either -1 or 1, then the weight of each action a either goes up
by a 1 + η factor or down by a 1 − η factor. The parameter η lies between 0 and 1

2
, and is

chosen at the end of the proof of Theorem 3.1 as a function of n and T . For intuition, note
that when η is close to 0, the distributions pt will hew close to the uniform distribution.
Thus small values of η encourage exploration. Large values of η correspond to algorithms
in the spirit of follow-the-leader. Thus large values of η encourage exploitation, and η is a
knob for interpolating between these two extremes. The MW algorithm is obviously simple
to implement, since the only requirement is to update the weight of each action at each time
step.

4 Proof of Theorem 3.1

Fix a sequence r1, . . . , rT of reward vectors.5 The challenge is that the two quantities that
we care about, the expected reward of the MW algorithm and the reward of the best fixed
action, seem to have nothing to do with each other. The fairly inspired idea is to relate both
of these quantities to an intermediate quantity, namely the sum ΓT+1 =

∑
a∈Aw

T+1(a) of
the actions’ weights at the conclusion of the MW algorithm. Theorem 3.1 then follows from
some simple algebra and approximations.

5We’re glossing over a subtle point, the difference between “adaptive adversaries” (like those defined in
Section 2) and “oblivious adversaries” which specify all reward vectors in advance. Because the behavior of
the MW algorithm is independent of the realized actions, it turns out that the worst-case adaptive adversary
for the algorithm is in fact oblivious.

5

The first step, and the step which is special to the MW algorithm, shows that the sum
of the weights Γt evolves together with the expected reward earned by the MW algorithm.
In detail, denote the expected reward of the MW algorithm at time step t by νt, and write

νt =
∑
a∈A

pt(a) · rt(a) =
∑
a∈A

wt(a)

Γt
· rt(a). (2)

Thus we want to lower bound the sum of the νt’s.
To understand Γt+1 as a function of Γt and the expected reward (2), we derive

Γt+1 =
∑
a∈A

wt+1(a)

=
∑
a∈A

wt(a) · (1 + ηrt(a))

= Γt(1 + ηνt). (3)

For convenience, we’ll bound from above this quantity, using the fact that 1 + x ≤ ex for all
real-valued x.6 Then we can write

Γt+1 ≤ Γt · eηνt

for each t and hence

ΓT+1 ≤ Γ1︸︷︷︸
=n

T∏
t=1

eην
t

= n · eη
∑T

t=1 ν
t

. (4)

This expresses a lower bound on the expected reward of the MW algorithm as a relatively
simple function of the intermediate quantity ΓT+1.

Figure 1: 1 + x ≤ ex for all real-valued x.

6See Figure 1 for a proof by picture. A formal proof is easy using convexity, a Taylor expansion, or other
methods.

6

The second step is to show that if there is a good fixed action, then the weight of this
action single-handedly shows that the final value ΓT+1 is pretty big. Combining with the
first step, this will imply the the MW algorithm only does poorly if every fixed action is bad.

Formally, let OPT denote the cumulative reward
∑T

t=1 r
t(a∗) of the best fixed action a∗

for the reward vector sequence. Then,

ΓT+1 ≥ wT+1(a∗)

= w1(a∗)︸ ︷︷ ︸
=1

T∏
t=1

(1 + ηrt(a∗)). (5)

OPT is the sum of the rt(a∗)’s, so we’d like to massage the expression above to involve this
sum. Products become sums in exponents. So the first idea is to use the same trick as before,
replacing 1 + x by ex. Unfortunately, we can’t have it both ways — before we wanted an
upper bound on 1 + x, whereas now we want a lower bound. But looking at Figure 1, it’s
clear that the two function are very close to each other for x near 0. This can made precise
through the Taylor expansion

ln(1 + x) = x− x2

2
+ x3

3
− x4

4
+ · · · .

Provided |x| ≤ 1
2
, we can obtain a lower bound on ln(1 + x) by throwing out all terms but

the first two, and doubling the second term to compensate. (The magnitudes of the rest of
the terms can be bounded above by the geometric series x2

2
(1

2
+ 1

4
+ · · ·), so the extra −x2

2

term blows them all away.)
Since η ≤ 1

2
and |rt(a∗)| ≤ 1 for every t, we can plug this estimate into (5) to obtain

ΓT+1 ≥
T∏
t=1

eηr
t(a∗)−η2(rt(a∗))2

≥ eηOPT−η
2T , (6)

where in (6) we’re just using the crude estimate (rt(a∗))2 ≤ 1 for all t.
Through (4) and (6), we’ve connected the cumulative expected reward

∑T
t=1 ν

t of the
MW algorithm with the reward OPT of the best fixed auction through the intermediate
quantity ΓT+1:

n · eη
∑T

t=1 ν
t ≥ ΓT+1 ≥ eηOPT−η

2T

and hence (taking the natural logarithm of both sides and dividing through by η):

T∑
t=1

νt ≥ OPT − ηT − lnn

η
. (7)

Finally, we set the free parameter η. There are two error terms in (7), the first one corre-
sponding to inaccurate learning (higher for larger learning rates), the second corresponding
to overhead before converging (higher for smaller learning rates). To equalize the two terms,

7

we choose η =
√

(lnn)/T . (Or η = 1
2
, if this is smaller.) Then, the cumulative expected

reward of the MW algorithm is at most 2
√
T lnn less than the cumulative reward of the best

fixed action. This completes the proof of Theorem 3.1.

Remark 4.1 (Unknown Time Horizons) The choice of η above assumes knowledge of
the time horizon T . Minor modifications extend the multiplicative weights algorithm and
its regret guarantee to the case where T is not known a priori, with the “2” in Theorem 3.1
replaced by a modestly larger constant factor.

5 Minimax Revisited

Recall that a two-player zero-sum game can be specified by an m × n matrix A, where aij
denotes the payoff of the row player and the negative payoff of the column player when row i
and column j are chosen. It is easy to see that going first in a zero-sum game can only be
worse than going second — in the latter case, a player has the opportunity to adapt to the
first player’s strategy. Last lecture we derived the minimax theorem from strong LP duality.
It states that, provided the players randomize optimally, it makes no difference who goes
first.

Theorem 5.1 (Minimax Theorem) For every two-player zero-sum game A,

max
x

(
min
y

x>Ay

)
= min

y

(
max

x
x>Ay

)
. (8)

We next sketch an argument for deriving Theorem 5.1 directly from the guarantee pro-
vided by the multiplicative weights algorithm (Theorem 3.1). Exercise Set #6 asks you to
provide the details.

Fix a zero-sum game A with payoffs in [−1, 1] and a value for a parameter ε > 0. Let
n denote the number of rows or the number of columns, whichever is larger. Consider the
following thought experiment:

• At each time step t = 1, 2, . . . , T = 4 lnn
ε2

:

– The row and column players each choose a mixed strategy (pt and qt, respectively)
using their own copies of the multiplicative weights algorithm (with the action set
equal to the rows or columns, as appropriate).

– The row player feeds the reward vector rt = Aqt into (its copy of) the multiplica-
tive weights algorithm. (This is just the expected payoff of each row, given that
the column player chose the mixed strategy qt.)

– Analogously, the column player feeds the reward vector rt = −(pt)TA into the
multiplicative weights algorithm.

8

Let

v =
1

T

T∑
t=1

(pt)TAqt

denote the time-averaged payoff of the row player. The first claim is that applying Theo-
rem 3.1 (in the form of Corollary 3.2) to the row and column players implies that

v ≥
(

max
p

pTAq̂

)
− ε

and

v ≤
(

min
q

p̂TAq

)
+ ε,

respectively, where p̂ = 1
T

∑T
t=1 pt and q̂ = 1

T

∑T
t=1 qt denote the time-averaged row and

column strategies.
Given this, a short derivation shows that

max
p

(
min
q

pTAq

)
≥ min

q

(
min
p

pTAq

)
− 2ε.

Letting ε→ 0 and recalling the easy direction of the minimax theorem (maxp minq p>Aq ≤
minq maxp p>Aq) completes the proof.

9

