
CS261: A Second Course in Algorithms
Lecture #17: Linear Programming and Approximation

Algorithms∗

Tim Roughgarden†

March 1, 2016

1 Preamble

Recall that a key ingredient in the design and analysis of approximation algorithms is getting
a handle on the optimal solution, to compare it to the solution return by an algorithm. Since
the optimal solution itself is often hard to understand (it’s NP -hard to compute, after all),
this generally entails bounds on the optimal objective function value — quantities that are
“only better than optimal.” If the output of an algorithm is within an α factor of this bound,
then it is also within an α factor of optimal.

So where do such bounds on the optimal objective function value come from? Last
week, we saw a bunch of ad hoc examples, including the maximum job size and the average
load in the makespan-minimization problem, and the minimum spanning tree for the metric
TSP. Today we’ll see how to use linear programs and their duals to generate systematically
such bounds. Linear programming and approximation algorithms are a natural marriage
— for example, recall that dual feasible solutions are by definition bounds on the best-
possible (primal) objective function value. We’ll see that some approximation algorithms
explicitly solve a linear program; some use linear programming to guide the design of an
algorithm without ever actually solving a linear program to optimality; and some use linear
programming duality to analyze the performance of a natural (non-LP-based) algorithm.

2 A Greedy Algorithm for Set Cover (Without Costs)

We warm up with a solution that builds on our set coverage greedy algorithm (Lecture #15)
and doesn’t require linear programming at all. In the set cover problem, the input is a list

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

S1, . . . , Sm ⊆ U of sets, each specified as a list of elements from a ground set U . The goal
is to pick as few sets as possible, subject to the constraint their union is all of U (i.e., that
they form a set cover). For example, in Figure 1, the optimal solution comprises of picking
the blue sets.

Figure 1: Example set coverage problem. The optimal solution comprises of picking the blue
sets.

In the set coverage problem (Lecture #15), the input included a parameter k. The
hard constraint was to pick at most k sets, and subject to this the goal was to cover as
many elements as possible. Here, the constraint and the objective are reversed: the hard
constraint is to cover all elements and, subject to this, to use as few sets as possible. Potential
applications of the set cover problem are the same as for set coverage, and which problem
is a better fit for reality depends on the context. For example, if you are choosing where to
build fire stations, you can imagine that it’s a hard constraint to have reasonable coverage
of all of the neighborhoods of a city.

The set cover problem is NP -hard, for essentially the same reasons as the set coverage
problem. There is again a tension between the size of a set and how “redundant” it is with
other sets that might get chosen anyway.

Turning to approximation algorithms we note that the greedy algorithm for set coverage
makes perfect sense for set cover. The only difference is in the stopping condition — rather
than stopping after k iterations, the algorithm stops when it has found a set cover.

Greedy Algorithm for Set Cover (No Costs)

C = ∅
while C not a set cover do

add to C the set Si which covers the largest number of new elements
// elements covered by previously chosen sets don’t count

return C

The same bad examples from Lecture #15 show that the greedy algorithm is not in
general optimal. In the first example of that lecture, the greedy algorithm uses 3 sets even

2

though 2 are enough; in the second lecture, it uses 5 sets even though 3 are enough. (And
there are worse examples than these.) We next prove an approximation guarantee for the
algorithm.

Theorem 2.1 The greedy algorithm is a lnn-approximation algorithm for the set cover prob-
lem, where n = |U | is the size of the ground set.

Proof: We can usefully piggyback on our analysis of the greedy algorithm for the set coverage
problem (Lecture #15). Consider a set cover instance, and let OPT denote the size of the
smallest set cover. The key observation is: the current solution after OPT iterations of the
set cover greedy algorithm is the same as the output of the set coverage greedy algorithm
with a budget of k = OPT . (In both cases, in every iteration, the algorithm picks the set
that covers the maximum number of new elements.) Recall from Lecture #15 that the greedy
algorithm is a (1 − 1

e
)-approximation algorithm for set coverage. Since there is a collection

of OPT sets covering all |U | elements, the greedy algorithm, after OPT iterations, will have
covered at least (1 − 1

e
)|U | elements, leaving at most |U |/e elements uncovered. Iterating,

every OPT iterations of the greedy algorithm will reduce the number of uncovered elements
by a factor of e. Thus all elements are covered within OPT loge n = OPT lnn iterations.
Thus the number of sets chosen by the greedy algorithm is at most lnn times the size of an
optimal set cover, as desired. �

3 A Greedy Algorithm for Set Cover (with Costs)

It’s easy to imagine scenarios where the different sets of a set cover instance have different
costs. (E.g., if sets model the skills of potential hires, different positions/seniority may
command different salaries.) In the general version of the set cover problem, each set Si also
has a nonnegative cost ci ≥ 0. Since there were no costs in the set coverage problem, we can
no longer piggyback on our analysis there — we’ll need a new idea.

The greedy algorithm is easy to extend to the general case. If one set costs twice as much
as another, then to be competitive, it should cover at least twice as many elements. This
idea translates to the following algorithm.

Greedy Algorithm for Set Cover (With Costs)

C = ∅
while C not a set cover do

add to C the set Si with the minimum ratio

ri =
ci

newly covered elements
(1)

return C

3

Note that if all of the ci’s are identical, then we recover the previous greedy algorithm —
in this case, minimizing the ratio is equivalent to maximizing the number of newly covered
elements. In general, the ratio is the “average cost per-newly covered element,” and it makes
sense to greedily minimize this.

The best-case scenario is that the approximation guarantee for the greedy algorithm does
not degrade when we allow arbitrary set costs. This is indeed the case.

Theorem 3.1 The greedy algorithm is a ≈ lnn-approximation algorithm for the general set
cover problem (with costs), where n = |U | is the size of the ground set.1

To prove Theorem 3.1, the first order of business is to understand how to make use of
the greedy nature of the algorithm. The following simple lemma, reminiscent of a lemma in
Lecture #15 for set coverage, addresses this point.

Lemma 3.2 Suppose that the current greedy solution covers ` elements of the set Si. Then
the next set chosen by the algorithm has ratio at most

ci
|Si| − `

. (2)

Indeed, choosing the set Si would attain the ratio in (2); the ratio of the set chosen by the
greedy algorithm can only be smaller.

For every element e ∈ U , define

qe = ratio of the first set chosen by the greedy algorithm that covers e.

Since the greedy algorithm terminates with a set cover, every element has a well-defined
q-value.2 See Figure 2 for a concrete example.

Figure 2: Example set with q-value of the elements.

1Inspection of the proof shows that the approximation ratio is ≈ ln s, where s = maxi |Si| is the maximum
size of an input set.

2The notation is meant to invoke the q-values in our online bipartite matching analysis (Lecture #13);
as we’ll see, something similar is going on here.

4

Corollary 3.3 For every set Si, the jth element e of Si to be covered by the greedy algorithm
satisfies

qe ≤
ci

|Si| − (j − 1)
. (3)

Corollary 3.3 follows immediately from Lemma 3.2 in the case where the elements of Si are
covered one-by-one (with j− 1 playing the role of `, for each j). In general, several elements
of Si might be covered at once. (E.g., the greedy algorithm might actually pick Si.) But
in this case the corollary is only “more true” — if j is covered as part of a batch, then
the number of uncovered elements in Si before the current selection was j − 1 or less. For
example, in Figure 2, Corollary 3.3 only asserts that the q-values of the largest set are at
most 1

3
, 1

2
, and 1, when in fact all are only 1

3
. Similarly, for the last set chosen, Corollary 3.3

only guarantees that the q-values are at most 1
2

and 1, while in fact they are 1
3

and 1.
We can translate Corollary 3.3 into a bound on the sum of the q-values of the elements

of a set Si: ∑
e∈Si

qe ≤
ci
|Si|

+
ci

|Si| − 1
+ · · ·+ ci

2
+
ci
1

≈ ci ln |Si| (4)

≤ ci lnn, (5)

where n = |U | is the ground set size.3

We also have ∑
e∈U

qe = cost of the greedy set cover. (6)

This identity holds inductively at all times. (If e has not been covered yet, then we define
qe = 0.) Initially, both sides are 0. When a new set Si is chosen by the greedy algorithm,
the right-hand side goes up by ci. The left-hand side also increases, because all of the newly
covered elements receive a q-value (equal to the ratio of the set Si), and this increase is

ri · (# of newly covered elements) = ci.

(Recall the definition (1) of the ratio.)

Proof of Theorem 3.1: Let {S∗1 , . . . , S∗k} denote the sets of an optimal set cover, and OPT

3Our estimate
∑|Si|

j=1
1
j ≈ ln |Si| in (4), which follows by approximating the sum by an integral, is actually

off by an additive constant less that 1 (known as “Euler’s constant”). We ignore this additive constant for
simplicity.

5

its cost. We have

cost of the greedy set cover =
∑
e∈U

qe

≤
k∑
i=1

∑
e∈S∗

i

qe

≤
k∑
i=1

ci lnn

= OPT · lnn,

where the first equation is (6), the first inequality follows because S∗1 , . . . , S
∗
k form a set cover

(each e ∈ U is counted at least once), and the second inequality from (5). This completes
the proof. �

Our analysis of the greedy algorithm is tight. To see this, let U = {1, 2, . . . , n}, S0 = U
with c0 = 1 + ε for small ε, and Si = {i} with cost ci = 1

i
for i = 1, 2, . . . , n. The optimal

solution (S0) has cost 1 + ε. The greedy algorithm chooses Sn, Sn−1, . . . , S1 (why?), for a
total cost of

∑n
i=1

1
i
≈ lnn.

More generally, the approximation factor of ≈ lnn cannot be beaten by any polynomial-
time algorithm, no matter how clever (under standard complexity assumptions). In this
sense, the greedy algorithm is optimal for the set cover problem.

4 Interpretation via Linear Programming Duality

Our proof of Theorem 3.1 is reasonably natural — using the greedy nature of the algorithm
to prove the easy Lemma 3.2 and then compiling the resulting upper bounds via (5) and (6)
— but it still seems a bit mysterious in hindsight. How would one come up with this type
of argument for some other problem?

We next re-interpret the proof of Theorem 3.1 through the lens of linear programming
duality. With this interpretation, the proof becomes much more systematic. Indeed, it
follows exactly the same template that we already used in Lecture #13 to analyze the
WaterLevel algorithm for online bipartite matching.

To talk about a dual, we need a primal. So consider the following linear program (P):

min
m∑
i=1

cixi

subject to ∑
i : e∈Si

xi ≥ 1 for all e ∈ U

xi ≥ 0 for all Si.

6

The intended semantics is for xi to be 1 if the set Si is chosen in the set cover, and 0
otherwise.4 In particular, every set cover corresponds to a 0-1 solution to (P) with the same
objective function value, and conversely. For this reason, we call (P) a linear programming
relaxation of the set cover problem — it includes all of the feasible solutions to the set cover
instance (with the same cost), in additional to other (fractional) feasible solutions. Because
the LP relaxation minimizes over a superset of the feasible set covers, its optimal objective
function value (“fractional OPT”) can only be smaller than that of a minimum-cost set cover
(“OPT”):

fractional OPT ≤ OPT.

We’ve seen a couple of examples of LP relaxations that are guaranteed to have optimal
0-1 solutions — for the minimum s-t cut problem (Lecture #8) and for bipartite matching
(Lecture #9). Here, because the set cover problem is NP -hard and the linear programming
relaxation can be solved in polynomial time, we don’t expect the optimal LP solution to
always be integral. (Whenever we get lucky and the optimal LP solution is integral, it’s
handing us the optimal set cover on a silver platter.) It’s useful to see a concrete example of
this. In Figure 3, the ground set has 3 elements and the sets are the subsets with cardinality 2.
All costs are 1. The minimum cost of a set cover is clearly 2 (no set covers everything). But
setting xi = 1

2
for every set yields a feasible fractional solution with the strictly smaller

objective function value of 3
2
.

Figure 3: Example where all sets have cost 1. Optimal set cover is clearly 2, but there exists
a feasible fraction with value 3

2
by setting all xi = 1

2
.

Deriving the dual (D) of (P) is straightforward, using the standard recipe (Lecture #8):

max
∑
e∈U

pe

4If you’re tempted to also include the constraints xi ≤ 1 for every Si, note that these will hold anyways
at an optimal solution.

7

subject to ∑
e∈Si

pe ≤ ci for every set Si

pe ≥ 0 for every e ∈ U .

Lemma 4.1 If {pe}e∈E is a feasible solution to (D), then∑
e∈U

pe ≤ fractional OPT ≤ OPT.

The first inequality follows from weak duality — for a minimization problem, every feasible
dual solution gives (by construction) a lower bound on the optimal primal objective function
value — and second inequality follows because (P) is a LP relaxation of the set cover problem.

Recall the derivation from Section 3 that, for every set Si,∑
e∈Si

qe ≤ ci lnn;

see (5). Looking at the constraints in the dual (D), the purpose of this derivation is now
transparent:

Lemma 4.2 The vector p := q
lnn

is feasible for the dual (D).

As such, the dual objective function value
∑

e∈U pe provides a lower bound on the minimum
cost of a set cover (Lemma 4.1).5 Using the identity (6) from Section 3, we get

cost of the greedy set cover = lnn ·
∑
e∈U

pe ≤ lnn ·OPT.

So, while one certainly doesn’t need to know linear programming to come up with the
greedy set cover algorithm, or even to analyze it, linear programming duality renders the
analysis transparent and reproducible for other problems. We next examine a couple of
algorithms whose design is explicitly guided by linear programming.

5 A Linear Programming Rounding Algorithm for Ver-

tex Cover

Recall from Problem Set #2 the vertex cover problem: the input is an undirected graph
G = (V,E) with a nonnegative cost cv for each vertex v ∈ V , and the goal is to compute
a minimum-cost subset S ⊆ V that contains at least one endpoint of every edge. On

5This is entirely analogous to what happened in Lecture #13, for maximum bipartite matching: we
defined a vector q with sum equal to the size of the computed matching, and we scaled up q to get a feasible
dual solution and hence an upper bound on the maximum-possible size of a matching.

8

Problem Set #2 you saw that, in bipartite graphs, this problem reduces to a max-flow/min-
cut computation. In general graphs, the problem is NP -hard.

The vertex cover problem can be regarded as a special case of the set cover problem. The
elements needing to be covered are the edges. There is one set per vertex v, consisting of the
edges incident to v (with cost cv). Thus, we’re hoping for an approximation guarantee better
than what we’ve already obtained for the general set cover problem. The first question to
ask is: does the greedy algorithm already have a better approximation ratio when we restrict
attention to the special case of vertex cover instances? The answer is no (Exercise Set #9),
so to do better we’ll need a different algorithm.

This section analyzes an algorithm that explicitly solves a linear programming relax-
ation of the vertex cover problem (as opposed to using it only for the analysis). The LP
relaxation (P) is the same one as in Section 4, specialized to the vertex cover problem:

min
∑
v∈V

cvxv

subject to

xv + xw ≥ 1 for all e = (v, w) ∈ E
xv ≥ 0 for all v ∈ V .

There is a one-to-one and cost-preserving correspondence between 0-1 feasible solutions to
this linear program and vertex covers. (We won’t care about the dual of this LP relaxation
until the next section.)

Again, because the vertex cover problem is NP -hard, we don’t expect the LP relaxation
to always solve to integers. We can reinterpret the example from Section 4 (Figure 3) as a
vertex cover instance — the graph G is a triangle (all unit vertex costs), the smallest vertex
cover has size 2, but setting xv = 1

2
for all three vertices yields a feasible fractional solution

with objective function value 3
2
.

LP Rounding Algorithm for Vertex Cover

compute an optimal solution x∗ to the LP relaxation (P)

return S = {v ∈ V : x∗v ≥ 1
2
}

The first step of our new approximation algorithm computes an optimal (fractional)
solution to the LP relaxation (P). The second step transforms this fractional feasible solution
into an integral feasible solution (i.e., a vertex cover). In general, such a procedure is
called a rounding algorithm. The goal is to round to an integral solution without affecting
the objective function value too much.6 The simplest approach to LP rounding, and a

6This is analogous to our metric TSP algorithms, where we started with an infeasible solution that was
only better than optimal (the MST) and then transformed it into a feasible solution (i.e., a TSP tour) with
suffering too much extra cost.

9

common heuristic in practice, is to round fractional values to the nearest integer (subject
to feasibility). The vertex cover problem is a happy case where this heuristic gives a good
worst-case approximation guarantee.

Lemma 5.1 The LP rounding algorithm above outputs a feasible vertex cover S.

Proof: Since the solution x∗ is feasible for (P), x∗v + x∗w ≥ 1 for every (v, w) ∈ E. Hence, for
every (v, w) ∈ E, at least one of x∗v, x

∗
w is at least 1

2
. Hence at least one endpoint of every

edge is included in the final output S. �

The approximation guarantee follows from the fact that the algorithm pays at most twice
what the optimal LP solution x∗ pays.

Theorem 5.2 The LP rounding algorithm above is a 2-approximation algorithm.

Proof: We have ∑
v∈S

cv︸ ︷︷ ︸
cost of alg’s soln

≤
∑
v∈V

cv(2x
∗
v)

= 2 · fractional OPT

≤ 2 ·OPT,

where the first inequality holds because v ∈ S only if x∗v ≥ 1
2
, the equation holds because x∗ is

an optimal solution to (P), and the second inequality follows because (P) is a LP relaxation
of the vertex cover problem. �

6 A Primal-Dual Algorithm for Vertex Cover

Can we do better than Theorem 5.2? In terms of worst-case approximation ratio, the answer
seems to be no.7 But we can still ask if we can improve the running time. For example,
can we get a 2-approximation algorithm without explicitly solving the linear programming
relaxation? (E.g., for set cover, we used linear programs only in the analysis, not in the
algorithm itself.)

Our plan is to use the LP relaxation (P) and its dual (below) to guide the decisions made
by our algorithm, without ever solving either linear program explicitly (or exactly). The
dual linear program (D) is again just a specialization of that for the set cover problem:

max
∑
e∈E

pe

7Assuming the “Unique Games Conjecture,” a significant strengthening of the P 6= NP conjecture, there
is no (2− ε)-approximation algorithm for vertex cover, for any constant ε > 0.

10

subject to ∑
e∈δ(v)

pe ≤ cv for every v ∈ V

pe ≥ 0 for every e ∈ E.

We consider the following algorithm, which maintains a dual feasible solution and itera-
tively works toward a vertex cover.

Primal-Dual Algorithm for Vertex Cover

initialize pe = 0 for every edge e ∈ E
initialize S = ∅
while S is not a vertex cover do

pick an edge e = (v, w) with v, w /∈ S
increase pe until the dual constraint corresponding to v or w goes
tight

add the vertex corresponding to the tight dual constraint to S

In the while loop, such an edge (v, w) ∈ E must exist (otherwise S would be a vertex
cover). By a dual constraint “going tight,” we mean that it holds with equality. It is easy to
implement this algorithm, using a single pass over the edges, in linear time. This algorithm
is very natural when you’re staring at the primal-dual pair of linear programs. Without
knowing these linear programs, it’s not clear how one would come up with it.

For the analysis, we note three invariants of the algorithm.

(P1) p is feasible for (D). This is clearly true at the beginning when pe = 0 for every e ∈ E
(vertex costs are nonnegative), and the algorithm (by definition) never violates a dual
constraint in subsequent iterations.

(P2) If v ∈ S, then
∑

e∈δ(v) pe = cv. This is obviously true initially, and we only add a vertex
to S when this condition holds for it.

(P3) If pe > 0 for e = (v, w) ∈ E, then |S ∩ {v, w}| ≤ 2. This is trivially true (whether or
not pe > 0).

Furthermore, by the stopping condition, at termination we have:

(P4) S is a vertex cover.

That is, the algorithm maintains dual feasibility and works toward primal feasibility. The
second and third invariants should be interpreted as an approximate version of the comple-
mentary slackness conditions.8 The second invariant is exactly the first set of complemen-

8Recall the complementary slackness conditions from Lecture #9: (i) whenever a primal variable is
nonzero, the corresponding dual constraint is tight; (ii) whenever a dual variable is nonzero, the corresponding
primal constraint is tight. Recall that the complementary slackness conditions are precisely the conditions
under which the derivation of weak duality holds with equality. Recall that a primal-dual pair of feasible
solutions are both optimal if and only if the complementary slackness conditions hold.

11

tary slackness conditions — it says that a primal variable is positive (i.e., v ∈ S) only if
the corresponding dual constraint is tight. The second set of exact complementary slackness
conditions would assert that whenever pe > 0 for e = (v, w) ∈ E, the corresponding primal
constraint is tight (i.e., exactly one of v, w is in S). These conditions will not in general hold
for the algorithm above (if they did, then the algorithm would always solve the problem ex-
actly). They do hold approximately, in the sense that tightness is violated only by a factor
of 2. This is exactly where the approximation factor of the algorithm comes from.

Since the algorithm maintains dual feasibility and approximate complementary slackness
and works toward primal feasibility, it is a primal-dual algorithm, in exactly the same sense
as the Hungarian algorithm for minimum-cost perfect bipartite matching (Lecture #9). The
only difference is that the Hungarian algorithm maintains exact complementary slackness
and hence terminates with an optimal solution, while our primal-dual vertex cover algorithm
only maintains approximate complementary slackness, and for this reason terminates with
an approximately optimal solution.

Theorem 6.1 The primal-dual algorithm above is a 2-approximation algorithm for the ver-
tex cover problem.

Proof: The derivation is familiar from when we derived weak duality (Lecture #8). Letting
S denote the vertex cover returned by the primal-dual algorithm, OPT the minimum cost
of a vertex cover, and “fractional OPT” the optimal objective function value of the LP
relaxation, we have ∑

v∈S

cv =
∑
v∈S

∑
e∈δ(v)

pe

=
∑

e=(v,w)∈E

pe · |S ∩ {v, w}|

≤ 2
∑
e∈E

pe

≤ 2 · fractional OPT

≤ 2 ·OPT.

The first equation is the first (exact) set of complementary slackness conditions (P2), the
second equation is just a reversal of the order of summation, the first inequality follows from
the approximate version of the second set of complementary slackness conditions (P3), the
second inequality follows from dual feasibility (P1) and weak duality, and the final inequality
follows because (P) is an LP relaxation of the vertex cover problem. This completes the proof.
�

12

