
CS261: A Second Course in Algorithms
Lecture #18: Five Essential Tools for the Analysis of

Randomized Algorithms∗

Tim Roughgarden†

March 3, 2016

1 Preamble

In CS109 and CS161, you learned some tricks of the trade in the analysis of randomized
algorithms, with applications to the analysis of QuickSort and hashing. There’s also CS265,
where you’ll learn more than you ever wanted to know about randomized algorithms (but
a great class, you should take it). In CS261, we build a bridge between what’s covered in
CS161 and CS265. Specifically, this lecture covers five essential tools for the analysis of
randomized algorithms. Some you’ve probably seen before (like linearity of expectation and
the union bound) while others may be new (like Chernoff bounds). You will need these
tools in most 200- and 300-level theory courses that you may take in the future, and in other
courses (like in machine learning) as well. We’ll point out some applications in approximation
algorithms, but keep in mind that these tools are used constantly across all of theoretical
computer science.

Recall the standard probability setup. There is a state space Ω; for our purposes, Ω is
always finite, for example corresponding to the coin flip outcomes of a randomized algorithm.
A random variable is a real-valued function X : Ω → R defined on Ω. For example, for a
fixed instance of a problem, we might be interested in the running time or solution quality
produced by a randomized algorithm (as a function of the algorithm’s coin flips). The
expectation of a random variable is just its average value, with the averaging weights given
by a specified probability distribution on Ω:

E[X] =
∑
ω∈Ω

Pr[ω] ·X(ω).

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

An event is a subset of Ω. The indicator random variable for an event E ⊆ Ω takes on the
value 1 for ω ∈ E and 0 for ω /∈ E. Two events E1, E2 are independent if their probabilities
factor: Pr[E1 ∧ E2] = Pr[E1] ·Pr[E2]. Two random variables X1, X2 are independent if, for
every x1 and x2, the events {ω : X1(ω) = x1} and {ω : X2(ω) = x2} are independent. In
this case, expectations factor: E[XY] = E[X] · E[Y]. Independence for sets of 3 or more
events or random variables is defined analogously (for every subset, probabilities should
factor). Probabilities and expectations generally don’t factor for non-independent random
variables, for example if E1, E2 are complementary events (so Pr[E1 ∧ E2] = 0).

2 Linearity of Expectation and MAX 3SAT

2.1 Linearity of Expectation

The first of our five essential tools is linearity of expectation. Like most of these tools, it
somehow manages to be both near-trivial and insanely useful. You’ve surely seen it before.1

To remind you, suppose X1, . . . , Xn are random variables defined on a common state space
Ω. Crucially, the Xi’s need not be independent. Linearity of expectation says that we can
freely exchange expectations with summations:

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] .

The proof is trivial — just expand the expectations as sums over Ω, and reverse the order
of summation.

The analogous statement for, say, products of random variables is not generally true
(when the Xi’s are not independent). Again, just think of two indicator random variables
for complementary events.

As an algorithm designer, why should you care about linearity of expectation? A typical
use case works as follows. Suppose there is some complex random variable X that we
care about — like the number of comparisons used by QuickSort, or the objective function
value of the solution returned by some randomized algorithm. In many cases, it is possible
to express the complex random variable X as the sum

∑n
i=1Xi of much simpler random

variables X1, . . . , Xn, for example indicator random variables. One can then analyze the
expectation of the simple random variables directly, and exploit linearity of expectation to
deduce the expected value of the complex random variable of interest. You should have seen
this recipe in action already in CS109 and/or CS161, for example when analyzing QuickSort
or hash tables. Remarkably, linearity of expectation is already enough to derive interesting
results in approximation algorithms.

1When I teach CS161, out of all the twenty lectures, exactly one equation gets a box drawn around it for
emphasis — linearity of expectation.

2

2.2 A 7
8-Approximation Algorithm for MAX 3SAT

An input of MAX 3SAT is just like an input of 3SAT — there are n Boolean variables
x1, . . . , xn and m clauses. Each clause is the disjunction (“or”) of 3 literals (where a literal is
a variable or its negation). For example, a clause might have the form x3 ∨ ¬x6 ∨ ¬x10. For
simplicity, assume that the 3 literals in each clause correspond to distinct variables. The goal
is to output a truth assignment (an assignment of each xi to { true, false }) that satisfies the
maximum-possible number of clauses. Since 3SAT is the special case of checking whether or
not the optimal objective function value equals m, MAX 3SAT is an NP -hard problem.

A very simple algorithm has a pretty good approximation ratio.

Theorem 2.1 The expected number of clauses satisfied by a random truth assignment, cho-
sen uniformly at random from all 2n truth assignments, is 7

8
m.

Since the optimal solution can’t possibly satisfy more than m clauses, we conclude that
the algorithm that chooses a random assignment is a 7

8
-approximation (in expectation).

Proof of Theorem 2.1: Identify the state space Ω with all 2n possible truth assignments (with
the uniform distribution). For each clause j, let Xj denote the indicator random variable for
the event that clause j is satisfied. Observe that the random variable X that we really care
about, the number of satisfied clauses, is the sum

∑n
j=1Xj of these simple random variables.

We now follow the recipe above, analyzing the simple random variables directly and using
linearity of expectation to analyze X. As always with an indicator random variable, the
expectation is just the probability of the corresponding event:

E[Xj] = 1 ·Pr[Xj = 1] + 0 ·Pr[Xj = 0] = Pr[clause j satisfied] .

The key observation is that clause j is satisfied by a random assignment with probability
exactly 7

8
. For example, suppose the clause is x1 ∨x2 ∨x3. Then a random truth assignment

satisfies the clause unless we are unlucky enough to set each of x1, x2, x3 to false — for all of
the other 7 combinations, at least one variable is true and hence the clause is satisfied. But
there’s nothing special about this clause — for any clause with 3 literals corresponding to
distinct variables, only 1 of the 8 possible assignments to these three variables fails to satisfy
the clause.

Putting the pieces together and using linearity of expectation, we have

E[X] = E

[
m∑
j=1

Xj

]
=

m∑
j=1

E[Xj] =
m∑
j=1

7
8

= 7
8
m,

as claimed. �

If a random assignment satisfies 7
8
m clauses on average, then certainly some truth as-

signment does as well as this average.2

2It is not hard to derandomize the randomized algorithm to compute such a truth assignment determin-
istically in polynomial time, but this is outside the scope of this lecture.

3

Corollary 2.2 For every 3SAT formula, there exists a truth assignment satisfying at least
87.5% of the clauses.

Corollary 2.2 is counterintuitive to many people the first time they see it, but it is a near-
trivial consequence of linearity of expectation (which itself is near-trivial!).

Remarkably, and perhaps depressingly, there is no better approximation algorithm: as-
suming P 6= NP , there is no (7

8
+ ε)-approximation algorithm for MAX 3SAT, for any

constant ε > 0. This is one of the major results in “hardness of approximation.”

3 Tail Inequalities

If you only care about the expected value of a random variable, then linearity of expectation
is often the only tool you need. But in many cases one wants to prove that an algorithm
is good not only on average, but is also good almost all the time (“with high probability”).
Such high-probability statements require different tools.

The point of a tail inequality is to prove that a random variable is very likely to be
close to its expected value — that the random variable “concentrates.” In the world of tail
inequalities, there is always a trade-off between how much you assume about your random
variable, and the degree of concentration that you can prove. This section looks at the three
most commonly used points on this trade-off curve. We use hashing as a simple running
example to illustrate these three inequalities; the next section connects these ideas back to
approximation algorithms.

3.1 Hashing

Figure 1: a hash function h that maps a large universe U to a relatively smaller number of
buckets n.

4

Throughout this section, we consider a family H of hash functions, with each h ∈ H mapping
a large universe U to a relatively small number of “buckets” {1, 2, . . . , n} (Figure 1). We’ll be
thinking about the following experiment, which should be familiar from CS161: an adversary
picks an arbitrary data set S ⊆ U , then we pick a hash function h ∈ H uniformly at random
and use it to hash all of the elements of S. We’d like these objects to be distributed evenly
across the buckets, and the maximum load of a bucket (i.e., the number of items hashing
to it) is a natural measure of distance from this ideal case. For example, in a hash table
with chaining, the maximum load of a bucket governs the worst-case search time, a highly
relevant statistic.

3.2 Markov’s Inequality

For now, all we assume about H is that each object is equally likely to map to each bucket
(though not necessarily independently).

(P1) For every x ∈ U and i ∈ {1, 2, . . . , n}, Prh∈H[h(x) = i] = 1
n
.

This property is already enough to analyze the expected load of a bucket. For simplicity,
suppose that the size |S| of the data set being hashed equals the number of buckets n.
Then, for any bucket i, by linearity of expectation (applied to indicator random variables
for elements getting mapped to i), its expected load is∑

x∈S

Pr[h(x) = i]︸ ︷︷ ︸
=1/n by (P1)

=
|S|
n

= 1. (1)

This is good — the expectations seem to indicate that things are balanced on average. But
can we prove a concentration result, stating that loads are close to these expectations?

The following tail inequality gives a weak bound but applies under minimal assumptions;
it is our second (of 5) essential tools for the analysis of randomized algorithms.

Theorem 3.1 (Markov’s Inequality) If X is a non-negative random variable with finite
expectation, then for every constant c ≥ 1,

Pr[X ≥ c · E[X]] ≤ 1

c
.

For example, such a random variable is at least 10 times its expectation at most 10% of the
time, and is at least 100 times its expectation at most 1% of the time. In general, Markov’s
inequality is useful when a constant probability guarantee is good enough. The proof of
Markov’s inequality is easy, and we leave it to Exercise Set #9.3

3Both hypotheses are necessary. For example, random variables that are equally likely to be M or −M
exhibit no concentration whatsoever as M →∞.

5

We now apply Markov’s inequality to the random variable equal to the load of our favorite
bucket i. We can choose any c ≥ 1 we want in Theorem 3.1. For example, choosing c = n
and recalling that the relevant expectation is 1 (assuming |S| = n), we obtain

Pr[load of i ≥ n] ≤ 1

n
.

The good news is that 1
n

is not a very big number when n is large. But let’s look at the
event we’re talking about: the load of i being at least n means that every single element of
S hashes to i. And this sounds crazy, like it should happen much less often than 1/n of the
time. (If you hash 100 things into a hash table with 100 buckets, would you really expect
everything to hash to the same bucket 1% of the time?)

If we’re only assuming the property (P1), however, it’s impossible to prove a better bound.
To see this, consider the set H = {h(x) = i : i = 1, 2, . . . , n} of constant hash functions,
each of which maps all items to the same bucket. Observe that H satisfies property (P1).
But the probability that all items hash to the bucket i is indeed 1

n
.

3.3 Chebyshev’s Inequality

A totally reasonable objection is that the example above is a stupid family of hash function
that no one would ever use. So what about a good family of hash functions, like those you
studied in CS161? Specifically, we now assume:

(P2) for every pair x, y ∈ U of distinct elements, and every i, j ∈ {1, 2, . . . , n},

Prh∈H[h(x) = i and h(y) = j] =
1

n2
.

That is, when looking at only two elements, the joint distribution of their buckets is as if
the function h is a totally random function. (Property (P1) asserts an analogous statement
when looking at only a single element.) A family of hash functions satisfying (P2) is called
a pairwise or 2-wise independent family. This is almost the same as (and for practical
purposes equivalent to) the notion of “universal hashing” that you saw in CS161. The
family of constant hash functions (above) clearly fails to satisfy property (P2).

So how do we use this stronger assumption to prove sharper concentration bounds?
Recall that the variance Var[X] of a random variable is its expected squared deviation from
its mean E[(X − E[X])2], and that the standard deviation is the square root of the variance.
Assumption (P2) buys us control over the variance of the load of a bucket. Chebyshev’s
inequality, the third of our five essential tools, is the inequality you want to use when the
best thing you’ve got going for you is a good bound on the variance of a random variable.

Theorem 3.2 (Chebyshev’s Inequality) If X is a random variable with finite expecta-
tion and variance, then for every constant t ≥ 1,

Pr[|X − E[X] | > t · StdDev[X]] ≤ 1

t2
.

6

For example, the probability that a random variable differs from its expectation by at least
two standard deviations is at most 25%, and the probability that it differs by at least 10
standard deviations is at most 1%. Chebyshev’s inequality follows easily from Markov’s
inequality; see Exercise Set #9.

Now let’s go back to the load of our favorite bucket i, where a data set S ⊆ U with size
|S| = n is hashed using a hash function h chosen uniformly at random from H. Call this
random variable X. We can write

X =
∑
y∈S

Xy,

where Xy is the indicator random variable for whether or not h(y) = i. We noted earlier
that, by (P1), E[X] =

∑
y∈S

1
n

= 1.
Now consider the variance of X. We claim that

Var[X] =
∑
y∈S

Var[Xy] , (2)

analogous to linearity of expectation. Note that this statement is not true in general — e.g.,
if X1 and X2 are indicator random variables of complementary events, then X1+X2 is always
equal to 1 and hence has variance 0. In CS109 you saw a proof that for independent random
variables, variances add as in (2). If you go back and look at this derivation — seriously,
go look at it — you’ll see that the variance of a sum equals the sum of the variances of
the summands, plus correction terms that involve the covariances of pairs of summands.
The covariance of independent random variables is zero. Here, we are only dealing with
pairwise independent random variables (by assumption (P2)), but still, this implies that the
covariance of any two summands is 0. We conclude that (2) holds not only for sums of
independent random variables, but also of pairwise independent random variables.

Each indicator random variable Xy is a Bernoulli variable with parameter 1
n
, and so

Var[Xy] = 1
n
(1 − 1

n
) ≤ 1. Using (2), we have Var[X] =

∑
y∈S Var[Xy] ≤ n · 1

n
= 1. (By

contrast, when H is the set of constant hash functions, Var[X] ≈ n.)
Applying Chebyshev’s inequality with t = n (and ignoring “+1” terms for simplicity),

we obtain

Prh∈H[X ≥ n] ≤ 1

n2
.

This is a better bound than what we got from Markov’s inequality, but it still doesn’t seem
that small — when hashing 10 elements into 10 buckets, do you really expect to see all of them
in a single bucket 1% of the time? But again, without assuming more than property (P2),
we can’t do better — there exist families of pairwise independent hash functions such that
all elements hash to the same bucket with probability 1

n2 ; showing this is a nice puzzle.

3.4 Chernoff Bounds

In this section we assume that:

(P3) all h(x)’s are uniformly and independently distributed in {1, 2, . . . , n}. Equivalently,
h is completely random function.

7

How can we use this strong assumption to prove sharper concentration bounds?
The fourth of our five essential tools for analyzing randomized algorithms is the Chernoff

bounds. They are the centerpiece of this lecture, and are used all the time in the analysis of
algorithms (and also complexity theory, machine learning, etc.).

The point of the Chernoff bounds is to prove sharp concentration for sums of independent
and bounded random variables.

Theorem 3.3 (Chernoff Bounds) Let X1, . . . , Xn be random variables, defined on the
same state space and taking values in [0, 1], and set X =

∑n
j=1Xj. Then:

(i) for every δ > 0,

Pr[X > (1 + δ)E[X]] <

(
e

1 + δ

)(1+δ)E[X]

.

(ii) for every δ ∈ (0, 1),

Pr[X < (1− δ)E[X]] < e−δ
2E[X]/2.

The key thing to notice in Theorem 3.3 is that the deviation probability decays exponentially
in both the factor of the deviation (1+δ) and the expectation of the random variable (E[X]).
So if either of these quantities is even modestly big, then the deviation probability is going
to be very small.4

We could prove Theorem 3.3 in 30 minutes or less, but the right place to spend time
on the proof is a randomized algorithms class (like CS265). So we’ll just use the Chernoff
bounds as a “black box” — this is how almost everybody thinks about them, anyways. It’s
notable that, of our five essential tools for the analysis of randomized algorithms, only the
Chernoff bounds require a non-trivial proof. We’ll only use part (i) in this lecture, but (ii)
is also useful in many situations. An analog of Theorem 3.3 for random variables that are
nonnegative and bounded (not necessarily in [0, 1]) follows from a simple scaling argument.
The independence assumption can be relaxed, for example to negatively correlated random
variables, although the proof then requires a bit more work.

Now let’s apply the Chernoff bounds to analyze the number of items hashing to our
favorite bucket i, under the assumption (P3) that h is a uniformly random function. Again
using Xy to denote the indicator random variable for the event that h(y) = i, we see that
X =

∑
y∈S Xy is now the sum of independent 0-1 random variables, and hence is right in

the wheelhouse of the Chernoff bounds. For example, setting 1 + δ = lnn and recalling that
E[X] = 1, Theorem 3.3 implies that

Pr[X > lnn] <
(e

lnn

)lnn

. (3)

To interpret this bound, note that (1
e
)lnn = 1

n
. More generally, a constant less than one

raised to a logarithmic power yields an inverse polynomial. Now e
lnn

is smaller than any

4For the first bound (i), it is common to state the tighter probability upper bound of [eδ/(1+δ)(1+δ)]E[X],
which is useful in applications where δ is small. The simpler bound here suffices for all of our applications.

8

constant as n grows large, and hence the probability bound in (3) is smaller than any inverse
polynomial. Notice how much better this is than what we could prove using Markov’s or
Chebyshev’s inequality — we’re looking at a much smaller deviation (lnn instead of n) yet
obtaining a much smaller probability bound (smaller than any inverse polynomial).

Theorem 3.3 even implies that

Pr

[
X >

3 lnn

ln lnn

]
≤ 1

n2
, (4)

as you should verify. Why lnn/ ln lnn? Because this is roughly the solution to the equation
xx = n (this is relevant in Theorem 3.3 because of the (1 + δ)−(1+δ) term). Again, this is a
huge improvement over what we obtained using Markov’s and Chebyshev’s inequalities. For
a more direct comparison, note that Chernoff bounds imply that the probability Pr[X ≥ n] is
at most an inverse exponential function of n (as opposed to an inverse polynomial function).

3.5 The Union Bound

Figure 2: Area of union is bounded by sum of areas of the circles.

Our fifth essential analysis tool is the union bound, which is not a tail inequality but is
often used in conjunction with tail inequalities. The union bound just says that for events
E1, . . . , Ek,

Pr[at least once of Ei occurs] ≤
k∑
i=1

Pr[Ei] .

Importantly, the events are completely arbitrary, and do not need to be independent. The
proof is a one-liner. In terms of Figure 2, the union bound just says that the area (i.e.,
probability mass) in the union is bounded above by the sum of the areas of the circles.
The bound is tight if the events are disjoint; otherwise the right-hand side is larger, due to
double-counting. (It’s like inclusion-exclusion, but without any of the correction terms.) In

9

applications, the events E1, . . . , Ek are often “bad events” that we’re hoping don’t happen;
the union bound says that as long as each event occurs with low probability and there aren’t
too many events, then with high probability none of them occur.

Returning to our running hashing example, let Ei denote the event that bucket i receives
a load larger than 3 lnn/ ln lnn. Using (4) and the union bound, we conclude that with
probability at least 1− 1

n
, none of the buckets receive a load larger than 3 lnn/ ln lnn. That

is, the maximum load is O(log n/ log log n) with high probability.5

3.6 Chernoff Bounds: The Large Expectation Regime

We previously noted that the Chernoff bounds yield very good probability bounds once the
deviation (1+δ) or the expectation (E[X]) becomes large. In our hashing application above,
we were in the former regime. To illustrate the latter regime, suppose that we hash a data
set S ⊆ U with |S| = n lnn (instead of lnn). Now, the expected load of every bucket is lnn.
Applying Theorem 3.3 with 1 + δ = 4, we get that, for each bucket i,

Pr[load on i is > 4 lnn] ≤
(e

4

)4 lnn

≤ 1

n2
.

Using the union bound as before, we conclude that with high probability, no bucket receives
a load more than a small constant factor times its expectation.

Summarizing, when loads are light there can be non-trivial deviations from expected
loads (though still only logarithmic). Once loads are even modestly larger, however, the
buckets are quite evenly balanced with high probability. This is a useful lesson to remember,
for example in load-balancing applications (in data centers, etc.).

4 Randomized Rounding

We now return to the design and analysis of approximation algorithms, and give a classic
application of the Chernoff bounds to the problem of low-congestion routing.

Figure 3: Example of edge-disjoint path problem. Note that vertices can be shared, as shown
in this example.

5There is also a matching lower bound (up to constant factors).

10

If the edge-disjoint paths problems, the input is a graph G = (V,E) (directed or undi-
rected) and source-sink pairs (s1, t1), . . . , (sk, tk). The goal is to determine whether or not
there is an si-ti path Pi for each i such that no edge appears in more than one of the Pi’s.
See Figure 3. The problem is NP -hard (for directed graphs, even when k = 2).

Recall from last lecture the linear programming rounding approach to approximation
algorithms:

1. Solve an LP relaxation of the problem. (For an NP -hard problem, we expect the
optimal solution to be fractional, and hence not immediately meaningful.)

2. “Round” the resulting fractional solution to a feasible (integral) solution, hopefully
without degrading the objective function value by too much.

Last lecture applied LP rounding to the vertex cover problem. For the edge-disjoint paths
problem, we’ll use randomized LP rounding. The idea is to interpret the fractional values
in an LP solution as specifying a probability distribution, and then to round variables to
integers randomly according to this distribution.

The first step of the algorithm is to solve the natural linear programming relaxation of
the edge-disjoint paths problem. This is just a multicommodity flow problem (as in Exercise
Set #5 and Problem Set #3). In this relaxation the question is whether or not it is possible
to send simultaneously one unit of (fractional) flow from each source si to the corresponding
sink ti, where every edge has a capacity of 1. 0-1 solutions to this multicommodity flow
problem correspond to edge-disjoint paths. As we’ve seen, this LP relaxation can be solved
in polynomial time. If this LP relaxation is infeasible, then we can conclude that the original
edge-disjoint paths problem is infeasible as well.

Assume now that the LP relaxation is feasible. The second step rounds each si-ti pair
independently. Consider a path decomposition (Problem Set #1) of the flow being pushed
from si to ti. This gives a collection of paths, together with some amount of flow on each
path. Since exactly one unit of flow is sent, we can interpret this path decomposition as
a probability distribution over si-ti paths. The algorithm then just selects an si-ti path
randomly according to this probability distribution.

The rounding step yields paths P1, . . . , Pk. In general, they will not be disjoint (this
would solve an NP -hard problem), and the goal is to prove that they are approximately
disjoint in some sense. The following result is the original and still canonical application of
randomized rounding.

Theorem 4.1 Assume that the LP relaxation is feasible. Then with high probability, the
randomized rounding algorithm above outputs a collection of paths such that no edge is used
by more than

3 lnm

ln lnm

of the paths, where m is the number of edges.

The outline of the proof is:

11

1. Fix an edge e. The expected number of paths that include e is at most 1. (By linearity
of expectation, it is precisely the amount of flow sent on e by the multicommodity flow
relaxation, which is at most 1 since all edges were given unit capacity.)

2. Like in the hashing analysis in Section 3.6,

Pr

[
paths on e >

3 lnm

ln lnm

]
≤ 1

m2
,

where m is the number of edges. (Edges are playing the role of buckets, and si-ti pairs
as items.)

3. Taking a union bound over the m edges, we conclude that with all but 1
m

probability,
every edge winds up with at most 3 lnm/ ln lnm paths using it.

Zillions of analyses in algorithms (and theoretical computer science more broadly) use this
one-two punch of the Chernoff bound and the union bound.

Interestingly, for directed graphs, the approximation guarantee in Theorem 4.1 is optimal,
up to a constant factor (assuming P 6= NP). For undirected graphs, there is an intriguing
gap between the O(log n/ log log n) upper bound of Theorem 4.1 and the best-know lower
bound of Ω(log log n) (assuming P 6= NP).

5 Epilogue

To recap the top 5 essential tools for the analysis of randomized algorithms:

1. Linearity of expectation. If all you care about is the expectation of a random variable,
this is often good enough.

2. Markov’s inequality. This inequality usually suffices if you’re satisfied with a constant-
probability bound.

3. Chebyshev’s inequality. This inequality is the appropriate one when you have a good
handle on the variance of your random variable.

4. Chernoff bounds. This inequality gives sharp concentration bounds for random vari-
ables that are sums of independent and bounded random variables (most commonly,
sums of independent indicator random variables).

5. Union bound. This inequality allows you to avoid lots of bad low-probability events.

All five of these tools are insanely useful. And four out of the five have one-line proofs!

12

