
CS261: A Second Course in Algorithms
Lecture #19: Beating Brute-Force Search∗

Tim Roughgarden†

March 8, 2016

A popular myth is that, for NP -hard problems, there are no algorithms with worst-case
running time better than that of brute-force search. Reality is more nuanced, and for many
natural NP -hard problems, there are algorithms with (worst-case) running time much better
than the naive brute-force algorithm (albeit still exponential). This lecture proves this point
by revisiting three problems studied in previous lectures: vertex cover, the traveling salesman
problem, and 3-SAT.

1 Vertex Cover and Fixed-Parameter Tractability

This section studies the special case of the vertex cover problem (Lecture #18) in which
every vertex has unit weight. That is, given an undirected graph G = (V,E), the goal is to
compute a minimum-cardinality subset S ⊆ V that contains at least one endpoint of every
edge.

We study the problem of checking whether or not a vertex cover instance admits a vertex
cover of size at most k (for a given k). This problem is no easier than the general problem,
since the latter reduces to the former by trying all possible values of k. Here, you should
think of k as “small,” for example between 10 and 20. The graph G can be arbitrarily
large, but think of the number of vertices as somewhere between 100 and 1000. We’ll show
how to beat brute-force search for small k. This will be our only glimpse of “parameterized
algorithms and complexity,” which is a vibrant subfield of theoretical computer science.

The naive brute-force search algorithm for checking whether or not there is a vertex cover
of size at most k is: for every subset S ⊆ V of k vertices, check whether or not S is a vertex
cover. The running time of this algorithm scales as

(
n
k

)
, which is Θ(nk) when k is small.

While technically polynomial for any constant k, there is no hope of running this algorithm
unless k is extremely small (like 3 or 4).

If we aim to do better, what can we hope for? Better than Θ(nk) would a running time
of the form poly(n) · f(k), where the dependence on k and on n can be separated, with

∗ c©2016, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

the latter dependence only polynomial. Even better would be a running time of the form
poly(n) + f(k) for some function k. Of course, we’d like the poly(n) term to be as close to
linear as possible. We’d also like the function f(k) to be as small as possible, but because
the vertex cover problem is NP -hard for general k, we expect f(k) to be at least exponential
in k. An algorithm with such a running time is called fixed-parameter tractable (FPT) with
respect to the parameter k.

We claim that the following is an FPT algorithm for the minimum-cardinality vertex
cover problem (with budget k).

FPT Algorithm for Vertex Cover

set S = {v ∈ V : deg(v) ≥ k + 1}
set G′ = G \ S
set G′′ equal to G′ with all isolated vertices removed
if G′′ has more than k2 edges then

return “no vertex cover with size ≤ k”
else

compute a minimum-size vertex cover T of G′′ by brute-force search
return “yes” if and only if |S|+ |T | ≤ k

We next explain why the algorithm is correct. First, notice that if G has a set cover S
of size at most k, then every vertex with degree at least k + 1 must be in S. For if such a
vertex v is not in S, then the other endpoint of each of the (at least k + 1) edges incident
to v must be in the vertex cover; but then |S| ≥ k + 1. In the second step, G′ is obtained
from G by deleting S and all edges incident to a vertex in S. The edges that survive in G′

are precisely the edges not already covered by S. Thus, the vertex covers of size at most k
in G are precisely the sets of the form S ∪ T , where T is a vertex cover of G′ size at most
k−|S|. Given that every vertex cover with size at most k contains the set S, there is no loss
in discarding the isolated vertices of G′ (all incident edges of such a vertex in G are already
covered by vertices in S). Thus, G has a vertex cover of size at most k if and only if G′′ has
a vertex cover of size at most k− |S|. In the fourth step, if G′′ has more than k2 edges, then
it cannot possibly have a vertex cover of size at most k (let alone k − |S|). The reason is
that every vertex of G′′ has degree at most k (all higher-degree vertices were placed in S),
so each vertex of G′′ can only cover k edges, so G′′ has a vertex cover of size at most k only
if it has at most k2 edges. The final step computes the minimum-size vertex cover of G′′ by
brute force, and so is clearly correct.

Next, observe that in the final step (if reached), the graph G′′ has at most k2 edges (by
assumption) and hence at most 2k2 vertices (since every vertex of G′′ has degree at least 1).
It follows that the brute-force search step can be implemented in 2O(k2) time. Steps 1–4 can
be implemented in linear time, so the overall running time is O(m) + 2O(k2), and hence the
algorithm is fixed-parameter tractable. In FPT jargon, the graph G′′ is called a kernel (of
size O(k2)), meaning that the original problem (on an arbitrarily large graph, with a given
budget k) reduces to the same problem on a graph whose size depends only on k. Using

2

linear programming techniques, it is possible to show that every unweighted vertex cover
instance actually admits a kernel with size only O(k), leading to a running time dependence
on k of 2O(k) rather than 2O(k2). Such singly-exponential dependence is pretty much the
best-case scenario in fixed-parameter tractability.

Just as some problems admit good approximation algorithms and others do not (assuming
P 6= NP), some problems (and parameters) admit fixed-parameter tractable algorithms
while others do not (under appropriate complexity assumptions). This is made precise
primarily via the theory of “W [1]-hardness,” which parallels the familiar theory of NP -
hardness. For example, the independent set problem, despite its close similarity to the
vertex cover problem (the complement of a vertex cover is an independent set and vice
versa), is W [1]-hard and hence does not seem to admit a fixed-parameter tractable algorithm
(parameterized by the size of the largest independent set).

2 TSP and Dynamic Programming

Recall from Lecture #16 the traveling salesman problem (TSP): the input is a complete
undirected graph with non-negative edge weights, and the goal to compute the minimum-
cost TSP tour, meaning a simple cycle that visits every vertex exactly once. We saw in
Lecture #16 that the TSP problem is hard to even approximate, and for this reason we
focused on approximation algorithms for the (still NP -hard) special case of the metric TSP.
Here, we’ll give an exact algorithm for TSP, and we won’t even assume that the edges satisfy
the triangle inequality.

The naive brute-force search algorithm for TSP tries every possible tour, leading to
a running time of roughly n!, where n is the number of vertices. Recall that n! grows
considerably faster than any function of the form cn for a constant c (see also Section 3).
Naive brute-force search is feasible with modern computers only for n in the range of 12
or 13. This section gives a dynamic programming algorithm for TSP that runs in O(n22n)
time. This extends the “tractability frontier” for n into the 20s. One drawback of the
dynamic programming algorithm is that it also uses exponential space (unlike brute-force
search). It is an open question whether or not there is an exact algorithm for TSP that has
running time O(cn) for a constant c > 1 and also uses only a polynomial amount of space.
Two take-aways from the following algorithm are: (i) TSP is another fundamental NP -hard
problem for which algorithmic ingenuity beats brute-force search; and (ii) your algorithmic
toolbox (here, dynamic programming) continues to be extremely useful for the design of
exact algorithms for NP -hard problems.

Like any dynamic programming algorithm, the plan is to solve systematically a collection
of subproblems, from “smallest” to “largest,” and then read off the final answer from the
biggest subproblems. Coming up with right subproblems is usually the hardest part of
designing a dynamic programming algorithm. Here, in the interests of time, we’ll just cut
to the chase and state the relevant subproblems.

Let V = {1, 2, . . . , n} be the vertex set. The algorithm populates a two-dimensional
array A, with one dimension indexed by a subset S ⊆ V of vertices and the other dimension

3

indexed by a single vertex j. At the end of the algorithm, the entry A[S, j] will contain the
cost of the minimum-cost path that:

(i) visits every vertex v ∈ S exactly once (and no other vertices);

(ii) starts at the vertex 1 (so 1 better be in S);

(iii) ends at the vertex j (so j better be in S).

There are O(n2n) subproblems. Since the TSP is NP -hard, we should not be surprised to
see an exponential number of subproblems.

After solving all of the subproblems, it is easy to compute the cost of an optimal tour
in linear time. Since A[{1, 2, . . . , n}, j] contains the length of the shortest path from 1 to j
that visits every vertex exactly once, we can just “guess” (i.e., do brute-force search over)
the vertex preceding 1 on the tour:

OPT =
n

min
j=2

A[{1, 2, . . . , n}, j]︸ ︷︷ ︸
path from 1 to j

+ cj1︸︷︷︸
last hop

 .

Next, we need a principled way to solve all of the subproblems, using solutions to pre-
viously solved “smaller” subproblems to quickly solve “larger” subproblems. That is, we
need a recurrence relating the solutions of different subproblems. So consider a subproblem
A[S, j], where the goal is to compute the minimum cost of a path subject to (i)–(iii) above.
What must the optimal solution look like? If we only knew the penultimate vertex k on the
path (right before j), then we would know what the path looks like: it would be the cheapest
possible path visiting each of the vertices of S \ {j} exactly once, starting at 1, and ending
at k (why?), followed of course by the final hop from k to j. Our recurrence just executes
brute-force search over all of the legitimate choices of k:

A[S, j] = min
k∈S\{1,j}

(A[S \ {j}, k] + ckj) .

This recurrence assumes that |S| ≥ 3. If |S| = 1 then A[S, j] is 0 if S = {1} and j = 1 and
is +∞ otherwise. If |S| = 2, then the only legitimate choice of k is 1.

The algorithm first solves all subproblems with |S| = 1, then all subproblems with
|S| = 2, . . . , and finally all subproblems with |S| = n (i.e., S = {1, 2, . . . , n}). When solving
a subproblem, the solutions to all relevant smaller subproblems are available for constant-
time lookup. Each subproblem can thus be solved in O(n) time. Since there are O(n2n)
subproblems, we obtain the claimed running time bound of O(n22n).

3 3SAT and Random Search

3.1 Schöning’s Algorithm

Recall from last lecture that a 3SAT formula involves n Boolean variables x1, . . . , xn and m
clauses, where each clause is the disjunction of three literals (where a literal is a variable or

4

its negation). Last lecture we studied MAX 3SAT, the optimization problem of satisfying as
many of the clauses as possible. Here, we’ll study the simpler decision problem, where the
goal is to check whether or not there is a assignment that satisfies all m clauses. Recall that
this is the canonical example of an NP -complete problem (cf., the Cook-Levin theorem).

Naive brute-force search would try all 2n truth assignments. Can we do better than
exhaustive search? Intriguingly, we can, with a simple algorithm and by a pretty wide
margin. Specifically, we’ll study Schöning’s random search algorithm (from 1999). The
parameter T will be determined later.

Random Search Algorithm for 3SAT (Version 1)

repeat T times (or until a satisfying assignment is found):
choose a truth assignment a uniformly at random
repeat n times (or until a satisfying assignment is found):

choose a clause C violated by the current assignment a
choose one the three literals from C uniformly at random, and
modify a by flipping the value of the corresponding variable
(from “true” to “false” or vice versa)

if a satisfying assignment was found then
return “satisfiable”

else
return “unsatisfiable”

And that’s it!1

3.2 Analysis (Version 1)

We give three analyses of Schöning’s algorithm (and a minor variant), each a bit more so-
phisticated and establishing a better running time bound than the last. The first observation
is that the algorithm never makes a mistake when the formula is unsatisfiable — it will never
find a satisfying assignment (no matter what its coin flips are), and hence reports “unsatis-
fiable.” So what we’re worried about is the algorithm failing to find a satisfying assignment
when one exists. So for the rest of the lecture, we consider only satisfiable instances. We
use a∗ to denote a reference satisfying assignment (if there are many, we pick one arbitrar-
ily). The high-level idea is to track the “Hamming distance” between a∗ and our current
truth assignment a (i.e., the number of variables with different values in a and a∗). If this
Hamming distance ever drops to 0, then a = a∗ and the algorithm has found a satisfying
assignment.

1A little backstory: an analogous algorithm for 2SAT (2 literals per clause) was studied earlier by Pa-
padimitriou. 2SAT is polynomial-time solvable — for example, it can be solved in linear time via a reduction
to computing the strongly connected components of a suitable directed graph. Papadimitriou’s random search
algorithm is slower but still polynomial (O(n2)), with the analysis being a nice exercise in random walks
(covered in the instructor’s Coursera videos).

5

A simple observation is that, if the current assignment a fails to satisfy a clause C, then
a assigns at least one of the three variables in C a different value than a∗ does (as a∗ satisfies
the clause). Thus, when the random search algorithm chooses a variable of a violated clause
to flip, there is at least a 1/3 chance that the algorithm chooses a “good variable,” the
flipping of which decreases the Hamming distance between a and a∗ by one. (If a and a∗

differ on more than one variable of C, then the probability is higher.) In the other case,
when the algorithm chooses a “bad variable,” where a and a∗ give it the same value, flipping
the value of the variable in a increases the Hamming distance between a and a∗ by 1. This
happens with probability at most 2/3.2

All of the analyses proceed by identifying simple sufficient conditions for the random
search algorithm to find a satisfying assignment, bounding below the probability that these
sufficient conditions are met, and then choosing T large enough that the algorithm is guar-
anteed to succeed with high probability.

To begin, suppose that the initial random assignment a chosen in an iteration of the outer
loop differs from the reference satisfying assignment a∗ in k variables. A sufficient condition
for the algorithm to succeed is that, in every one of the first k iterations of the inner loop, the
algorithm gets lucky and flips the value of a variable on which a, a∗ differ. Since each inner
loop iteration has a probability of at least 1/3 of choosing wisely, and the random choices
are independent, this sufficient condition for correctness holds with probability at least 3−k.
(The algorithm might stop early if it stumbles on a satisfying assignment other than a∗; this
is obviously fine with us.)

For our first analysis, we’ll use a sloppy argument to analyze the parameter k (the distance
between a and a∗ at the beginning of an outer loop iteration). By symmetry, a agrees with a∗

on at least half the variables (i.e., k ≤ n/2) with probability at least 1/2. Conditioning on this
event, we conclude that a single outer loop iteration successfully finds a satisfying assignment
with probability at least p = 1

2·3n/2 . Hence, the algorithm finds a satisfying assignment in one
of the T outer loop iterations except with probability at most (1− p)T ≤ e−pT .3 If we take
T = d lnn

p
for a constant d > 0, then the algorithm succeeds except with inverse polynomial

probability 1
nd . Substituting for p, we conclude that

T = Θ
(

(
√

3)n log n
)

outer loop iterations are enough to be correct with high probability. This gives us an al-
gorithm with running time O((1.74)n), which is already significantly better than the 2n

dependence in brute-force search.

2The fact that the random process is biased toward moving farther away from a∗ is what gives rise to
the exponential running time. In the case of 2SAT, each random move is at least as likely to decrease the
distance as increase the distance, which in turn leads to a polynomial running time.

3Recall the useful inequality 1 + x ≤ ex for all x ∈ R, used also in Lectures #11 (see the plot there) and
#15.

6

3.3 Analysis (Version 2)

We next give a refined analysis of the same algorithm. The plan is to count the probability
of success for all values of the initial distance k, not just when k ≤ n/2 (and not assuming
the worst case of k = n/2).

For a given choice of k ∈ {1, 2, . . . , n}, what is the probability that the initial assignment
a and a∗ differ in their values to exactly k variables? There is one such assignment for each
of the

(
n
k

)
choices of a set S of k out of n variables. (The corresponding assignment a agrees

with a∗ on S and disagrees with a∗ outside of S.) Since all truth assignments are equally
likely (probability 2−n each),

Pr[dist(a, a∗) = k] =

(
n

k

)
2−n.

We can now lower bound the probability of success of an outer loop iteration by condi-
tioning on k:

Pr[success] =
n∑

k=0

Pr[dist(a, a∗) = k] · E[success | dist(a, a∗) = k]

≥
n∑

k=0

(
n

k

)
2−n

(
1

3

)k

= 2−n(1 + 1
3
)n

=

(
2

3

)n

,

where the penultimate equality follows from a slick application of the binomial formula.4

Thus, taking T = Θ((3
2
)n log n), the random search algorithm is correct with high prob-

ability.

3.4 Analysis (Version 3)

For the final analysis, we tweak the version of Schöning’s algorithm above slightly, replacing
“repeat n times” in the inner loop by “repeat 3n times.” This only increases the running
time by a constant factor.

Our two previous analyses only considered the cases where the random search algorithm
made a beeline for the reference satisfying assignment a∗, never making an incorrect choice
of which variable to flip. There are also other cases where the algorithm will succeed.
For example, if the algorithm chooses a bad variable once (increasing dist(a, a∗) by 1),
but then a good variable k + 1 times, then after these k + 2 iterations a is the same as
the satisfying assignment a∗ (unless the algorithm stopped early due to finding a different
satisfying assignment).

4I.e., the formula (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k.

7

For the analysis, we’ll focus on the specific case where, in the first 3k inner loop iterations,
the algorithm chooses a bad variable k times and a good variable 2k times. This idea leads
to

Pr[success] ≥
n∑

k=0

2−n
(
n

k

)(
3k

k

)(
1

3

)2k (
2

3

)k

, (1)

since the probability that the random local search algorithm chooses a good variable 2k
times in the first 3k inner loop iterations is at least

(
3k
k

)
(1

3
)2k(2

3
)k.

This inequality is pretty messy, with no less than two binomial coefficients complicating
each summand. We’ll be able to handle the

(
n
k

)
terms using the same slick binomial expansion

trick from the previous analysis, but the
(

3k
k

)
terms are more annoying. To deal with them,

recall Stirling’s approximation for the factorial function:

n! = Θ
(√

n
(n
e

)n)
.

(The hidden constant is
√

2π, but we won’t need to worry about that.) Thus, in the grand
scheme of things, n! is not all that much smaller than nn.

We can use Stirling’s approximation to simplify
(

3k
k

)
:(

3k

k

)
=

(3k!)

(2k)!k!

= Θ

(√
3k√

k
√

2k
·

(3k
e

)3k

(k
e
)k(2k

e
)2k

)

= Θ

(
1√
k
· 33k

22k

)
.

Thus, (
3k

k

)
︸ ︷︷ ︸

=Θ(33k/22k
√
k)

(
1

3

)2k (
2

3

)k

= Θ

(
2−k√
k

)
.

8

Substituting back into (1), we find that for some constant c > 0 (hidden in the Θ notation),

Pr[success] ≥
n∑

k=0

2−n
(
n

k

)(
3k

k

)(
1

3

)2k (
2

3

)k

≥ c2−n
n∑

k=0

(
n

k

)
2−k√
k

≥ c√
n

2−n
n∑

k=0

(
n

k

)
2−k

=
c√
n

2−n
(

1 +
1

2

)n

=
c√
n

(
3

4

)n

.

We conclude that with T = Θ
((

4
3

)n√
n log n

)
, the algorithm is correct with high probability.

This running time of ≈ (4
3
)n has been improved somewhat since 1999, but this is still

quite close to the state of the art, and it is an impressive improvement over the ≈ 2n running
time require by brute-force search. Can we do even better? This is an open question.
The exponential time hypothesis (ETH) asserts that every correct algorithm for 3SAT has
worst-case running time at least cn for some constant c > 1. (For example, this rules out a
“quasi-polynomial-time” algorithm, with running time npolylog(n).) The ETH is certainly a
stronger assumption than P 6= NP , but most experts believe that it is true.

The random search idea can be extended from 3SAT to k-SAT for all constant values
of k. For every constant k, the result is an algorithm that runs in time O(cn) for a constant
c < 2. However, the constant c tends to 2 as k tends to infinity. The strong exponential
time hypothesis (SETH) asserts that this is necessary — that there is no algorithm for the
general SAT problem (with k arbitrary) that runs in worst-case running time O(cn) for some
constant c < 2 (independent of k). Expert opinion is mixed on whether or not SETH holds.
If it does hold, then there are interesting consequences for lots of different problems, ranging
from the prospects of fixed-parameter tractable algorithms for NP -hard problems (Section 1)
to lower bounds for classic algorithmic problems like computing the edit distance between
two strings.

9

