
CS264: Homework #10

Due by midnight on Thursday, March 23, 2017

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. See the
course site for submission instructions.

(2) Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page.

(3) All students should complete all of the exercises. Students taking the course for a letter grade should
also complete the problems.

(4) Write convincingly but not excessively. Exercise solutions rarely need to be more than 1-2 paragraphs.
Problem solutions rarely need to be more than a half-page (per part), and can often be shorter.

(5) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page. (Exception: feel free to use your undergraduate algorithms textbook.) Cite any
sources that you use, and make sure that all your words are your own.

(6) If you discuss solution approaches with anyone outside of your team, you must list their names on the
front page of your write-up.

(7) Exercises are worth 5 points each. Problem parts are labeled with point values.

(8) No late assignments will be accepted.

Lecture 19 Exercises

Exercise 49

Prove that every distribution p with support size s — i.e., there are only s points x ∈ X with px > 0 — has
entropy at most log2 s.

[Hint: prove and use that the entropy function
∑
x∈X px log2

1
px

is convex.]

Exercise 50

This exercise considers a minor variant of the optimal search tree problem mentioned in lecture. Recall that
a binary search tree on a totally ordered set X is a binary tree with nodes in correspondence with X, with
the property that every node in the left (right) subtree of a node x must be less than (greater than) x. Recall
that there are many different binary search trees on the same set X (from long chains to balanced trees).
The search time sT (x) for a node x in a search tree T is one plus its depth in the tree (1 for the root, 2
for the root’s immediate children, and so on.). Given a positive probability px for every x ∈ X, the optimal
search tree is the search tree T that minimizes the expected search time for a node x ∈ X,

∑
x∈X pxsT (x).

Give a dynamic programming algorithm that, given px’s for all x ∈ X, computes an optimal search tree.

1

[Hints: shoot for a dynamic programming algorithm that solves O(n2) subproblems in time O(n) each. (Here
n = |X|.) To get started, if you happened to know the root node of the optimal search tree, what could you
say about its subtrees?]

Exercise 51

The point of this exercise is to explain why, when constructing a near-optimal search tree, it is enough to
consider only the elements with large (at least 1/|X|ε) probability, handling the rest via binary search. This
justifies the implementation of the approximate search tree construction outlined at the end of lecture.

The precise exercise is the following. Consider a totally ordered set X with n elements. Let D = {px}x∈X
be a probability distribution on X and S ⊆ X the elements with px ≥ n−ε, where ε > 0 is an arbitrary
constant. Prove that ∑

x∈S
px log2

1

px
+
∑
x/∈S

px log2 n = O(H(D)),

where the constant hidden in the big-oh notation can depend on ε. Explain the relevance of this statement
to the algorithm described in lecture.

Exercise 52

Name at least two places in the proof of this lecture’s main result where we used the assumption that the
xi’s are independent.

Lecture 20 Exercises

Exercise 53

Let F be a distribution on [0, 1] with expectation µ and X1, . . . , Xn be i.i.d. samples from F . Prove that if
n ≥ c

ε2 log 1
δ for a sufficiently large constant c then, with probability at least 1− δ,∣∣∣∣∣µ− 1

n

(
n∑
i=1

Xi

)∣∣∣∣∣ < ε.

[Hint: Use Hoeffding’s inequality from Problem 18.]

Exercise 54

Prove that the pseudodimension of a finite set C of real-valued functions is at most log2 |C|.

Problems

Problem 35

The point of this problem is to prove that, for interesting positive results for self-improving sorting algo-
rithms, some type of restriction on the distribution over inputs (like independence of the xi’s) is necessary.
Throughout this problem, you can restrict attention to deterministic sorting algorithms (for simplicity), and
you can assume that the array length n is sufficiently large.

(a) (2 points) For a set S of 2n permutations of {1, 2, . . . , n}, let DS denote the distribution that is uniform
on S (and 0 for permutations outside S). Explain why the entropy of DS is n.

[Remark: this means that we are aspiring toward a self-improving sorter that uses O(n) expected
comparisons whenever the inputs are i.i.d. draws from a distribution of the form DS .]

2

(b) (2 points) Prove that there are at least (n!/2n)2
n

distinct choices of S and hence of DS .

(c) (2 points) Suppose that sorting algorithm A uses at most cn expected comparisons to sort inputs
drawn from DS . Prove that A correctly sorts at least half of the permutations of S using at most 2cn
comparisons.

(d) (2 points) How many different permutations can a sorting algorithm correctly sort using at most k
comparisons?

(e) (8 points) Let c > 0 be an arbitrary constant (independent of n). Prove that if A is a collection of
sorting algorithms such that, for every distribution of the form DS , there is an algorithm A ∈ A that
requires at most cn expected comparisons to correctly sort inputs drawn from DS , then A has size
doubly exponential in n.

[Hint: use (c) and (d) to upper bound the number of distinct distributions of the form DS that a single
sorting algorithm can simultaneously have good performance for. Then use (b).]

(f) (4 points) Explain why (e) implies that every self-improving sorter that works for arbitrary input
distributions requires space and a number of samples that is exponential in n.

Problem 36

(10 points) Let C = {ax+ by+ c : a, b, c ∈ R} denote the set of affine functions on the plane R2. Prove that
the pseudodimension of C is precisely 3.

3

