
CS264: Homework #3

Due by midnight on Thursday, February 2, 2017

Instructions:

(1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. See the
course site for submission instructions.

(2) Please type your solutions if possible and feel free to use the LaTeX template provided on the course
home page.

(3) Students taking the course pass-fail should complete 5 of the Exercises and can skip all
of the Problems. Students taking the course for a letter grade should complete 6 of the
Exercises, Problem 8, and as many other Problems as they choose. We’ll grade the Problems
out of a total of 40 points, according to the formula

score on Problem 8 + min{20, total points earned on other problems}.

Meanwhile, you’ll also receive max{0, total points earned on other problems− 20} extra credit points.

(4) Write convincingly but not excessively. Exercise solutions rarely need to be more than 1-2 paragraphs.
Problem solutions rarely need to be more than a half-page (per part), and can often be shorter.

(5) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page. (Exception: feel free to use your undergraduate algorithms textbook.) Cite any
sources that you use, and make sure that all your words are your own.

(6) If you discuss solution approaches with anyone outside of your team, you must list their names on the
front page of your write-up.

(7) Exercises are worth 5 points each. Problem parts are labeled with point values.

(8) No late assignments will be accepted.

Lecture 5 Exercises

Exercise 11

The point of this exercise is to give a parameterized analysis of the the greedy algorithm for the Knapsack
problem discussed in lecture. Recall that in the Knapsack problem, you are given n items with nonnegative
values v1, . . . , vn and sizes s1, . . . , sn. There is also a knapsack capacity C. The goal is to compute a subset
S ⊆ {1, 2, . . . , n} of items that fits in the knapsack (i.e.,

∑
i∈S si ≤ C) and, subject to this, has the maximum

total value
∑
i∈S vi.

Consider the following greedy algorithm:

1. Order items by “density,” meaning reindex them so that v1
s1
≥ v2

s2
≥ · · · ≥ vn

sn
.

2. Return the largest prefix {1, 2, . . . , j} that fits in the knapsack (i.e., with
∑j
i=1 si ≤ C).

1

Suppose that all items are small in the sense that, for a parameter α ∈ (0, 1), si ≤ αC for every i. Prove
that the solution returned by the greedy algorithm has total value at least (1− α) times that of an optimal
solution.

[Hint: how much of the knapsack can be unused at termination? What can you say about the part of the
knapsack that did get used?]

Exercise 12

In lecture we gave two different proofs that the Vertex Cover problem is fixed-parameter tractable. Recall
that, in every graph G = (V,E), a subset S ⊆ V of vertices is a vertex cover if and only if its complement
V − S is an independent set (i.e., if no two vertices of V − S are adjacent in G). Does this correspondence
imply that the independent set problem is also fixed-parameter tractable, with respect to the target solution
size k? Explain your answer.

Exercise 13

The point of this exercise is to show that, if we don’t care about having a kernel of polynomial size, then
the existence of a kernel characterizes fixed-parameter tractability.

Formally, a parameterized (decision) problem is a language L ⊆ {0, 1}∗×N. We denote a generic instance
by (I, k).1 A parameterized problem L is fixed-parameter tractable if there is an algorithm for deciding
membership of an instance (I, k) in L that runs in time at most f(k) · poly(n, k), where n denotes the
description length of I (in bits), f is an arbitrary (computable) function of k only, and poly(n, k) is some
polynomial in n and k (with exponent independent of n and k).

A kernelization algorithm (or simply kernel) for a parameterized problem L accepts as input an instance
(I, k) of the problem, runs in time polynomial in n (the description length of I in bits) and k, and outputs
an instance (I ′, k′) of the problem such that: (i) k′ and the description length of I ′ are bounded by some
(computable) function g(k) of k only;2 and (ii) (I ′, k′) ∈ L if and only if (I, k) ∈ L.

Consider a parameterized problem L for which membership can be decided in finite time. Prove that L
is fixed-parameter tractable if and only if it admits a kernelization algorithm.

[Hint: for the “only if” direction, suppose there is an algorithm A that decides membership of (I, k) in time
at most f(k) · (n + k)d for constant d (where n is the length of I). Given an instance (I, k), run A for
(n+ k)d+1 time steps. If the algorithm doesn’t halt within the allotted time, conclude that (I, k) itself can
be used as the kernel’s output.]

Exercise 14

Let P be a path with k vertices in the graph G = (V,E). Prove that, if every vertex v ∈ V is given a color
uniformly at random from {1, 2, . . . , k}, then the probability that every vertex of P gets a different color is
at least e−k.

[Hint: use Stirling’s approximation to approximate k!.]

Exercise 15

Let G = (V,E) be a graph with vertices colored as in the previous exercise. A panchromatic k-path is a path
P with k vertices, all of which have distinct colors. Give an algorithm that decides whether or not G has at
least one panchromatic k-path in time O(2k · nd), where d is a constant (independent of k and n).

[Hint: dynamic programming.]

1For example, I could encode a Knapsack instance and k the number of bits needed to describe one of the input numbers;
or I could encode an undirected graph and k the target size for a vertex cover.

2g(k) is the size of the kernel.

2

Exercise 16

Extend the color-coding algorithm from lecture (and Exercises 14 and 15) to the following problem: given a
graph G = (V,E) and a tree T = (W,F) with k vertices, does G contain a copy of T?3 What is the running
time of your algorithm?

Lecture 6 Exercises

Exercise 17

Recall the algorithm from lecture that recovers the optimal solution in 2-perturbation stable k-median
instances. Give an explicit example of a k-median instance where this algorithm does not return an optimal
solution. Can you devise γ-perturbation-stable such instances, with γ arbitrarily close to 2?

Exercise 18

Recall that an α-approximation algorithm for an optimization problem always outputs a feasible solution
with objective function value within an α factor of the optimal value. When can we be sure that the output
of an approximation algorithm is “meaningful?”

Call a k-median instance (X, d) γ-approximation stable if the output of a γ-approximation algorithm
is guaranteed to be the optimal k-clustering (i.e., the clustering that minimizes the k-median objective
function). This definition makes explicit the usual implicit assumption that “the output of a good-enough
approximation algorithm should be meaningful.”

For every γ ≥ 1, prove that an γ-approximation-stable k-median instance is also γ-perturbation-stable.4

Prove that the converse is false.

Problems

Problem 5

In this problem you will prove a parameterized guarantee for a classic machine learning algorithm, the
perceptron algorithm for classification. The input to the algorithm is n points in Rd, with a label bi ∈ {−1,+1}
for each point xi. The goal is to compute a separating hyperplane: a hyperplane with all of the positive
xi’s (i.e., with bi = +1) on one side, and all of the negative xi’s on the other. For simplicity, in this
problem we assume that there exists a separating hyperplane, and moreover that some such hyperplane
passes through the origin.5 We are then free to scale each data point xi so that it lies on the sphere (i.e., so
that ‖xi‖2 = 1)—such scaling does not change which side of a hyperplane xi is on.

The perceptron algorithm is extremely simple.

Input: n points on the sphere x1, . . . ,xn with labels b1, . . . , bn ∈ {−1,+1}.

1. Initialize t to 1 and w1 to the all-zero vector.

2. While there is a point xi such that sgn(wt · xi) 6= bi, set wt+1 = wt + bixi, and then increment t.

Figure 1: The Perceptron Algorithm.

3Formally, by a “copy,” we mean there is an injective function σ : W → V such that (σ(u), σ(v)) ∈ E whenever (u, v) ∈ F .
4Thus, positive results for perturbation-stable instances hold also for approximation-stable instances.
5The second assumption is without loss of generality, since one can use an extra “dummy coordinate” (with all xi’s having

value 1 in this coordinate) to simulate an intercept. The first assumption is not without loss of generality, but it can be
encouraged through the addition of supplementary dimensions.

3

Intuitively, the update step makes the candidate solution “more correct” on xi, by increasing w · xi by
bi · (xi · xi) = bi · ‖xi‖22 = bi. Of course, this update could screw up the classification of other xj ’s, so our
job is to prove that the procedure eventually terminates.

The parameter µ that we use is called the margin, and it is defined as

µ =
n

min
i=1
|w∗ · xi|,

where w∗ is the unit normal vector of some separating hyperplane (i.e., with points x with w∗ · x > 0 on
one side of the hyperplane, and points with w∗ · x < 0 on the other side). Geometrically, the parameter µ
is the cosine of the smallest angle that a point xi makes with the separating hyperplane defined by w∗.

(a) (5 points) Prove that in every iteration t,

‖wt+1‖2 ≤ ‖wt‖2 + 1.

That is, the norm-squared of w does not grow very quickly with the number of iterations.

(b) (5 points) Prove that in every iteration t,

wt+1 ·w∗ ≥ wt ·w∗ + µ.

That is, the projection of w onto w∗ grows with each iteration.

(c) (5 points) Conclude that the iteration count t never exceeds 1/µ2.

Problem 6

Recall that in the Vertex Cover problem, the input is an undirected graph G = (V,E), and the goal is to
compute a minimum-cardinality subset S ⊆ V such that, for every edge e ∈ E, at least one of e’s endpoints
is in S. In Lecture #5 we gave an algorithm that checks for the existence of a vertex cover of size at most
k in time O(2km), where m is the number of edges. This bound follows from the fact that the algorithm
makes O(2k) different recursive calls, and linear work is done in each.

(a) (10 points) Modify the algorithm so that the number of recursive calls is O(φk), where φ is the largest

root of the equation x2 = x + 1 (also known as the golden ratio, 1+
√
5

2 ≈ 1.618), thus resulting in an
algorithm that runs in O(φkm) time.

[Hints: Introduce another preprocessing step for the case where there is a degree-1 vertex in the current
graph. Recall that the golden ratio is closely connected to the Fibonacci numbers.]

(b) (5 extra credit points) Can you improve your algorithm to run in time O(λkm), where λ ≈ 1.4656 is
the largest root of the equation λ3 = λ2 + 1?

Problem 7

Recall the Vertex Cover problem from Lecture #5 and the previous problem. Given an undirected graph
G = (V,E), consider the following linear program, with one decision variable xv for each vertex v:6

min
∑
v∈V

xv

subject to
xv + xw ≥ 1 for every edge e = (v, w) ∈ E

xv ≥ 0 for every vertex v ∈ V .

(a) (2 points) Prove that G has a vertex cover of size at most k only if the optimal objective function value
of this linear program is at most k.

6If you need to review what linear programs are, see, e.g., the notes for Lecture #7 of the instructor’s CS261 course.

4

(b) (7 points) Let x∗ denote an optimal solution to the above linear program, and define

A = {v ∈ V : x∗v >
1
2};

B = {v ∈ V : x∗v = 1
2};

and
C = {v ∈ V : x∗v <

1
2}.

Prove that there exists an optimal vertex cover of G that includes every vertex of A and excludes every
vertex of C.

[Hints: If S∗ is an optimal vertex cover, argue that A \ S∗ and S∗ ∩ C must have the same size —
otherwise obtain a contradiction with either the optimality of S∗ or the optimality x∗. Use this to
obtain another optimal vertex cover that has the desired form.]

(c) (2 points) Prove that if G contains a vertex cover of size at most k, then |B| ≤ 2k.

(d) (4 points) Use (a)–(c) to give an algorithm that checks whether or not a graph G contains a vertex
cover of size at most k and runs in time poly(n) + 2O(k). (Here poly(n) denotes some polynomial
function of n. You can assume that linear programs can be solved in polynomial time.)

(e) (5 extra credit points) The previous parts show that the Vertex Cover problem, parameterized by the
solution size k, admits a kernel of size at most 2k (here “size” refers to the number of vertices). Assume
for this part that, for every constant ε > 0, there is no polynomial-time (2−ε)-approximation algorithm
for the Vertex Cover problem.7 Discuss in detail the implications of this assumption for the prospects
of a smaller kernel for Vertex Cover, meaning one with at most (2 − ε)k vertices, where ε > 0 is an
arbitrarily small constant.

Problem 8 (Required)

(20 points) You are given as input an n-point metric space (X, d) and a spanning tree T of X. Each of
the

(
n−1
k−1
)

ways to remove k − 1 edges of T induces a k-clustering (with clusters corresponding to connected
components). The objective is to compute, among all such k-clusterings, the one with the minimum k-median
objective function value.8 Equivalently, compute the optimal (w.r.t. the k-median objective) partition of T
into k non-empty connected subgraphs.

Give a dynamic programming algorithm that solves this problem in polynomial time (polynomial in both
n and k). For this problem it is sufficient to give an algorithm that computes the value of an optimal solution
(i.e., you do not need to describe the standard backtracking argument for reconstructing the optimal solution
itself). Clearly state your subproblems, the order in which you solve the subproblems, and the subroutine
for computing the solution to a subproblem from the solution to smaller subproblems. Give a brief proof of
correctness (maximum 3 sentences) and an explicit (polynomial) bound on the asymptotic running time of
your algorithm.

[Hints: suppose you knew one of the optimal centers r, and root the tree T at r. Define one subproblem
for each point x ∈ X (and corresponding subtree), each possibility for the center to which x is assigned,
each prefix {y1, . . . , yi} of x’s children (w.r.t. some arbitrary but fixed ordering, and including ∅), and each
possibility for the total number of centers that reside in the union of the i subtrees rooted at y1, . . . , yi. Make
sure that your clusters are guaranteed to be connected subgraphs of T !]

7This assumption is known to follow from the “Unique Games Conjecture (UGC),” a plausible strengthening of the P 6= NP
conjecture.

8Recall that, given a k-clustering C1, . . . , Ck, it’s clear how to pick the centers: independently for each i, choose ci ∈ Ci to
minimize

∑
x∈Ci

d(x, ci).

5

Problem 9

(10 points) Another well-studied optimization problem over k-clusterings is the k-means problem, where the
goal is to choose clusters C1, . . . , Ck and centers c1, . . . , ck (with ci ∈ Ci for each i) to minimize the sum of
squared distances:

k∑
i=1

∑
x∈Ci

d(x, ci)
2.

A third is the k-center problem, where the goal is to minimize the maximum distance:

k
max
i=1

max
x∈Ci

d(x, ci).

The definition of γ-perturbation stability makes sense for both of these problems. Prove that the optimal
solution of a 2-perturbation-stable instance of either problem can be recovered in polynomial time.

[Hint: just describe the modifications needed relative to the algorithm from Lecture #6 (and its proof of
correctness) and the previous problem.]

Problem 10

In the Maximum Cut problem, the input is an undirected graph G = (V,E) with a nonnegative weight
we ≥ 0 for each edge e ∈ E. The goal to compute a cut (A,B)—a partition of V into two sets—to maximize
the total weight of the cut edges (the edges with one endpoint in each of A and B). This problem is NP -hard
in general (unlike the minimum cut problem, which can be solved in polynomial time).

An instance of the Maximum Cut problem is γ-perturbation-stable if, for all choices of w′e ∈ [1γwe, we] for

each e ∈ E, the unique maximum cut with the edges weights w′ is the same as that with the original edge
weights w.

In this problem, you will design a polynomial-time algorithm to recover the optimal cut in 2n-perturbation-
stable instances, where n = |V |.9

(a) (3 points) Suppose you are given a polynomial-time subroutine that, given a γ-perturbation-stable
instance of the Maximum Cut problem, outputs two vertices that are on the same side of the optimal
cut. Prove that you can use this subroutine to obtain a polynomial-time algorithm for solving the
Maximum Cut problem in γ-perturbation stable instances.

(b) (3 points) Let w(u) denote the sum of the weights of the edges incident to a vertex u. Prove that in the
optimal solution of a γ-perturbation-stable instance of the Maximum Cut problem, for every vertex
u, the sum of the weights of the edges incident to u that do not cross the cut (i.e., that have both
endpoints on the same side) is at most w(u)/(γ + 1).

(c) (3 points) Prove that in an n-perturbation-stable instance of the Maximum Cut problem, the maximum-
weight edge must cross the optimal cut (i.e., has one endpoint on either side).

[Hint: if the edge is e = (u, v), what fraction of w(u) (or w(v)) must e account for?]

(d) (3 points) Prove that in a 2n-perturbation-stable instance of the Maximum Cut problem, both the
maximum-weight edge e = (u, v) and the maximum-weight edge incident to u or v (not counting e)
must cross the optimal cut.

(e) (3 points) Prove that the optimal solution can be recovered in polynomial time in 2n-perturbation
stable instances of Maximum Cut.

9In a future lecture, we will get a much better recovery guarantee, using a much more sophisticated algorithm.

6

