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�1� SOLVING UNDERDETERMINED LINEAR SYSTEMS

Recently ( I gather ) in this course you've been talking about exact solutions :

when can you find exact solutions to NP - hard problems ?

Today ,
we 'll see another example of this : compressed sensing .

Consider a linear system Ax=b that looks like this :

1
m

m { A x = b
l That  is

,
the system is

- Underdetermined .

lmcn ) n

PROBLEII : Given A ,b ,
find X .

This problemis either impossible or not very interesting , depending on how
you ask it :

- It's impossible to find " the " solution
,

as there may be many solutions .

- It's easy to final
"

a
" solution ( some X so that Ax=b )

.

However
,

this problem becomes interesting if we assume x is SPARSE :

Defj A vector xe R
"

is b- sparse if it has at most h nonzero entries :

| supp ( x ) | < k

÷ port  of  ×
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The assumption that × is sparse ( or nearly sparse ) shows
up a lot

.
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"
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in a wavelet basis £

.

These two relaxations ( approximate sparsity and sparsity after  a  change of basis ) make "

sparsity
"

a

very natural assumption .
for simplicity ,

for this lecture we will consider only exact sparsity ,

in the standard basis
.

But one can extend our discussion to these more general notions
.

So
,

now we
have :

PR0BLEM_ Given A
,

and AX =D for some k . sparse x
,

find x
.

There are two ways to interpret this problem ,
both interesting

"

SPARSE RECOVERY "o .

"

COMPRESSED SENSING
"  "

SPARSE APPROXIMATION
"

-
PROBLEM 1 : Letxelttbek . sparse .

PROBLEM 2
. Given A andb

,

Ifxis Given A and b =Ax
,

find
any

k . sparse x so that
approximately find I so that I =x

.

AX=b
.

sparse ,
We 'd

ask for

Innx 7 ^

7 (
Here

,
we should find the original x.

( Here, wejustwantlofndany
in particular,

it should be Unique . sparse solution (assuming it exists ) .(
We will focus on this one in this lecture

.

Sparse approximation is clearly the easier of the two and already this is NP . hard
.

Tnmt SPARSE - APPROXIMATION is NP . hard
.

[ Natarajan 1995
,

Davis 1997 ]

The proof is by reduction from EXACT . COVER - By - 3 SETS
.
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So what hope do we have ? The inputs need not be worst case :

In many applications ,
we get to design the matrix A.

EXAMPLE APPLICATIONS :

- Sparse  recovery
for  image compression .

I want to compress data by writing it  as a sparse linear combination  of
a fixed "

dictionary
" of vectors ( these are the columns of A) - I get to choose He dictionary.

✓Y .

-
 "

Single pixel camera
"

Instead of  acquiring images pixel . by - pixel in the standard basis
,

instead acquire an image in  a  compressed Fm by

measuring linear combinations of pixels . Here
,

we get to  choose the linear  combinations
,

aka the matrix A .

- MRI

Measurements ( in a stylized version ) areofthefom ( y ,
X )

,
where x is a

sparse Vector and y is a now of the Discrete Fourier Transform .

50 the problem is :

-

€
; = f)

h In this example ,
more samples

b means more time in the MRI
,(subsample #t µ

an "
Yohmiethniessemxeaniliaiegandpossinu

.

given Aandb
.Here

,
We don't have complete C If someone 's heart needs 10 be slopped) .

•

control over A but it's definitely × So we want to minimize

not Worst - case .
the number of rows .

-

Streaming algorithms :

. Have a data stream of elements in some universe U .

and we 'd like 10 estimate the most frequent elements
,

in very small space
- Keep a small " sketch " of the data : when item i arrives , update the sketch by :

-

|Tatohgman| ← In this example,
thesloth " §

,
.fm#.po..n..iYmmbesioYagy*wnsofIa.MsatnIthaY6n

want to minimize the number of
a

NWS
.

At the end of the day , we have

Fife •i
= D and we want Io identify

- µ sketch

Yfeiue"Ytw¥Fve conniver

* A good question is : but don't  we have to
.

← approximately sparse the sketching matrix
.

Shore the matrix to ? It turns  out ( we  won't • histogram of elements

talk  about  it today ) , you can make these •

manias very explicit  + structured
, so  you don't X

need 10 store much
.
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I
.

We have full or partial control of A
,

and

2 . We would like A to have as few rows as possible .

This leads us to the following questions :

QUESTIONS

1
.

For what matrices A is there at most one sparse solution 10 Ax=b ?

2 . For what matrices A can we find a sparse solution to Ax=b efficiently ?

3 .
And

,
how can we minimize the number of rows of A in both of the above ?

We will Tackle all of these questions
at the same line

, by giving a condition on

A so that

1
.

There is a Unique solution

2
. We can find it ecticiently

3 . There exist matrices A  with this condition and with very
few rows .

�2� WHAT CAN WE HOPE FOR ?

Suppose we want there to be a Unique f- sparse solution to

m{a€µD.

How
many rows  m must A have ?

On the back  of an envelope ,
there are ( the ) possible supports for ×

,
so We need

at least log ( k ) a kloglmk ) bits in order to distinguish these different possibilities .

So intuitively , we might expect to need m Z klogklk) rows
.

This argument doesn't really make sense
,

since the elements of b are real numbers
,

not bits
,

and in fact for exact sparsity you can actually get  away with M = 2k .

However
,

this line of reasoning is pretty tmthy and one can show ( see
, eg ,

[ DOBA
, Indyk ,

Price
,
Woodruff ] )

that for approximate sparsity m = R ( kloglmk) ) measurements are needed
,

and this  is

What we 'll shoot for today .



�3� A SOLUTION via LINEAR PROGRAMMING .

( INTUITION ) PJ
3AO What should We try? We'd like to solve :

find the sparsest vector x so that Ax=b

aka

minimize 11×110 sit . Ax=b .

-
)

this  is the "lo  norm
"

,

which is thesparsityofx .

( It's  not  really a  norm ) .

but  in general this  is NP hard . Instead , We consider an LP relaxation  instead :

( LP ) minimize 11×111 st . Ax = b
. #

- This is a linear program :

( 11×111=21 , lxil is the l1 norm
.

. the variables are

Xi , ...
, Xn

, Yi , ... ,Yn
We can solve ( LP ) efficiently - the question is

,
does it give the Correct answer ? . the objective fn is

Eiyi
Geometric intuition : . The constraints are

Ax=b

Yi  Z - Xi

Yi  ⇐ Xi

or #
The point/ ← the linear space in this subspace

Ax=b that minimizes 1Wh
,

also

level sets of happens to be sparse !
the objective

function 11×111

The picture indicates that this might be a good idea since the l
,

ball is
"

pointy .

"

Of course
,

it won't always work - but hopefully if the set { x :Ax=b } is
"

generic
' '

enough ,
our intuition will be ok .

WARNING : The 2- dimensional picture above might lead
you

to conclude that there's

really no problem at  all
,

and that the only bad case is like This y
.

.

In fact
,

it  shouldn't be obvious that this intuition

works  in higher dimensions . for  example ,
in 3- dimensions

,

the picture could look like this :
• - this point is the

Ax=b sparsest lit 's 1- sparse)
-

•••q. •- •• ,

hhassmpeoisntmauest '••"\ ire
, banl , norm .

••
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-3130 What is the condition we should place on A ?

It's natural to look at sparse vectors in the kernel of A
.

Indeed
, an obvious obstacle to finding × is if there are TWO sparse solutions :

b = Axz = A Xz and 11×1110,11×216 ←
k

.

A ( xe - xz ) = 0
.

2k - sparse .

So we definitely need :

There are no sparse vectors in the kernel of A
.

We 'll just strengthen this  a little bit :

There are no SPARSE - ISH vectors in the kernel of A
.

-

We 'll say that a vector is
"

sparse -
ish " if it's not too spread out

.

DEII A vector xc R
"

is ( k
,

c) -

sparse .
ish if

11×112 > £ 11×111
.

Why should this definition have anything to do  with sparsity ?

We always have

�1� �2�

Fn 11×111§ 11×112 £ 11×111 -
This flat vector

£
Just true

•
t has 11×111 > > 11×112

.

Cauchy -

Schwarz
-

This sparse
>

•

vector has

�2� is tight for 1 - sparse vectors 11×41=11×112
7

�1� is tight for completely flat vectors
.

%a
, ,

Th ball

So the condition that 11×112 > IF 11×111 is bounding
X away from the flat case

,
toward the sparse case .
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�4� FORMAL ( ish ) STATEMENT and PROOF
.

theorem
. Suppose that A has no ytffn -

sparseish

vectors in Kerltt )
.

Let XER
"

be k - sparse
,

and let b=Ax
.

Then ( LP ) returns ^x=x
.

Theorem 1 is made much more interesting by the following fact .

Theorem 2 If m=R( klogln) )
,

then a mxn matrix A whose
-

entries are iid Gaussian has no gtfnz - vectors in its kernel

with high probability .

We will punt on the pnofofthm 2 C it's not so hard )
,

Aside
: THMZ also holds if

and focus hereof the proof  of Thm 1
.

A has iid ±1 entries
,

or

many
other natural random

Proof  of ¥1 .
ensembles

.
It also holds

f9Ip" arse (possibly atthecostofafw
Suppose that ( LP ) returns W

,
while the lme answer  is × : logarithmic factors) for randomly

this  implies that

11W
111<-11 X 14 . sampled rows of a DFT

,
as per

the MRI example .

We 'd like to show that this can't happen ( unless W=x )
. finding explicit constructions

That is
, we 'd like to show : of such matrices isabigopen

problem .

for all W so that Aw=Ax
,

11411>11×111

.

Anoto :

Another
 common sufficient condition is

Write W = x +

y ,✓ yekerlttl ,
so by assumption the " Restricted lsomety Property

"

it is NOT gtfy - sparseish
.

( RIP )
,

which
says that Fsparsex ,

( l - e) 11×112 EHAXHZ E ( 1 + e) 11×112

Let I be the support  of ×
,

so III Ek
. for some small E .

Let J = [ n ]\I

|§*← SIM

.tn#itnis.n*xfxItdEYiYYiny1- = , that's
- F- F- not no

I
J J sparse . ish

.all the mass notno  much

is here
.

mass  here ( or  anywhere) .
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For  a vector Z

,
let ZI denote the restriction of z to the indices

in I
,

with the rest of the coordinates zeroed out .

Thus
,

11W He - H X + y 111

= 11 A+YII 111 + 11 lxtyb 111

*
+yh.lk#MiFktdniY.ny.h.=uxin.-iiyt&

11 ( xtys 111 = Hyj 111 = HYHI - HYI 111

So HWHI 3 11×111 + Hy 111 - 2114-+111
-

MORE Precisely This is small since Y

-
't very sparse . ish

.

£AM: HYIHI £ ¥ HY " 1

Proof . HYI 111 E R HYI Ha £ FKHYIK £ R ' #Mg) ' tnllylh
= ytllylk .

B

T q
'

f
cgyowhYjz y

is just
\def

. of simplification .

with more Sparse . ish
YI stuff

Thus
,

HWHI Z 11×111 + Elly111 3 11×111  ,
unless

y=o
l inwhich case x=w )

.

This is what we wanted to prove ,
so now we're done . Y

This shows that ,
for "

most
' ' matrices A

,
( LP ) will actually solve our problem efficiently !

RECAP

.Often
, we  want to find a ( unique ) sparse  x  so that Ax=b

,
for  a  short fat  matrix A

.

- This problem is  impossible without the sparsity assm
,  and NP hard Cut inputs A

, b ) in Hre worst - case .

- However
,

for " most " matrices A  with R( kloglmkl ) rows
,

it  is tractable
, and an LP gives  exactly

the right  answer ! !

- We only talked about exact sparsity and exact  recovery ,
but  it turns  out that these results

Can be made robust to noise .


