
CS264: Beyond Worst-Case Analysis
Lecture #20: Application-Specific Algorithm Selection∗

Tim Roughgarden†

March 16, 2017

1 Introduction

A major theme of CS264 is to use theory to obtain accurate guidance about which algorithm
to use to solve a given problem in a given domain. For most problems, there is no “one size
fits all” algorithm, and the right algorithm to use depends on the set of inputs relevant for
the application. In today’s lecture, we’ll turn this theme into a well-defined mathematical
problem, formalized via statistical learning theory. Alternatively, we can think of today’s
lecture as a more general approach to the self-improving algorithms discussed in the last
lecture.

Before presenting the formalism, we consider three motivating examples.

1.1 SATzilla

You may or may not know that, in every odd calendar year, there is a SAT competition.
Anyone can submit a SAT solver, which is then run on a number of instances (both synthetic
and real instances from various application domains). A team from the University of British
Columbia [4] wanted to enter the 2007 competition but didn’t really want to write a new
SAT solver from scratch. So they came up with the idea of making intelligent use of existing
solvers, rather than designing a new one.

The UBC team used a portfolio of 7 state-of-the-art SAT solvers, including winners of
previous competitions. An interesting fact about these solvers is that each exhibits dramatic
variation in running time across different inputs of the same size (many orders of magnitude).
Also, different solvers tend to do well on different types of inputs. These facts suggest using
a “meta-algorithm” that runs the most appropriate SAT solver for the instance at hand.
The basic idea behind the meta-algorithm (called “SATzilla”) is the following, for a given
SAT formula ϕ:

∗ c©2017, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

1. Spend a small amount of time (like 1 second or .1 second) computing various features
of ϕ. Some features are obvious, like the number of variables and clauses. Other
features come from the factor graph, which is the bipartite graph with clauses on one
side and variables on the other side, with edges between each clause and the variables
in the clause. One clever and (as it turns out) very useful feature is to run a simple
algorithm, like local search or unit propagation, for a small amount of time and see
how much progress it makes (e.g., in terms of number of satisfied clauses).

2. For each of the 7 solvers, learn a prediction function, which predicts the running time
of the solver on a given input, as a function of the input’s features. With a good set of
features, one can even get away with a linear predictor (i.e., a predicted running time
that is a linear function of the features). Standard machine learning techniques were
used to come up with these prediction functions. This involves finding training data (in
the form of benchmark instances), which can be obtained by sampling from a generative
model (e.g., random-SAT with a given clause/variable ratio) or considering publicly
available benchmarks. One can then run the SAT solver on all of these benchmark
instances, and use linear regression to compute the best-fit linear predictor.

3. Compute the predicted running time of each solver (using the prediction function for
that solver). Run the solver with the smallest predicted running time.

Remarkably, SATzilla cleaned up at the 2007 SAT competition, winning multiple gold
and silver medals across different categories. Two years later, a new version of the algorithm
also did very well [6]. Nowadays, such meta-algorithms are explicitly banned from much of
the competition.

1.2 Parameter Tuning

Much of the human and computing cycles used in applied machine learning are devoted
to parameter tuning—figuring out the best values to use for one of more parameters of an
algorithm. For example, you may think of gradient descent as a single algorithm, but any
implementation depends on the (hard-coded) value of a couple parameters, most interestingly
its step size.1 In practice, it makes sense to experiment with value of the step size. One goal
might be to minimize the number of iterations before convergence (for some fixed stopping
criterion, like a target bound on the gradient’s norm), on average over the “relevant inputs.”

Another example in machine learning is setting a regularization parameter (e.g., in ridge
regression). When training a model via optimization, regularization involves adding a penalty

1Recall that gradient descent is effectively a local search algorithm for unconstrained minimization. Given
is a differentiable function from Rd to R that you want to minimize. The algorithm repeatedly computes the
gradient at the current point, and moves in the direction of the negative gradient (the direction of “steepest
descent”) to obtain the next point. How far should one move in that direction? The answer is given by the
step size. Set the step size too small and gradient descent will only make progress in tiny steps, requiring
many iterations to converge. Set the step size too big and you run the risk of repeatedly shooting over all
local minima, never converging at all.

2

term to the optimization problem to encourage “simple” solutions, and thereby hopefully
avoiding “overfitting” the solution to the training data. (For example, if feasible solutions
are vectors in Rd, one might want to penalize solutions with large norm.) The regularization
parameter controls how severe the penalty term is. Set the parameter too small and you
risk overfitting. Set the parameter too big and you risk optimizing only the penalty term,
thereby throwing out the baby with the bathwater. In practice, regularization parameters
are typically set via trial-and-error, for example by minimizing error on a holdout set.

The problem of parameter tuning is not confined to machine learning. For example,
consider CPLEX, one of the state-or-the-art solvers for linear programs and integer linear
programs. CPLEX has no less than 135 parameters, requiring a 221-page manual [5]. And
what guidance does the manual have to offer on choosing good values for the parameters?
“You may need to experiment with them.” (Gee, thanks CPLEX. . .)

1.3 Parameterized Heuristics

Our final example can also be considered a parameter-tuning problem, though the context
is different, concerning fast inexact heuristics for NP -hard problems. For concreteness, let’s
focus on the weighted independent set (WIS) problem. Recall that an input of WIS is
specified by an undirected graph G = (V,E), and that each vertex v ∈ V has a nonnegative
weight wv. An independent set is a subset of mutually non-adjacent vertices (a set S ⊆ V
such that (u, v) /∈ E for all u, v ∈ S). The objective is to compute an independent set with
the largest-possible total weight. This problem is NP -hard, even to approximate (in the
worst case), so typically one resorts to heuristics. As with most problems, greedy algorithms
are a natural place to start.

Perhaps the most natural greedy algorithm takes a single pass over the vertices, from
highest-weight to lowest-weight, always selecting the next vertex if it is feasible to do
so.

Greedy Heuristic #1

1. Initialize S = ∅.

2. Sort the vertices in order of nonincreasing weight.

3. For each vertex v in turn:

(a) If S does not contain a neighbor of v, then add v to S.

4. Return S.

For example, in the graph in Figure 1, the algorithm first selects the vertex in the lower
left. It then has to skip all of the weight-3 vertices, and concludes by selecting the rightmost
vertex. This independent set has total weight 6, whereas the optimal solution has total
weight 8.

3

3 3 2

4 3

Figure 1: An instance of WIS. Each vertex is labeled with its weight.

The next idea is to pay attention not only to the weights of vertices, but also to their
degrees. Intuitively, it makes sense to penalize high-degree vertices, because their selection
excludes so many other vertices from future consideration. One way to do this is to sort
vertices by “bang-per-buck” wv/(deg(v) + 1)—reflecting that the selection of v nets a gain
of wv but “uses up” deg(v) + 1 vertices.

Greedy Heuristic #2

1. Initialize S = ∅.

2. Sort the vertices in order of nonincreasing wv

deg(v)+1
.

3. For each vertex v in turn:

(a) If S does not contain a neighbor of v, then add v to S.

4. Return S.

Note that the vertices are sorted once and for all up front. There is also an adaptive version
of the algorithm, where every iteration the remaining vertices are re-sorted, with only the
still-eligible neighbors contributing to the denominator.

For the example in Figure 1, this second greedy heuristic computes the optimal solution.
But don’t read too much into this: it’s easy to find examples where the first heuristic recovers
the optimal solution and the second does not.

A natural interpolation between these two greedy algorithms is to sort the vertices in
nonincreasing order of wv/(deg(v) + 1)p. We call this algorithm Greedy(p). The first and
second greedy heuristics correspond to Greedy(0) and Greedy(1), respectively.

Why bother with this interpolation? Intermediate values of p do not seem to be helpful in
worst-case analyses. But if you’re actually implementing this heuristic, you definitely want
to experiment with different choices of p. There have been real-world applications where, on
representative benchmark instances, intermediate values like p = .4 and p = .6 outperformed
the extreme values of p = 0 and p = 1.

2 Formalism

We now describe our formalism for reasoning about application-specific algorithm selection.
Fix a problem, like SAT, unconstrained convex minimization, or weighted independent set.

4

Fix a cost measure, like wall-clock time, number of iterations, or solution quality. Let C
denote a set of algorithms, like a finite set of 7 SAT solvers, gradient descent with all
possible step sizes, or the WIS heuristics Greedy(p) for all p ∈ [0, 1]. Note that C could be
either finite or infinite.

The “best” algorithm in C (for the given problem, according to the given cost measure)
generally depends on which instances of the problem are relevant to the application domain.
Abstractly, and like the last lecture on self-improving algorithms, we identify a “domain”
with an input distribution D that is a priori unknown. The goal is then to identify the best
algorithm for the domain, meaning an algorithm in

argmin
A∈C

Ez∼D[cost(A, z)] , (1)

at least up to a small amount of error.
Different algorithms from C will be better for different input distributions D, so we need

at least some information about what D is. In practice, performance is generally measured
using agreed-upon benchmarks that are thought to representative of “real inputs” (whether
it be in computer architecture, compiler design, machine learning, etc.) So we assume that
some number s of benchmark instances are available, in the form of i.i.d. samples from the
underlying distribution (again, like in self-improving algorithms).

3 Sample Complexity

Given samples/benchmarks z1, . . . , zs ∼ D from an unknown distribution D, there is an
obvious way to guess as to which algorithm A ∈ C is best for D—just select the algorithm
that is best on the samples. That is, select an algorithm in

argmin
A∈C

1

s

s∑
i=1

cost(A, zi).

For the moment, let’s study this approach without worrying about how to actually implement
it (i.e., how to compute a minimizer efficiently).2

How well does this approach work? Is the algorithm that is best on the benchmark
instances actually the best one for the underlying distribution? The answer depends on the
number s of samples available. Intuitively, with few samples (e.g., s = 1), there is a risk
of “overfitting,” meaning that the empirically best algorithm is an artifact of the particular
samples, rather than capturing anything important about the true distribution. At the
other extreme, with an infinite number of samples, doing well on the samples is the same
thing as doing well on the true distribution, and so the approach works perfectly. Thus the
interesting question is a quantitative one: how many samples are necessary and sufficient to
identify the best algorithm? That is, what is the sample complexity of this method? The

2Readers who have studied machine learning might recognize this approach as a version of the “empirical
risk minimization” or “ERM” algorithm.

5

answer can be parameterized by the error ε that can be tolerated in approximating (1), the
probability δ of failure (over the choice of samples), and any parameters of the particular
problem being studied. As we’ll see, these questions are right in the wheelhouse of a field
known as statistical learning theory (as covered in CS229T).

4 Some Statistical Learning Theory

Let’s start with a modest goal: what if we just want to estimate the expected performance
of a single algorithm A from samples?

Lemma 4.1 Let A be an algorithm with cost(A, z) ∈ [0, 1] for every input z, and D an
input distribution. Fix constants ε, δ > 0. Let s = c

ε2
log 1

δ
for a sufficiently large constant c

(independent of ε and δ). Then with probability at least 1− δ over i.i.d. samples z1, . . . , zs ∼
D, ∣∣∣∣∣Ez∼D[cost(A, z)]− 1

s

s∑
i=1

cost(A, zi)

∣∣∣∣∣ < ε. (2)

That is, the sample complexity of estimating the expected performance of a single algorithm
(up to±ε, with failure probability δ) is O(1

ε2
log 1

δ
). The proof is a straightforward application

of the Hoeffding bound, and is left to Homework #10. The assumption that A’s cost always
lies in [0, 1] reduces to the assumption that its cost is bounded (by scaling). When costs
are not already bounded (like an algorithm that might run for ever), a bound can often be
imposed with little loss in utility (e.g., imposing a timeout on the algorithm).

Now let’s make the problem harder: suppose we have a set C of algorithms, and we want
to estimate the expected performance of every algorithm A ∈ C. First let’s consider the easy
case where C is finite (like the 7 SAT solvers in Section 1.1). Fix a desired failure probability
δ, and set δ′ = δ/|C|. Lemma 4.1 implies that after

O
(

1
ε2

log 1
δ′

)
= O

(
1
ε2

(
log 1

δ
+ log |C|

))
(3)

samples, the probability that a fixed algorithm A ∈ C fails to satisfy (2) is at most δ′. Taking
a union bound over the algorithms of C gives the following.3

Lemma 4.2 Let C be a finite set of algorithms, with cost(A, z) ∈ [0, 1] for every input
z and algorithm A ∈ C, and D an input distribution. Fix constants ε, δ > 0. Let s =
c
ε2

(log 1
δ

+ log |C|) for a sufficiently large constant c (independent of ε, δ, and |C|). Then with
probability at least 1− δ over i.i.d. samples z1, . . . , zs ∼ D,∣∣∣∣∣Ez∼D[cost(A, z)]− 1

s

s∑
i=1

cost(A, zi)

∣∣∣∣∣ < ε

for every algorithm A ∈ C.

3In learning theory, this is sometimes called a “uniform convergence” result, since a single set of samples
estimates simultaneously the performance of every algorithm in C.

6

Lemma 4.2 immediately implies an error guarantee for the algorithm that is best on the
samples (w.h.p.). If you know the expected performance of every algorithm up to ±ε, then
you also know the algorithm with the best expected performance, up to 2ε.

Corollary 4.3 Let C, ε, δ, and s be as in Lemma 4.2. Then with probability at least 1− δ,
if

Â ∈ argmin
A∈C

1

s

s∑
i=1

cost(A, zi),

then
Ez∼D

[
cost(Â, z)

]
≤ min

A∈C
Ez∼D[cost(A, z)] + 2ε.

What if C is an infinite set, like in our parameter tuning algorithms? If the parameter set
is bounded and algorithm performance is continuous in the parameters, then one can reduce
to the finite case via discretization (a la grid search). But statistical learning theory offers
a more elegant solution, which works directly with infinite sets that are “low-dimensional”
in some sense. The “dimension” of the set plays the role of log |C| in Lemma 4.2, even
though C is an infinite set. Before defining the notion of dimension that we use (called
“pseudodimension”), we state the corresponding sample complexity guarantee.

Theorem 4.4 ([3, 1]) Let C be a set of algorithms with pseudodimension d, and with cost(A, z) ∈
[0, 1] for every input z and algorithm A ∈ C. Let D be an input distribution. Fix constants
ε, δ > 0. Let s = c

ε2
(log 1

δ
+ d) for a sufficiently large constant c (independent of ε, δ, and d).

Then with probability at least 1− δ over i.i.d. samples z1, . . . , zs ∼ D,∣∣∣∣∣Ez∼D[cost(A, z)]− 1

s

s∑
i=1

cost(A, zi)

∣∣∣∣∣ < ε

for every algorithm A ∈ C.

Given this theorem, the analog of Corollary 4.3 follows immediately. Thus low pseudodimen-
sion implies low sample complexity.

The two obvious questions now are: How is the pseudodimension of a set defined, exactly?
And do sets that we care about actually have low pseudodimension?

The definition is a bit of a mouthful. The best way to understand it is through examples
(see Homework #10). The definition concerns sets of real-valued functions, while we care
about algorithms. So how do we think of an algorithm A as a real-valued function? As the
map z 7→ cost(A, z) from inputs to algorithm performance.

Definition 4.5 (Pseudodimension of Real-Valued Functions) Let F be a set of real-
valued functions with domain X.

(a) Let Y ⊆ X be a finite set, and t(y) a real-valued threshold for each y ∈ Y . The set F
shatters Y with respect to t if for every subset Z ⊆ Y , there exists a function f ∈ F
such that

7

(i) f(y) ≥ t(y) for every y ∈ Z;

(ii) f(y) < t(y) for every y /∈ Z.

(b) F shatters a finite set Y ⊆ Z if there exist thresholds t : Y → R such that F shatters
Y with respect to t.

(c) The pseudodimension pdim(F) of F is the maximum size of a shattered set Y ⊆ X
(or +∞, if F shatters arbitrarily large finite sets).

A few comments. A different way to think about what’s happening in part (a) is to think
of each function f ∈ F as inducing a 0-1 labeling (w.r.t. t) of the points of Y , according to
whether or not the function is above a point’s threshold or not. Then (a) is saying that all
2|Y | different 0-1 labelings of Y arise as one ranges over all functions f ∈ F .4 Intuitively, you
should only see so many different function behaviors (for large |Y |) if F is a “complex” set
of functions. For a finite set F , it is almost immediate that pdim(F) ≤ log2 |F| (Homework
#10), and in this sense the pseudodimension generalizes the notion of “size” to infinite sets
of functions.

Infinite sets of “simple” functions can have finite pseudodimension (and hence finite
sample complexity for our estimation problem in Theorem 4.4). The canonical example is
the set of affine functions from Rd to R, meaning functions of the form f(x1, . . . , xd) =
a0 +

∑d
i=1 aixi for some a0, a1, . . . , ad ∈ R. It turns out that the pseudodimension of this set

is exactly d+ 1 (see Homework #10 for the d = 2 case).
Since we can view an algorithm as a real-valued function (with respect to a performance

measure), it makes sense to speak about the pseudodimension of a set of algorithms.

Definition 4.6 Let C be a set of algorithms and cost a performance measure with range
[0, 1]. The pseudodimension pdim(C) of C is the pseudodimension of the induced set F =
{z 7→ cost(A, z)}A∈C of real-valued functions.

The functions induced by algorithms are not at all linear. Do the sets of functions relevant
for application-specific algorithm selection have low pseudodimension?

5 The Pseudodimension of Greedy Algorithms

Let’s return to the Greedy(p) heuristics for the weighted independent set problem (Sec-
tion 1.3).5 Recall what the Greedy(p) algorithm does: first it sorts vertices in nonincreasing
order of wv/(deg(v) + 1)p, and then it greedily picks every vertex in turn that is not a neigh-
bor of an already-chosen vertex. There are an infinite number of such algorithms, and the

4This should be familiar to readers who have studied the notion of the VC dimension of a set of binary-
valued functions. Essentially, we’re defining the pseudodimension of a set of real-valued functions as the
VC dimension of the thresholded versions of these functions, for a worst-case (i.e., maximizing) choice of
thresholds.

5The same results hold for all “singly-parameterized greedy algorithms,” see [2].

8

behavior of these algorithms is not at all continuous in the parameter p.6 Nevertheless, we
will show that the pseudodimension of the corresponding set of functions is quite low. Our
measure cost here is the quality of the solution output by the algorithm.7

Theorem 5.1 ([2]) If C = {Greedy(p) : p ∈ [0, 1]} and the input distribution D is over
weighted independent set problems with at most n vertices, then pdim(C) = O(log n).

Proof: We need to show that the real-valued functions induced by C cannot shatter any set
Y ⊆ X with size larger than Θ(log n). So fix a finite set Y ⊆ X—remember, for us, Y is a
finite set of instances of the weighted independent set problem. Fix thresholds t : Y → R.

Call two parameter values p, q ∈ [0, 1] equivalent if Greedy(p) and Greedy(q) operate
identically for each input in Y , meaning that they sort the vertices of each input z ∈ Y in
exactly the same order. In particular, the solutions returned by Greedy(p) and Greedy(q)
are identical for all z ∈ Y .

The key claim is that there are only O(|Y |n2) different equivalence classes. To see this,
first note that the behavior of an algorithm Greedy(p) on an instance z is entirely deter-
mined by the result of comparisons of the form

wu
(deg(u) + 1)p

vs.
wv

(deg(v) + 1)p
(4)

for a pair u, v of vertices. The result of this comparison can flip as you vary p, but it flips
at most once. (If p is such that equality holds in (4), then the vertex with the higher weight
and higher degree wins for all smaller p, while the vertex with lower weight and lower degree
wins for all larger p.) Since there are only

(
n
2

)
such comparisons per input and only |Y |

inputs, as one varies p ∈ [0, 1], the behavior of Greedy(p) changes O(|Y |n2) times. The set
of p’s between two such “transition points” belong to the same equivalence class, so there
are O(|Y |n2) equivalence classes.

Now, suppose that C shatters the set Y with respect to the thresholds t. Since this
requires inducing all 2|Y | possible 0-1 labelings of Y with respect to t, this requires at least
2|Y | different algorithm behaviors. (If Greedy(p) and Greedy(q) behave identically on all
inputs in Y , then they induce the same 0-1 labeling, no matter what the thresholds are.)
The key claim then implies that 2|Y | = O(|Y |n2), which can only be true if |Y | = O(log n).
�

Combining Theorems 4.4 and 5.1 shows that the best value of p ∈ [0, 1] (up to error
2ε in expected performance) can be learned from O(ε−2 log n) samples. The proof of The-
orem 5.1 also shows that this value of p can be computed in polynomial time—given a set
Y of Θ(ε−2 log n) samples, just try one value of p from each of the O(ε−2n2 log n) equiva-
lence classes (note that the transition points are easy to identify), run the corresponding

6For example, arbitrarily small changes to p can change which vertex appears first in the ordering, which
can then lead to a totally different algorithm execution and returned solution.

7Actually, since it’s a maximization problem, we mean the negative of the solution quality (shifted and
scaled to lie in [0, 1]). Or alternatively, we could work with solution quality directly and redefine the ERM
approach to pick the algorithm with maximum average performance on the given samples.

9

Greedy(p) heuristic on every input in Y , and use the value of p with the best average
performance on Y .8

References

[1] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

[2] R. Gupta and T. Roughgarden. Application-specific algorithm selection. SIAM Journal
on Computing, 46(3):992–1017, 2017.

[3] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100(1):78–150, 1992.

[4] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-
based algorithm selection for SAT. J. Artificial Intelligence Research (JAIR), 32:565–606,
2008.

[5] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated
algorithm configuration and selection for mixed integer programming. In Proceedings of
the RCRA workshop on combinatorial explosion at the International Joint Conference
on Artificial Intelligence (IJCAI), pages 16–30, 2011.

[6] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla2012: Im-
proved algorithm selection based on cost-sensitive classification models. In Proceedings of
the International Conference on Theory and Applications of Satisfiability Testing (SAT),
2012.

8This is for the non-adaptive version of Greedy(p), where the vertices are sorted once and for all up
front. Similar arguments work for the adaptive version, where degrees are recomputed in each iteration,
based on the subgraph of vertices that are still eligible for future inclusion. The only difference is that
instead of O(n2) comparisons of the form (4) for each input, there are now O(n4) such comparisons—one
for each choice of u, v, and their current degrees (which are in {0, 1, 2, . . . , n − 1}). This still yields a
pseudodimension bound of O(log n).

10

