
CS261: Exercise Set #1

For the week of March 30–April 3, 2015

Instructions:

(1) Do not turn anything in.

(2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on
Piazza.

(3) While these exercises are certainly not trivial, you should be able to complete them on your own
(perhaps after consulting with the course staff or a friend for hints).

Exercise 1

Suppose we generalize the maximum flow problem so that there are multiple source vertices s1, . . . , sk ∈ V
and sink vertices t1, . . . , t` ∈ V . (As usual, the rest of the input is a directed graph with integer edge
capacities.) You should assume that no vertex is both a source and sink. A flow is defined as before: a
nonnegative number fe for each e ∈ E such that capacity constraints are obeyed on every edge and such
that conservation constraints hold at all vertices that are neither a source nor a sink. The value of a flow is
the total amount of outgoing flow at the sources:

∑k
i=1

∑
e∈δ+(si)

fe.
Prove that the maximum flow problem in graphs with multiple sources and sinks reduces to the single-

source single-sink version of the problem. That is, given an instance of the multi-source multi-sink version
of the problem, show how to (i) produce a single-source single-sink instance such that (ii) given a maximum
flow to this single-source single-sink instance, you can recover a maximum flow of the original multi-source
multi-sink instance. Your implementations of steps (i) and (ii) should run in linear time. Include a brief
proof of correctness.

[Hint: consider adding additional vertices and/or edges.]

Exercise 2

In lecture we’ve focused on the maximum flow problem in directed graphs. In the undirected version of the
problem, the input is an undirected graph G = (V,E), a source vertex s ∈ V , a sink vertex t ∈ V , and a
integer capacity ue ≥ 0 for each edge e ∈ E.

Flows are defined exactly as before, and remain directed. Formally, a flow consists of two nonnegative
numbers fuv and fvu for each (undirected) edge (u, v) ∈ E, indicating the amount of traffic traversing
the edge in each direction. Conservation constraints (flow in = flow out) are defined as before. Capacity
constraints now state that, for every edge e = (u, v) ∈ E, the total amount of flow fuv + fvu on the edge is
at most the edge’s capacity ue. The value of a flow is still the amount

∑
(s,v)∈E fsv going out of the source.

Prove that the maximum flow problem in undirected graphs reduces to the maximum flow problem in
directed graphs. That is, given an instance of the undirected problem, show how to (i) produce an instance
of the directed problem such that (ii) given a maximum flow to this directed instance, you can recover a
maximum flow of the original undirected instance. Your implementations of steps (i) and (ii) should run in
linear time. Include a brief proof of correctness.

[Hint: consider bidirecting each edge.]

1



Exercise 3

(Corrected 4/4/2015.) For every positive integer U , show that there is a instance of the maximum flow
problem with edge capacities in {1, 2, . . . , U} and a choice of augmenting paths so that the Ford-Fulkerson
algorithm runs for at least U iterations before terminating. The number of vertices and edges in your
networks should be bounded above by constant, independent of U . (This shows that the algorithm is only
“pseudopolynomial.”)

[Hint: use a network similar to the examples discussed in lecture.]

Exercise 4

Consider the special case of the maximum flow problem in which every edge has capacity 1. (This is called
the unit-capacity case.) Explain why a suitable implementation of the Ford-Fulkerson algorithm runs in
O(mn) time in this special case. (As always, m denotes the number of edges and n the number of vertices.)

Exercise 5

In the minimum s-t cut problem, the input is the same as in the maximum flow problem, and the goal is to
compute the s-t cut (A, B) with the minimum value (i.e., outgoing capacity)

∑
e∈δ+(A) ue. Prove that this

problem reduces to the maximum flow problem. Specifically, given a maximum flow, show how to recover a
minimum s-t cut in linear time.

[Hint: reread the proof of correctness of the Ford-Fulkerson algorithm (Step 3 of our proof in lecture of the
max-flow/min-cut theorem).]

2


