
CS261: Exercise Set #7

For the week of May 11–15, 2015

Instructions:

(1) Do not turn anything in.

(2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on
Piazza.

(3) While these exercises are certainly not trivial, you should be able to complete them on your own
(perhaps after consulting with the course staff or a friend for hints).

Exercise 31

In Lecture #13 we rounded a linear programming relaxation to obtain a 2-approximation algorithm for the
Vertex Cover problem, where the vertices can have arbitrary nonnegative costs. In this exercise we’ll consider
the special case where every vertex cost cv is 1. Prove that the following is a 2-approximation algorithm for
this case:

1. Given the input graph G = (V,E), compute a maximal matching M of G.1

2. Let S denote the 2|M | endpoints of the edges of M , and return S.

Exercise 32

Recall from Lecture #13 our linear programming relaxation of the Vertex Cover problem (with nonnegative
edge costs):

min
∑
v∈V

cvxv

subject to
xv + xw ≥ 1 for all edges e = (v, w) ∈ E

and
xv ≥ 0 for all vertices v ∈ V .

Prove that there is always a half-integral optimal solution x∗ of this linear program, meaning that x∗v ∈
{0, 1

2 , 1} for every v ∈ V .

[Hint: start from an arbitrary feasible solution and show how to make it “closer to half-integral” while only
improving the objective function value.]

Exercise 33

Prove Markov’s inequality: if X is a non-negative random variable with finite expectation and c > 1, then

Pr[X ≥ c ·E[X]] ≤ 1
c
.

1A matching M is maximal if no strict superset of M is a matching. A maximum matching is always maximal, but a maximal
matching need not be maximum.
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Exercise 34

Let X be a random variable with finite expectation and variance; recall that Var[X] = E
[
(X −E[X])2

]
and

StdDev[X] =
√

Var[X]. Prove Chebyshev’s inequality: for every c > 1,

Pr[|X −E[X] | ≥ c · StdDev[X]] ≤ 1
c2

.

[Hint: apply Markov’s inequality to the (non-negative!) random variable (X −E[X])2.]

Exercise 35

There are n identical bins. Consider the following random process (which is relevant for the analysis of
hashing, among other things):

1. Repeat n independent times:

(a) Throw a ball into a bin chosen uniformly at random.

At the conclusion of this process, the expected number of balls in a given bin is 1 (why?). Prove that,
with probability at least 1− 1

n , no bin has more than 3 ln n
ln ln n balls in it.

[Hint: this is a special case of the randomized rounding analysis we did in Lecture #14.]
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