CS261: Exercise Set #8

For the week of May 18–22, 2015

Instructions:

- (1) Do not turn anything in.
- (2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on Piazza.
- (3) While these exercises are certainly not trivial, you should be able to complete them on your own (perhaps after consulting with the course staff or a friend for hints).

Exercise 36

Consider the following LP relaxation of the maximum (unweighted) matching problem in general (not necessarily bipartite) graphs:

$$\max \sum_{e \in E} x_e$$

subject to:

$$\sum_{e \in \delta(v)} x_e \le 1 \quad \text{for all } v \in V$$
$$x_e \ge 0 \quad \text{for all } e \in E.$$

Prove that there exists a graph for which the integrality gap of this relaxation is at most $\frac{2}{3}$.

Exercise 37

Consider an optimization problem Π and an LP relaxation for it — formally, a mapping h from instances of Π to linear programs, such that every feasible solution to an instance $I \in \Pi$ can be mapped to a feasible solution to the linear program h(I) that has equal objective function value.

Suppose that:

- 1. The worst-case (over I) integrality gap of the LP relaxation is α .
- 2. There is an LP-based α -approximation algorithm \mathcal{A} . That is, for every $I \in \Pi$, \mathcal{A} outputs a solution with objective function value within an α factor of that of the optimal solution to the LP relaxation h(I).

Prove that for every instance $I \in \Pi$ that realizes the worst-case integrality gap — i.e., the ratio between the objective function values of the optimal solution to I and the optimal solution to h(I) is precisely α — the algorithm \mathcal{A} outputs an optimal solution to the instance I.

Exercise 38

Recall from Lecture #15 that strongly NP-hard problems do not admit pseudopolynomial-time algorithms (unless P = NP).¹ The point of this exercise is to show that strong NP-hardness typically also rules out an FPTAS.²

We illustrate this point using the Knapsack problem.³ Suppose you are given an FPTAS \mathcal{A} for the Knapsack problem. Prove that \mathcal{A} , with a suitable choice of the parameter ϵ , is a pseudopolynomial-time (exact) algorithm for the Knapsack problem.⁴

Exercise 39

Suppose we generalize the online bipartite matching problem studied in lecture by allowing the edges to have arbitrary nonnegative weights. (When a right-hand side vertex shows up, the online algorithm learns its incident edges and their weights.) Prove that for every $\alpha > 0$, there is no deterministic α -competitive online algorithm for this problem.

Exercise 40

Consider the following online matching problem in general, not necessarily bipartite graphs. No information about the graph G = (V, E) is given up front. Vertices arrive one-by-one. When a vertex $v \in V$ arrives, and $S \subseteq V$ are the vertices that arrived previously, the algorithm learns about all of the edges between v and vertices in S. Equivalently, after i time steps, the algorithm knows the graph $G[S_i]$ induced by the set S_i of the first i vertices.

Give a $\frac{1}{2}$ -competitive online algorithm for this problem.

 $^{^{1}}$ Recall that a *pseudopolynomial-time algorithm* runs in polynomial time for the special case of instances with input numbers that are polynomially-bounded integers.

²Recall from Lecture #15 that a *fully polynomial-time approximation scheme (FPTAS)* for a maximization problem takes as input a problem instance and a parameter ϵ , and returns a feasible solution with objective function value at least $(1 - \epsilon)$ times the maximum possible, in time polynomial in the size of the instance and in $\frac{1}{\epsilon}$.

³The input is *n* items with values v_1, \ldots, v_n and weights w_1, \ldots, w_n , and a knapsack capacity *W*. Assume that all of these numbers are positive integers. The goal is to choose $S \subseteq \{1, 2, \ldots, n\}$ to maximize $\sum_{i \in S} v_i$ subject to $\sum_{i \in S} w_i \leq W$.

 $^{^{4}}$ Since the existence of an FPTAS implies the existence of a pseudopolynomial-time exact algorithm, impossibility results for the latter (i.e., strong *NP*-hardness) translate immediately to the former.