
CS261: A Second Course in Algorithms
The Top 10 List∗

Tim Roughgarden†

June 2, 2015

If you’ve kept up with this class, then you’ve learned a tremendous amount of material.
To recall how far you’ve traveled, let’s wrap up with a course top 10 list.

1. The max-flow/min-cut theorem, and the corresponding polynomial-time algorithms for
computing them (augmenting paths, push-relabel, etc.). This is the theorem that
seduced your instructor into a career in algorithms. Before knowing this result, the
spaces of flows and of cuts seem so complex — afterward, they are things of beauty,
and with lots of concrete applications.

This theorem also introduced the running question of “how do we know when we’re
done?” We proved that a maximum flow algorithm is done (i.e., can correctly terminate
with the current flow) when the residual graph contains no s-t path or, equivalently,
when the current flow saturates some s-t cut.

2. Bipartite matching, including the Hungarian algorithm for the minimum-cost perfect
bipartite matching problem. In this algorithm, we convinced ourselves we were done
by exhibiting a suitable dual solution (which at the time we called “vertex prices”).

3. Edmonds’s algorithm for maximum matching in unweighted general (non-bipartite)
graphs. This year marks the 50th anniversary of the publication of this algorithm.
Despite its status as one of the classics, few computer scientists have taken the time
to learn the algorithm as thoroughly as you now have! It is far from obvious that
the maximum matching problem is polynomial-time solvable, and when studying the
problem there’s a palpable sense of venturing into the outer territories of P , with NP -
complete problems lurking in all directions. How did we know we were done? By the
Tutte-Berge formula, which sensibly lower bounds the number of vertices exposed in
every matching as maxS⊆V (oc(S)− |S|).

∗ c©2015, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

4. Linear programming is in P . We had little time to discuss the specifics of any al-
gorithms for solving linear programs, but just knowing this fact as a “black box” is
already extremely powerful. On the theoretical side, there are polynomial-time al-
gorithms for solving linear programs — even those whose constraints are specified
implicitly through a polynomial-time separation oracle — and countless theorems rely
on this fact. In practice, commercial linear program solvers routinely solve problem
instances with millions of variables and constraints and are a crucial tool in many
real-world applications.

5. Linear programming duality. For linear programming problems, there’s a generic way
to know when you’re done. Whatever the optimal solution of the linear program is,
strong LP duality guarantees that there’s a dual solution that proves its optimality.
While powerful and perhaps surprising, the proof of strong duality boils down to the
highly intuitive statement that, given a closed convex set and a point not in the set,
there’s a hyperplane with the set on one side and the point on the other.

6. The Traveling Salesman Problem (TSP). The TSP is a famous problem with a long
history, and several of the most notorious open problems in approximation algorithms
concern different variants of the TSP. For the metric TSP, you now know the state-
of-the-art — Christofides’s 3

2
-approximation algorithm, which is nearly 40 years old.

Most researchers believe that better approximation algorithms exist.

7. Linear programming and approximation algorithms. Linear programs are useful not
only for solving problems exactly in polynomial time, but also in the design and analysis
of polynomial-time approximation algorithms for NP -hard optimization problems. In
some cases, linear programming is used only in the analysis of an algorithm, and
not explicitly in the algorithm itself. A good example is our analysis of the greedy
set cover algorithm, where we used a feasible dual solution as a lower bound on the
cost of an optimal set cover. In other applications, such as Vertex Cover and low-
congestion routing, the approximation algorithm first explicitly solves an LP relaxation
of the problem, and then “rounds” the resulting fractional solution into a near-optimal
integral solution.

8. Hardness of approximation. In addition to the rich theory about what polynomial-time
approximation algorithms can do, there’s also a mature understanding of what such
algorithms can’t do. Almost all of this understanding has been developed in the last
25 years, much of it in this century. For example, P 6= NP not only implies that the
Set Cover problem can’t be solved exactly, it turns out to also imply that there is no
approximation algorithm with worst-case approximation ratio superior to that of the
greedy algorithm. Such hardness of approximation results are proved using a minor
variant of the NP -completeness reductions that you already know and love — one just
adapts the idea from decision to optimization problems, and keeps track of the “gap”
between the objective function values that correspond to “yes” and “no” instance of
(say) SAT. (That said, the state-of-the-art reductions tend to be highly technical.)

2

9. Online algorithms. It’s easy to think of real-world situations where decisions need to be
made before all of the relevant information is available. In online algorithms, the input
arrives “online” in pieces, and an irrevocable decision must be made at each time step.
For some problems, there are online algorithms with good (close to 1) competitive
ratios — algorithms that compute a solution with objective function value close to
that of the optimal solution. Such algorithms perform almost as well as if the entire
input was known in advance. For example, in online bipartite matching, we achieved
a competitive ratio of 1− 1

e
≈ 63% (which is the best possible).

10. Streaming algorithms. In the data stream model, the input again arrives online, one
element at a time (like data packets at a network switch). The goal is to do useful
computations despite having far too little space to remember the input. As a case
study, we generalized the one-pass majority element algorithm to solve the highly
practical ε-heavy hitters problem.

3

