
Lectures on Combinatorial Auctions∗

Tim Roughgarden†

October 18, 2008

These are lecture notes for one third of the class CS364B, Topics in Algorithmic Game
Theory, offered at Stanford University in the Fall 2005 term. They cover the topic of combi-
natorial auctions, with an undeniably strong bias toward recent work by the “STOC/FOCS”
(algorithms and complexity) community. I assume that the reader has a solid background in
undergraduate algorithms and complexity; occasionally I assume a bit more (e.g. Chernoff
bounds).

In preparing these notes, I have tried to strike a balance between two goals: to maximize
their usefulness for the students in the course and for the scientific community at large, and
to minimize the work required on my part. Accordingly, these notes were written quickly and
contain few embellishments beyond what transpired in lecture. They have been proofread,
but only lightly, and I am certainly not writing them with the same care as my research
papers. You will often encounter missing details, inadequate discussions of related work,
mere special cases of more general known results, and typos. I hope that this informality also
has a plus side, however, making many of the basic results on combinatorial auctions more
easily accessible. Finally, entire topics within combinatorial auctions have been completely
ignored, either due to time constraints or to my lack of knowledge about them. I apologize
if your favorite results have not been included.

I welcome comments on these notes, although I hope you can appreciate that maintaining
them will not be a high priority of mine. I am particularly interested in technical errors and
incorrect/incomplete attributions, but am also glad to hear about suggestions for results
that I should have included, further intuition, simpler proofs, and so on.

Finally, I am indebted to the students of CS364B, the course’s teaching assistant, Zoë
Abrams, and my co-instructor Jason Hartline. Their comments and questions have signifi-
cantly influenced these notes.

∗ c©2005–2008, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

1 The Vickrey Auction and Algorithmic Mechanism

Design

1.1 Auctioning Off a Single Good

We begin by motivating combinatorial auctions, and the goals of algorithmic mechanism
design more generally, with the following simple example. Suppose there is one item that
we wish to sell to one of n candidate buyers, who we will also call players or bidders. The
first basic assumption about bidders is the following.

(1) Each bidder i has a valuation vi describing the bidder’s “willingness to pay” for the
item. This valuation is private, in the sense that the auctioneer and the other players
have no information about it.

Informally, an auction is a protocol that interacts with the bidders, somehow determines
a winner, and figures out a price p to charge the winner for the item. Our second basic
assumption about bidders is the following.

(2) If bidder i loses, its utility is 0. If bidder i wins and has to pay the price p, its utility
is the “residual worth” vi − p.

The economic jargon for this assumption is that each bidder has quasilinear utility. While
natural, one could argue with this assumption. For example, it ignores externalities (a loser
doesn’t care who the winner is); also, one could consider other utility functions that are
increasing in the bidder’s valuation and decreasing in the price. In this course, we will
consider only quasilinear utility functions.

Periodically we pose questions like the following, inviting the reader to ponder an impor-
tant point before reading further.

Question 1.1 How would you auction off the item? How would you argue that your auction
is better than other ones?

To motivate our answer to this question, we first consider a protocol that all of you are
familiar with. These days the first thing people think of when you say “auction” is probably
eBay. Not that long ago, you might have thought about the climactic auction scene in many
a movie and TV show. What happens in this auction? The auctioneer and the bidders are
in the same room. The auctioneer names a price and the bidders willing to pay it raise their
hands. The auctioneer raises the current price by small amounts, bidders successively drop
out of the auction, and when only one bidder remains he/she wins at the current price. This
is often called an English (ascending) auction.

To analyze this auction informally, first consider what behavior we expect from the
bidders. As long as the current price p is less than bidder i’s valuation vi, we expect the
bidder to stay in the auction—if it happens to win, its utility (recall (2)) will be strictly
positive. On the other hand, if the current price p exceeds vi then we expect the bidder to
drop out—winning would now be undesirable, leading to negative utility. In summary, we

2

expect each bidder to remain in the auction until the price hits its valuation, at which point
we expect the bidder to drop out. We claim that it is now easy to figure out what outcome
we expect.

Question 1.2 Which bidder wins in this ascending auction? What is the price paid?

Note that the winning bidder will be the one with the highest valuation (assume no ties for
simplicity), and the price paid will be that when the second-to-last bidder drops out—when
the price equals this bidder’s valuation (possibly plus some small increment). In summary,
we expect the bidder with the highest valuation to win and to pay the value of the second-
highest valuation.

In 1961, Vickrey [11] had a very nice idea: if we know what outcome we expect from the
English auction, why not do away with all the ceremony and just build it directly into an
auction?

Precisely, the Vickrey auction (VA) is the following.

(1) Each bidder i submits a sealed bid bi to an auctioneer (possibly bi = vi, possibly not).

(2) The auctioneer awards the item to the highest bidder.

(3) The auctioneer charges the winner a price equal to the second-highest bid.

Note that if every player sets bi = vi, then the Vickrey auction replicates the outcome of the
English auction.

1.2 Good Properties of the Vickrey Auction

The Vickrey auction possesses a number of laudable qualities, which we now formalize.
These six properties can also be regarded as a guiding list of desiderata for auctions in more
complex settings (though in the interests of truth in advertising, we will never again be able
to achieve all of them simultaneously). Because of this, some of the properties that we list
are trivial for the VA and only become interesting for combinatorial auctions (see the next
section).

The first property is the most important.

Proposition 1.3 For every player i and for every set {bj}j 6=i of bids for the other players,
player i maximizes his/her utility by setting bi = vi. This holds even if player i knows the
bids of the other players.

Several comments are in order before we prove Proposition 1.3. Concisely, the proposition
states that bidding truthfully (setting bi = vi) is never a bad idea. Because of this property,
we say that the VA is strategyproof or truthful. In game theory parlance, bidding truthfully
is a dominant strategy. In particular, player i need not care if the other players are bidding
truthfully (cf., the Nash equilibrium concept). In Proposition 1.3, we are not assuming that
player i knows all the other bids because we expect this to be the case (after all, it’s a

3

sealed-bid auction)—rather, awarding this clairvoyance to player i makes the truthfulness
guarantee that much more compelling.

Several caveats. First, as mentioned earlier, we’re assuming that all bidders possess a
quasilinear utility function. Second, we are not claiming that truthtelling is always the
unique way to maximize utility (though see Proposition 1.6 below). Third, we do not permit
collusion by the players—we assume that a player i cannot influence the bids of the other
players.

Proof of Proposition 1.3: Fix a player i with valuation vi. Fix a bid bj for each player j 6= i.
We need to show that among all possible bids bi for i, setting bi = vi maximizes its utility.
Let B = maxj 6=i bj be the highest bid by one of the other players. Throughout this proof, for
simplicity we ignore ties (the proof works with arbitrary tie breaking, as you should check).
There are then two cases.

First suppose that vi < B. Note that if the player bids truthfully it will lose and obtain
zero utility. This remains true if the player bids anything less than B. If the player bids
more than B, however, it will win and pay B. Its utility is then vi −B < 0, lower than it is
when i bids truthfully.

Now suppose that vi > B. If i bid truthfully, i wins and enjoys positive utility vi−B > 0.
If the player bids below B then it loses, receives zero utility, and is worse off than before.
The final case is really the key point of the Vickrey auction: no matter what i bids above B,
its price (B) and hence its utility (vi − B) remain the same.

In both cases, there is no false bid that yields strictly higher utility than a truthful one,
so the proof is complete. �

As a point of contrast, note that Proposition 1.3 (and in particular the final case in the
proof) fails for a first-price auction—the auction obtained by replacing the third step of the
VA with charging the highest bidder its own bid. (If bidder i knew B and vi > B, then it
would bid B + ǫ for small ǫ.)

Question 1.4 Ponder some other variations of the VA (e.g., third-price auctions) and
whether or not they are strategyproof.

Question 1.5 Where would collusion disrupt the proof of Proposition 1.3?

The proof of Proposition 1.3 shows that when player i knows the bids of the other players,
there are many different bids that maximize utility (of which truthtelling is always one). On
the other hand, when the player does not know the other bids, then every false bid can come
back to haunt the player.

Proposition 1.6 For every bid bi 6= vi, there is a set of bids {bj}j 6=i by the other players
such that i’s utility would have been strictly larger had it bid truthfully (bi = vi).

Proof: If bi < vi, choose the other bids so that B (the highest bid) satisfies bi < B < vi (so
that i loses instead of winning and getting positive utility). If bi > vi, choose bids so that
bi > B > vi (so that i wins and incurs negative utility instead of losing). �

4

Sometimes you hear auctions satisfying both Proposition 1.3 and 1.6 called strongly
truthful, and those satisfying only Proposition 1.3 weakly truthful. We will typically not give
Proposition 1.6 much thought, though most (if not all) of the auctions that we discuss satisfy
an analogous guarantee.

The final four propositions are trivial, and we single them out only because of their rele-
vance for more general combinatorial auctions. The first states that the utility of truthtellers
is always nonnegative in the VA.

Proposition 1.7 Truthtelling bidders always receive nonnegative utility in the VA.

Proof: Losers receive zero utility. The price charged to the winner is at most its bid; if its
bid equals its valuation, then the resulting utility is nonnegative. �

More economic jargon: auctions satisfying Proposition 1.7 are called individually rational
(IR), or are said to have the voluntary participation (VP) property.

We call Propositions 1.3, 1.6, and 1.7 incentive constraints, in that they are all meant to
ensure that bidders behave in a predictable, desirable way: bidding their true valuations.

At this point you might well ask: why is truthtelling important? We give two reasons,
one from the perspective of the participants, and the other from the perspective of the
auctioneer.

(1) In a first-price auction, knowledge about other bidders can be useful in determining
what to bid. Bidders are therefore motivated to expend resources to gain such infor-
mation. Of course, all such bidders are similarly motivated, potentially making the
outcome of the auction hard to predict. In a truthful auction, knowledge about other
bids is irrelevant; every bidder is justified (subject to the caveats mentioned earlier) in
sitting back, relaxing, and just bidding their valuation.

(2) When bidders report their true valuations, the auctioneer is in position to solve an un-
derlying optimization problem that involves the private valuations. (Without truthful
bids, there is essentially no way to solve such an optimization problem.)

To elaborate on the second point, consider the objective function of maximizing the social
surplus, defined as

max
n∑

i=1

vixi, (1)

where xi is 1 (0) if i is a winner (loser). Obviously, we impose the constraint that
∑

i xi = 1.
This is sometimes called the utilitarian objective function.

For a single-item auction, maximizing the social surplus simply means giving the item to
the player who values it the most. Note that optimizing this objective function intuitively
requires precise knowledge about the highest (private) valuation.

Remark 1.8 The price is not part of the surplus—in this context, prices are viewed as a
“transfer” between players and the auctioneer that permits implementation of the socially

5

best outcome, rather than as a loss in social welfare. We can also view the auctioneer as
a non-strategic player whose utility function is the revenue that it earns; this utility then
cancels out the utility lost by the auction winner from paying for the item. We emphasize,
however, that in these notes we do not view the auctioneer as a player that actively seeks to
maximize its revenue. See the companion course notes by Jason Hartline for auctions that
are designed to maximize the auctioneer’s revenue.

Since the VA awards the item to the highest bidder, it is an (economically) efficient
auction in the sense that it maximizes the surplus.

Proposition 1.9 If all players bid truthfully, then the VA produces an outcome that maxi-
mizes the social surplus.

Note that the incentive constraints (Propositions 1.3, 1.6, and 1.7) are meant to ensure the
hypothesis in Proposition 1.9.

Next we note that the VA makes no assumption about valuations. For example, we do
not assume that valuations are bounded above by a known constant. (Strictly speaking, we
are assuming that the value of losing is 0. We also usually think of the value of winning
as being nonnegative. The VA does not essentially depend on either of these assumptions,
however.)

Proposition 1.10 The VA works with general valuations.

Finally, a focal point in our discussion of combinatorial auctions: the VA is computa-
tionally tractable, in that it can be implemented in polynomial (indeed, linear) time.

Proposition 1.11 The VA is a polynomial-time auction.

1.3 Summary

This section introduced the Vickrey auction and formalized the pseudo-theorem that it is “a
good auction”. Specifically, we identified four desirable properties of the VA.

(P1) It satisfies strong incentive constraints (Proposition 1.3, 1.6, and 1.7).

(P2) It is economically efficient, in the sense that it maximizes the surplus (1) (Proposi-
tion 1.9).

(P3) It works with general valuations (Proposition 1.10).

(P4) It is a poly-time auction (Proposition 1.11).

We will see that these properties are not simultaneously achievable in the richer domain of
combinatorial auctions, and will seek to understand the feasible trade-offs between them.

6

2 Combinatorial Auctions and the VCG Mechanism

2.1 Combinatorial Auctions

Recall that the VA is concerned with auctioning off a single good. Combinatorial auctions
are motivated by the following natural question.

Question 2.1 What if there is a set S of m > 1 goods to be auctioned off to n players?
How can we extend the VA to this more general setting?

A natural idea is to run a separate Vickrey auction for each of the m goods. This works (i.e.,
properties (P1)–(P4) hold) if each player i has a separate value for each item, and the value
of a subset T ⊆ S of goods to player i is the sum of its values for the goods of T . (Exercise:
check this.) Unfortunately, this simple approach ignores the possible dependencies between
the outcomes of the different auctions for players. More specifically, it ignores:

(1) substitutes: a player’s value of getting (say) two goods is less than the sum of its values
for each individually (e.g., they are at least partially redundant);

(2) complements: a player’s value of getting (say) two goods is greater than the sum of its
values for each individually (e.g., they are at least partially co-dependent).

Indeed, one of the applications that kicked off the systematic study of combinatorial auctions
was the problem (faced by the FAA) of auctioning off take-off and landing slots at airports
to the major airlines. Two take-off slots from the same airport at almost the same time are
substitutes from an airline’s perspective, whereas a take-off slot at one airport and a landing
slot at a second airport (at the appropriate subsequent time) act as complements.

Informally, a combinatorial auction (CA) is an auction that allocates a set of many goods
to bidders in the presence of substitutes and complements. As we will see, designing good
combinatorial auctions is much more challenging than designing good auctions for selling a
single good.

2.2 The VCG Mechanism

Our first combinatorial auction is a classical, powerful mechanism called the VCG mecha-
nism. (By “mechanism”, we essentially mean some sort of incentive-compatible protocol.)
The “V” stands for Vickrey [11], the “C” for Clarke [1], and the “G” for Groves [2], three
researchers who gave successively more general versions of Vickrey auction. The good news
about the VCG mechanism is that it satisfies all of properties (P1)–(P3) from Subsection 1.3
(incentive constraints, economic efficiency, and general valuations). The bad news is that it
is highly computationally intractable.

To specify the VCG mechanism, we first need to say what we mean by a “valuation”
of a player i when there is a set S of m > 1 goods. For now, we will allow a very general
definition; later we will look at several special cases. We call a subset T ⊆ S of goods a
bundle. The valuation vi of the player i is a function from the set 2S of all possible bundles

7

to the nonnegative reals. In other words, the valuation specifies the value vi(T) of player i
of every conceivable bundle T ⊆ S of goods that it might receive. Note that with m goods,
there are 2m such bundles. We assume that vi(∅) = 0 for every i, though this is not an
essential assumption. For this section, we do not even need to assume that vi is nonnegative
or that it is monotone (i.e., that T ⊆ T ′ implies vi(T) ≤ vi(T

′)), though we will make these
assumptions in future sections.

Note that such valuations are certainly expressive enough to model substitutes and com-
plements. For example, if S = {1, 2} contains two goods which are perfect substitutes for a
player i, then i’s valuation might be v({1}) = v({2}) = v({1, 2}) = 1. If the two goods are
complements, then i’s valuation might be given by v({1}) = v({2}) = 0 and v({1, 2}) = 1.

Recall that for a single-item auction, the job of the auction is to determine a winner
and what price to charge. In a combinatorial auction there can be multiple “winners”—
the outcome of a CA is to allocate a bundle Ti ⊆ S to each player i such that bundles
given to distinct players are disjoint (no good can be allocated to more than one winner).
Accordingly, a CA can charge a different price pi to each player i. As in the VA, we again
assume quasilinear utilities, meaning:

• if player i receives the bundle Ti and is charged the price pi, then its utility is vi(Ti)−pi.

We now state the VCG mechanism, deferring the description of the prices until Sec-
tion 2.3. (Compare to the three steps of the VA.)

(1) Each player i submits a bid bi(T) for every possible non-empty bundle T ⊆ S. (We
always implicitly assume that bi(∅) = 0.) (If the player is truthful, then bi(T) = vi(T)
for every T ⊆ S.)

(2) Choose an allocation (T ∗
1 ,. . . ,T ∗

n) that maximizes

n∑

i=1

bi(Ti)

over all feasible allocations {Ti}n
i=1 (feasible means that Ti ∩ Tj = ∅ whenever i 6= j).

(3) Charge each player i an appropriate price pi (to be determined).

Both steps (1) and (2) should alarm theoretical computer scientists—more on this shortly.
Nevertheless, we can verify the properties (P2) and (P3) from Subsection 1.3 without even
stating the prices.

Proposition 2.2 The VCG mechanism is economically efficient. In other words, if all
players bid truthfully, then the VCG mechanism outputs an allocation that maximizes

n∑

i=1

vi(Ti)

over all feasible allocations.

8

Proof: Immediate from step (2) of the mechanism. �

Proposition 2.3 The VCG mechanism works with general valuations.

Proof: By definition. �

To discuss property (P4), we need to specify our criteria for computational tractability.
Recall we are interested in auctions that run in polynomial time—but polynomial in what?

Question 2.4 Recall that merely specifying the valuation of a player requires 2m − 1 pa-
rameters. Should we be happy if an auction runs in time polynomial in this “input size”?

In this course, we will be ambitious: our criteria for polynomial time will be polynomial in
the number n of players and in the number m of goods. In other words, we are only interested
in CAs that scale reasonably with number of players and goods. The VCG mechanism clearly
does not satisfy this stringent definition of computational tractability: merely communicating
the bid of a single player in step (1) requires exponential resources. The VCG mechanism
is also computationally inefficient in a second sense, as we will see in Section 3: even in
special cases where bidders can communicate their entire valuation in polynomial time,
the optimization problem that the VCG mechanism must solve in Step (2) can be highly
intractable.

2.3 VCG Prices and Strategyproofness

To determine whether or not the VCG mechanism has property (P1) (i.e., satisfies incentive
constraints), we must specify the prices charged in Step (3).

Question 2.5 Suppose we always set pi = 0 for all i. Would this make the VCG mechanism
truthful?

Question 2.6 We will give prices that generalize those in the VA. Can you think of what
this would look like for a CA (say with two goods)?

We specify the VCG prices in a form due to Clarke [1]. In English, the definition is:

(A) set pi equal to the damage caused to the other players by i’s presence.

Mathematically, we have

pi =

(

max
{Tj}j 6=i

∑

j 6=i

bj(Tj)

)

−
∑

j 6=i

bj(T
∗
j), (2)

where the maximum ranges over all feasible allocations of the goods to the n − 1 players
other than i (as usual, we insist that Tj ∩ Tk = ∅ for all j 6= k). Several comments. First,
to interpret these prices, it is often helpful to think of each of the bids bi(·) in (2) as the
corresponding true valuation vi(·); after all, at the end of the day we will prove that the

9

VCG mechanism is truthful and thus expect bidders to bid their true valuations. (Of course,
the price pi cannot explicitly refer to a true valuation vi(·) since these are unknown to the
mechanism; it can only use the received bids as proxies for the true valuations.)

The first term on the right-hand side of (2) is the maximum-possible surplus if we delete
player i’s bid and optimize only for the n − 1 other players. Note this is precisely the result
of rerunning step (2) of the VCG mechanism after deleting i’s bid from the input. Since
player i did submit a bid, however, the VCG mechanism instead chose the allocation {T ∗

j }n
j=1

maximizing the surplus
∑n

j=1 bj(T
∗
j) of all of the players. From the perspective of the n − 1

players other than i, their collective benefit in this allocation is
∑

j 6=i bj(T
∗
j), the second term

on the right-hand side of (2). The right-hand side of (2) is therefore the extent to which
the collective benefit of the n − 1 players other than i would increase if player i was deleted
and the VCG mechanism chose an allocation solely for their benefit—the damage caused to
these players by i’s presence.

The idea of these prices is to force a player to care about the welfare of the other players,
thus aligning the objective of the player with the global objective of maximizing social
surplus. This idea is common in economics and is often called “internalizing an externality”.

Example 2.7 In the special case of a single-good auction, the price (2) specializes to the
prices in the VA (0 for losers, the second-highest bid for the winner). To see this, note
that with a single item, every bundle T ∗

i has the form either ∅ (for losers) or {1} (for the
winner, where “1” denotes the item being sold). When a player submits a bid bi in the VA,
it corresponds to a bid bi({1}) in the current notation; as usual, we implicitly assume that
bi(∅) = 0 for every player. Note also that step (2) of the VCG mechanism simply means
giving the item to the highest bidder (which is step (2) of the VA).

First consider a player i that loses (so T ∗
i = ∅ and bi(T

∗
i) = 0). Let k be the winner

(so T ∗
k = {1} and bk(T

∗
k) is its sealed bid bk). The second term on the right-hand side

of (2) is bk. Since player i lost (i.e., did not have the highest bid), deleting the player and
rerunning step (2) of the VA would still result in player k winning the item; the first term
on the right-hand side of (2) is also bk, resulting in a price pi = 0 for player i. On the
other hand, suppose player i wins the item, so bi(T

∗
i) = bi and bj(T

∗
j) = 0 for every j 6= i.

The second term on the right-hand side of (2) is 0. If player i is deleted and step (2) of
the VA is rerun, then the remaining player with the highest bid—the player that originally
possessed the second-highest bid—wins, so the first term on the right-hand side of (2) is the
second-highest bid, as in the VA.

The definition (2) of the VCG prices immediately gives the following.

Proposition 2.8 VCG prices are nonnegative.

Proof: One feasible solution for the maximization problem in the first term in the right-side
of (2) is {T ∗

j }j 6=i with total value
∑

j 6=i bj(T
∗
j); the maximum can only be larger. �

10

We now give a second definition and interpretation of the VCG prices. To obtain it, we
simply add and subtract bi(T

∗
i) from (2) and rearrange terms:

pi = bi(T
∗
i) −

[
n∑

j=1

bj(T
∗
j) −

(
max
{Tj}j 6=i

∑

j 6=i

bj(Tj)

)]
. (3)

The way to think about (3) is that if the player i receives the bundle T ∗
i , then it pays its

bid bi(T
∗
i) minus a discount (the expression in the square brackets in (3)). Note that the

discount term is precisely the extent to which i’s presence increases the maximum-achievable
efficiency.

Question 2.9 What is the discount term in a single-item auction?

Recall that in a first-price single-item auction, there can be an incentive for players to
underbid. (See the discussion following Proposition 1.3.) The rough intuition for the discount
term above is that it simply gives players up front whatever they could gain by underbidding
in a first-price version of the VCG mechanism.

From the second definition (3) of the VCG prices, we immediately obtain that the VCG
mechanism is individually rational (recall Proposition 1.7).

Proposition 2.10 The utility of a truthtelling bidder in the VCG mechanism is always
nonnegative.

Proof: The proposition is equivalent to showing that the discount term in (3) is always
nonnegative. This holds because adding an extra bidder can only increase the maximum-
achievable surplus (it only enlarges the set of feasible allocations). �

All that remains to prove is that the VCG mechanism is truthful. (As an exercise, the
reader is invited to prove that it is also strongly truthful in the sense of Proposition 1.6.)

Proposition 2.11 The VCG mechanism is strategyproof. That is, for every player i, even
if the player knows the full bids of all of the other players, player i maximizes its utility by
bidding truthfully (setting bi(T) = vi(T) for every non-empty bundle T ⊆ S).

Proof: We follow the more general approach of Groves [2], which will make the proof of
truthfulness more transparent. We first prove truthfulness for the wrong set of prices, and
then show how to shift these prices to recover the VCG prices while maintaining truthfulness.

Modify the VCG mechanism so that in step (3) it computes the following price pi for
each player i:

pi = −
∑

j 6=i

bj(T
∗
j), (4)

where as usual {T ∗
j }n

j=1 denotes the allocation computed in step (2) of the VCG mechanism.
Note these are negative prices (i.e., subsidies) and are certainly not the VCG prices of (2)
and (3). For example, for a single-item auction, these prices say that the winner should be

11

charged nothing while all the losers should be paid the winner’s bid! (Question: does this
result in a strategyproof single-item auction?)

Note that the price (4) is defined so that any benefit to some other player also benefits
the player i. More precisely, since player i’s utility is its value for its bundle minus the price
paid, its utility for a given allocation {T ∗

j }n
j=1 with the price in (4) is

vi(T
∗
i) +

∑

j 6=i

bj(T
∗
j). (5)

Suggestively, the VCG mechanism chooses in step (2) the allocation {T ∗
j }n

j=1 to maximize

n∑

j=1

bj(Tj) (6)

over all feasible allocations {Tj}n
j=1. Glibly, we might finish this part of the proof by saying

that if player i bids truthfully, then the VCG mechanism’s objective and its own are exactly
aligned, which then results in an optimal outcome from i’s perspective. While this argument
is not incorrect, we proceed a bit more carefully.

As a sanity check, note that the only thing player i has control over is its bid {bi(T)}T⊆S.
While the player cannot directly control the allocation {T ∗

j }n
j=1 chosen in step (2) of the

VCG mechanism, it can potentially influence the choice of this allocation by varying its
bid. Similarly, it cannot influence the functions vi(·) and bj(·) for j 6= i (recall no collusion
is allowed), only the allocation {T ∗

j }n
j=1 chosen by the VCG mechanism. Now, view (5)

as an objective function for a discrete optimization problem (over allocations) from player

i’s perspective: there is some allocation, say {T̂j}n
j=1, that maximizes this function. The

best-case scenario for player i is that some bid {bi(T)}T⊆S coaxes the VCG mechanism into

choosing this allocation {T̂j}n
j=1 as the allocation {T ∗

j }n
j=1 in its step (2)—if there exists such

a bid, then no other bid can provide i with strictly more utility. But if player i bids truthfully
(bi(T) = vi(T) for all T), then the criterion (6) maximized by the VCG mechanism over all
feasible allocations {Tj}n

j=1 is

vi(Ti) +

n∑

j 6=i

bj(Tj), (7)

and thus the VCG mechanism will indeed choose the allocation {T̂j}n
j=1 in step (2) (or some

other allocation with equal value from player i’s perspective). Thus player i maximizes its
utility by bidding truthfully.

We have shown that the VCG mechanism is truthful provided we use the negative prices
in (4). Here’s the key idea of Groves [2]: suppose we shift each price pi by a function
hi({bj}j 6=i) that is independent of i’s bid bi. Here by independent we mean that once we
fix all bids bj for j 6= i, hi is a constant function of bi. In particular, it cannot depend on
the allocation {T ∗

j }n
j=1 chosen by the VCG mechanism (which in turn is a function of bi).

For example, in the single-item case, hi({bj}j 6=i) could be the highest bid maxj 6=i bj by some

12

other player. Below, we use the standard shorthand b−i to denote the set {bj}j 6=i of bids by
players other than i.

The claim is that adding such a function hi(·) to the price pi charged to player i does
not affect strategyproofness. This follows from two simple facts. First, the new objective for
player i (given fixed bids b−i by the other players) is to choose a bid {bi(T)}T⊆S to maximize

vi(T
∗
i) +

∑

j 6=i

bj(T
∗
j) − c, (8)

where c is the constant hi(b−i). Note that the sets of allocations maximizing (5) and (8)
are exactly the same. Second, the allocation {T ∗

j }n
j=1 chosen by the VCG mechanism is

independent of the prices (and of hi in particular), and depends only on the bids. Thus
bidding truthfully still causes the VCG mechanism to choose an allocation that maximizes (8)
over all feasible allocations. This completes the proof of the claim.

Finally, note that instantiating

hi(b−i) = max
{Tj}j 6=i

∑

j 6=i

bj(Tj)

for each player i gives the VCG prices (2). �

2.4 Summary

In this section we described the classical VCG mechanism for CAs. (The mechanism can
also be defined much more generally; see [7].) On the plus side, it has properties (P1)–(P3)
from Subsection 1.3: it satisfies both incentive constraints and economic efficiency even with
general valuations. Unfortunately, it is computationally intractable—even the bidding step
(step (1)) requires an exponential (in m) amount of communication (and time).

3 Single-Minded Bidders

The VCG mechanism has all of the properties that we’d want of a CA except for compu-
tational tractability. In this section we begin exploring the following question, which has
been systematically studied only relatively recently (since the late 1990s, mostly by com-
puter scientists): how much do we need to relax the properties (P1)–(P3) of Subsection 1.3
to recover computational tractability (P4)? We have already noted that if we weaken (P3)
by assuming that bidders’ valuations have no complements or substitutes, then we can easily
achieve the other three properties by running a separate Vickrey auction for each good (see
the discussion following Question 2.1). What can we accomplish with (at least some degree
of) complements and/or substitutes?

3.1 Preliminaries

In this section we will focus on a highly restricted class of valuations, which essentially model
an extreme form of complements.

13

Definition 3.1 Let S be a set of goods and i a bidder with valuation vi. The bidder i is
single-minded if there is a set Ai ⊆ S of goods and a value αi ≥ 0 such that:

(a) vi(Ti) = αi whenever Ti ⊇ Ai; and

(b) vi(Ti) = 0 otherwise.

Thus from i’s perspective there are only two distinct outcomes: either it gets all of the goods
it wants (the set Ai), in which case its value for its bundle is αi, or it fails to get all of these
goods, in which case its value for its bundle is 0.

The motivation for this definition is twofold. First, it is a conceptually simple type of
valuation that nevertheless models one of the quintessential aspects of CAs (complements).
Second, it immediately gets rid of the initial computational stumbling block for the VCG
mechanism: now players’ valuations can be implicitly but completely specified in time poly-
nomial in n and m, since each player i can simply report (proxies for) its set Ai and value
αi. We should therefore ask the following.

Question 3.2 For the special case of single-minded bidders, can the VCG mechanism be
implemented to run in polynomial time?

If the answer is “yes”, then we can move on to more general classes of valuations; if the
answer is “no”, then we will need to design a new (computationally tractable) mechanism
even for the case of single-minded bidders.

The answer to Question 3.2 is no (assuming P 6= NP). The reason is that the VCG
mechanism is computationally inefficient in two distinct senses. First, as we have repeatedly
noted, the bidding step (1) requires exponential communication (for general valuations). Sec-
ond, even when this problem is assumed away (as with single-minded bidders), the allocation
step (2) of VCG can require exponential computation.

Precisely, consider the optimization problem of maximizing the surplus (1), given the true
valuations of the bidders. This problem is typically called the winner determination (WD)
problem. Note that step (2) of the VCG mechanism is precisely the WD problem (where
bids are used as surrogates for true valuations). For single-minded bidders, the WD problem
has the following form: given the valuations (truthful bids) of the players, as specified by
the pairs (A1, α1), . . . , (An, αn), grant a set of disjoint bids (i.e., a subset of players such
that the corresponding Ai’s are pairwise disjoint) to maximize the sum

∑
αi of the values

of the granted bids. We next show that the WD problem is hard, even in the special case of
single-minded bidders.

Proposition 3.3 ([5, 9]) The WD problem for single-minded bidders is NP-hard.

Proof: By a reduction from the NP-hard problem Weighted Independent Set (WIS). Given
an instance of WIS, specified by a graph G = (V, E) and a weight wv for each vertex v ∈ V ,
construct the following instance of the WD problem: the set of goods is the set E of edges of
G; the set of players is the set V of vertices; for a vertex/player v ∈ V , set αv = wv and Av

equal to the set of edges of G that are incident to v. A subset of vertices/players is then a

14

WIS of G if and only if it is a subset of bids that can be simultaneously granted. Moreover,
this bijective correspondence preserves the total weight/value of the solution. �

Unfortunately, WIS is not just an NP-hard problem; it is a “really hard” NP-hard prob-
lem. To make this precise, recall that a ρ-approximation algorithm for a maximization
problem is a polynomial-time algorithm that always recovers at least a 1/ρ fraction of the
value of an optimal solution. (By our convention, ρ is always at least 1.)

Fact 3.4 ([3]) For every ǫ > 0, there is no O(n1−ǫ)-approximation algorithm for WIS, where
n denotes the number of vertices (unless NP ⊆ ZPP).

Fact 3.4 basically says that the WIS problem admits no non-trivial approximation algorithm.
(Note that simply picking the max-weight vertex gives an n-approximation for WIS.) More
relevant for CAs is the following consequence of Fact 3.4.

Corollary 3.5 For every ǫ > 0, there is no O(m
1

2
−ǫ)-approximation algorithm for WIS,

where m denotes the number of edges (unless NP ⊆ ZPP).

Corollary 3.5 follows from Fact 3.4 because the number of edges of a (simple) graph is at
most quadratic in the number of vertices.

Because the reduction in the proof of Proposition 3.3 is “approximation preserving” (it
gives a bijection that preserves the objective function values of corresponding solutions of
WIS and WD), it implies the following strong negative result about approximating the WD
problem with single-minded bidders.

Corollary 3.6 For every ǫ > 0, there is no O(m
1

2
−ǫ)-approximation algorithm for WD with

single-minded bidders, where m denotes the number of goods (unless NP ⊆ ZPP).

The upshot of Corollary 3.6 is rather bleak: if we want a polynomial-time CA—property (P4)
from Subsection 1.3—then even if we assume single-minded bidders (sacrificing significant
valuation generality (P3)), and even if we ignore incentive-compatibility (P1), then we must
take a big hit on property (P2) and settle for (at best) an O(

√
m)-approximation of the

surplus.
At least the bad news stops here: we next design a CA for single-minded bidders that is

poly-time implementable, achieves the best-possible approximation of the surplus under this
constraint (O(

√
m)), and also satisfies the incentive constraints (P1). We present this CA

in two parts: first, we present a poly-time O(
√

m)-approximation algorithm for WD with
single-minded bidders (Subsection 3.2); then we show how to charge prices to turn this WD
algorithm into an incentive-compatible mechanism (Subsection 3.3).

3.2 Approximate Winner Determination

We now design an approximation algorithm for the following problem: given a set S of m
goods and (truthful) bids (A1, α1), . . . , (An, αn), which bids should we grant to maximize

15

the total value of granted bids? (Here by “grant bid (Ai, αi)” we mean assign player i the
bundle Ti = Ai; obviously granted bids should be pairwise disjoint.)

We will design a greedy approximation algorithm for this WD problem. To motivate the
algorithm, we first consider two greedy algorithms that fail to achieve the target performance
guarantee of O(

√
m).

Example 3.7 Suppose we sort the bids in decreasing order of value, and grant them greedily.
In other words, we go through the bids one-by-one in sorted order, and we grant a bid if and
only if all of its items are still available.

The following example is bad for this algorithm. There is a set S of m goods and n = m+1
players. Set A1 = S and α1 = 1+ǫ where ǫ > 0 is arbitrarily small. For i ∈ {2, 3, . . . , m+1},
set αi = 1 and Ai equal to the (i − 1)th good of S. Our greedy algorithm grants the first
bid and achieves a surplus of 1 + ǫ; the optimal solution grants the rest of the bids and
achieves a surplus of m. Thus this algorithm is no better than an m-approximation for the
WD problem.

The greedy algorithm in Example 3.7 performs poorly because it fails to account for the
fact that a big bid (i.e., a bid for many items) can block a large number of small bids that
each have almost the same value as the big one. A natural way to fix this problem is to
somehow normalize the value of a bid according to the number of items that it requires.
This motivates our second greedy algorithm.

Example 3.8 Suppose we instead sort the bids in decreasing order of αi/|Ai| (value-per-
good) and grant bids greedily. This algorithm certainly returns the optimal solution for the
input in Example 3.7. What is its performance in general?

Consider the following example: a set S of m goods, one player with A1 = S and
α1 = m − ǫ, and a second player with A2 = {1} and α2 = 1. The above greedy algorithm
grants the second bid. The optimal solution grants the first bid. Thus the greedy algorithm
is no better than an m-approximation algorithm for maximizing the surplus.

The greedy algorithm in Example 3.8 performs poorly because it undervalues large bids that
primarily comprise items for which there is no contention.

Our final algorithm, the LOS algorithm due to Lehmann, O’Callaghan, and Shoham [5],
interpolates between the greedy algorithms of Examples 3.7 and 3.8 and considers bids in
decreasing order of αi/

√
|Ai| (see Figure 1).

Exercise 3.9 Modify Examples 3.7 and 3.8 to obtain two different examples showing that
the LOS algorithm is no better than a

√
m-approximation algorithm for the WD problem.

Perhaps surprisingly, this simple modification is enough to obtain an essentially best-
possible approximation ratio (recall Corollary 3.6).

Theorem 3.10 ([5]) The LOS algorithm is a
√

m-approximation algorithm for the WD
problem with single-minded bidders.

16

Input: A set S of m goods, (truthful) bids (A1, α1), . . . , (An, αn).

1. Reindex the bids so that

α1√
|A1|

≥ α2√
|A2|

≥ · · · αn√
|An|

. (9)

2. For i = 1, 2, . . . , n: if no items of Ai have already been assigned to a previous player,
set Ti = Ai; otherwise, set Ti = ∅.

Figure 1: The LOS approximate winner-determination algorithm.

Proof: Fix a set S of m goods and bids (A1, α1), . . . , (An, αn). Let X ⊆ {1, 2, . . . , n} denote
the indices of the bids granted by the LOS greedy algorithm, and X∗ those of an optimal
set of bids. We need to show that

∑

i∗∈X∗

αi∗ ≤
√

m ·
∑

i∈X

αi. (10)

Our proof approach is a natural one for analyzing a greedy algorithm: we use the greedy cri-
terion (9) to establish a “local bound” between “pieces” of the greedy and optimal solutions,
and then combine these local bounds into the global bound (10).

We next make a simple but crucial definition. We say that a bid i ∈ X blocks a bid
i∗ ∈ X∗ if Ai ∩Ai∗ 6= ∅. We allow i = i∗ in this definition. Note that if i blocks i∗ and i 6= i∗,
then the bids Ai and Ai∗ cannot both be granted; the greedy and optimal algorithms made
different decisions as to how to resolve this conflict. For a bid i ∈ X, let Fi ⊆ X∗ denote the
bids of X∗ first blocked by i (i.e., i∗ ∈ X∗ is placed in Fi if and only if i is the first bid in
the greedy ordering that blocks i∗).

Two key points. First, we can already describe our “local bound” relating pieces of the
optimal and greedy solutions. Suppose i∗ ∈ Fi—the bid i∗ ∈ X∗ is first blocked by i ∈ X.
Then at the time the greedy algorithm chose to grant the bid i, the bid i∗ was not yet blocked
and was a viable alternative; by (9), we must have

αi√
|Ai|

≥ αi∗√
|Ai∗|

(11)

whenever i∗ ∈ Fi. The second key point is that each optimal bid i∗ ∈ X∗ lies in precisely one
set Fi. (Each bid i∗ ∈ X∗ must be blocked by at least one bid of X—possibly by itself—since
i∗ would only by passed over by the greedy algorithm if it was blocked by some previously
granted bid.) Thus the Fi’s are a partition of X∗; in particular,

∑

i∗∈X∗

αi∗ =
∑

i∈X

∑

i∗∈Fi

αi∗ . (12)

This fact allows us to consider each bid i ∈ X separately and then combine the results to
obtain the global bound (10).

17

Now fix a bid i ∈ X. Summing over all i∗ ∈ Fi in (11), we have

∑

i∗∈Fi

αi∗ ≤
αi√
|Ai|

(
∑

i∗∈Fi

√
|Ai∗|

)
. (13)

(Compare to (10).) The key question is: how big can the expression in parentheses on the
RHS of (13) be? First, since all bids of Fi were simultaneously granted by the optimal
solution, they must be disjoint and hence

∑

i∗∈Fi

|Ai∗| ≤ m.

The worst case is that this inequality holds with equality. How would we then partition S
among the |Fi| bids of Fi to maximize

∑
i∗∈Fi

√
|Ai∗|? The answer is that we would spread

the goods out equally (m/|Fi| goods in each set). Formally this follows from the Cauchy-
Schwarz inequality or from the concavity of the square-root function; it should also be easy
to convince yourself of this fact with simple examples (e.g. the |Fi| = 2 case). These facts
and (13) give

∑

i∗∈Fi

αi∗ ≤
αi√
|Ai|

(
∑

i∗∈Fi

√
m

|Fi|

)

=
√

m · αi√
|Ai|

√
|Fi|. (14)

Finally, since the bid i blocks all of the bids of Fi, and bids of Fi are disjoint, in the worst
case each item of Ai blocks a distinct bid of Fi (cf., Example 3.7). Thus |Fi| ≤ |Ai|, which
implies ∑

i∗∈Fi

αi∗ ≤
√

m · αi;

summing over all i ∈ X and applying (12) completes the proof of (10). �

Exercise 3.11 Suppose we modify the LOS algorithm to grant bids greedily in decreasing
order of αi/|Ai|p, where p ∈ [0, 1] is a parameter. What is the approximation ratio of this
algorithm, as a function of p?

3.3 A Truthful Payment Scheme

Now that we’ve designed a best-possible approximate WD algorithm (subject to the con-
straint of poly-time computation), we next aim to extend it to a truthful mechanism by
charging suitable prices. In particular, recall that the LOS algorithm assumes that its input
is a set of truthful bids; to justify this assumption, we seek prices that result in a strate-
gyproof mechanism. (Otherwise the algorithm is optimizing using the wrong input, so its
approximation guarantee is meaningless.)

A natural idea is to plug the LOS WD algorithm into step (2) of the VCG mechanism. In
other words, first all players report their set Ai and value αi, then we determine an allocation
using the LOS algorithm, and then we charge player i a price equal to the monetary damage
it causes the other players. Note that this is a poly-time mechanism. But is it truthful?

18

Example 3.12 Consider the following modification to Example 3.7. The first player has
the set A1 = S and value

√
m + ǫ. For i = 2, 3, . . . , m + 1, the ith player wants only the

(i − 1)th item and has value αi = 1.
If all players bid truthfully, then the LOS algorithm will grant only the first player’s bid.

But if we delete the first player’s bid, then all of the other players’ bids will be granted
by the LOS algorithm. Thus the monetary damage caused by the first player to the rest
equals m. But then the price charged to the first player by the VCG mechanism is m, even
though its bid was only ≈ √

m, and this player winds up with negative utility! Thus the
VCG mechanism together with the LOS algorithm is not truthful (e.g. the first player could
obtain zero utility by bidding a value of 0), and is not even individually rational in the sense
of Proposition 1.7.

In fact, the VCG mechanism is incompatible with approximate WD algorithms in a quite
general sense; see Nisan and Ronen [8] for a detailed study of this issue.

The moral of Example 3.12 is that if we want to extend the LOS algorithm to a truth-
ful mechanism, then we have to carefully design a pricing scheme that is tailored to the
algorithm. The solution to this non-trivial problem follows.

The high-level idea of the LOS pricing scheme is to charge prices that are “Vickrey-like”,
in the sense that a winner i should pay according to a suitable function of the highest-value
bid that i’s bid blocks. This motivates a key definition.

Definition 3.13 Suppose bid i was granted by the LOS algorithm while bid j was denied.
The bid i uniquely blocks the bid j if, after deleting the bid i from the input, the LOS
algorithm grants the bid j.

We will use the terminology u-blocks as shorthand for “uniquely blocks”. Definition 3.13
is somewhat subtle. We give a simple example, and encourage the reader to explore more
complicated ones.

Example 3.14 Figure 2 shows a rough picture of four bids. The bids are numbered accord-
ing to the LOS greedy ordering. Overlap between two circles is meant to indicate that the
two bids share at least one item. Given the full input, the LOS algorithm will grant the first
two bids and deny the last two. If the first bid is deleted, the LOS algorithm will grant the
second and fourth bids. Thus the first bid u-blocks the fourth bid, but it does not u-block
the third bid.

Exercise 3.15

(a) Show that the terminology “u-block” is somewhat misleading in the following sense: a
bid (Bi, bi) can u-block a bid (Bj , bj) even if Bi and Bj are disjoint.

(b) On the other hand, show that if (Bj, bj) is the first bid in the LOS ordering that is
u-blocked by (Bi, bi), then Bi ∩ Bj 6= ∅.

19

4

1 23

Figure 2: Illustration of Definition 3.13 (u-blocking).

The idea of the LOS pricing scheme is to charge a winning bidder according to the
highest-value bid that it u-blocks. Here “highest-value” should be suitably normalized by
bid size, to reflect the way the LOS algorithm chooses its ordering. Precisely, the LOS prices
are as follows.

• If the bidder i loses, or if its bid wins but u-blocks no other bid, then pi = 0.

• Otherwise, suppose i’s bid is (Bi, bi), and let (Bj, bj) be the first bid in the LOS greedy
ordering that i’s bid u-blocks. Set

pi =
bj√
|Bj|

·
√
|Bi|. (15)

By the LOS mechanism, we mean the CA that uses the WD algorithm of Subsection 3.2
followed by the above charging scheme.

Individual rationality is almost immediate.

Proposition 3.16 Truthtelling bidders always obtain nonnegative utility in the LOS mech-
anism.

Proof: We need to show that the price pi charged to a winning bidder i is at most its bid
bi. Let (Bj, bj) be the first bid that (Bi, bi) u-blocks (if there is no such bid, then pi = 0 and
there’s nothing to prove). Since (Bj , bj) must follow (Bi, bi) in the LOS ordering,

bi√
|Bi|

≥ bj√
|Bj |

;

rearranging gives bi ≥ pi, as desired. �

Strategyproofness is much less obvious.

Theorem 3.17 The LOS mechanism is strategyproof.

20

Again, we leave it to the reader to investigate the extent to which the LOS mechanism
is strongly truthful in the sense of Proposition 1.6.

Our first step in proving Theorem 3.17 is to show that bidders have no incentive to lie
about their desired sets (the Ai’s).

Lemma 3.18 If a player i can benefit in the LOS mechanism from a false bid (Bi, bi), then
it can benefit from such a bid in which Bi = Ai.

Proof: Suppose there is a player i and a set of bids {(Bj, bj)}j 6=i for the other n − 1 players
such that i obtains strictly greater utility from falsely bidding (Bi, bi) than from truthfully
bidding (Ai, αi). By Proposition 3.16, this can only occur if the LOS mechanism grants the
bid (Bi, bi). We aim to show that the false bid (Ai, bi) also leads to greater utility than the
bid (Ai, αi).

First note that in the false bid (Bi, bi), we must have Bi ⊇ Ai: if Bi is missing any
items from Ai, then the LOS mechanism will never produce an outcome in which i has
strictly positive utility. (And by Proposition 3.16, a truthful bid always leads to nonnegative
utility.) So suppose Bi contains Ai and that the LOS mechanism grants the bid (Bi, bi); we
can complete the proof by showing that the LOS mechanism would have also granted the
bid (Ai, bi) and would have only charged player i a smaller price.

The first part of the above statement is easy to see: since Ai ⊆ Bi, the bid (Ai, bi)
would only be considered earlier in the greedy LOS ordering (9) and would therefore be
granted. For the second part, recall from (15) that the price charged to player i by the
LOS mechanism is pi = bj

√
|Bi|/

√
|Bj |, where j is the earliest bid u-blocked by i (if any).

Bidding Ai instead of Bi affects this price in two ways. First, the second term on the RHS
of (15) clearly only goes down. The second, trickier consequence is that the identity of the
first u-blocked bid could change. So suppose the first bid u-blocked by the bid (Bi, bi) is
(Bj , bj) and that by (Ai, bi) is (Bk, bk). (To rule out the possibility that there is no u-blocked
bid, add an imaginary bid for all of the items that has zero value.) The final key claim,
which we leave as an exercise, is that (Bk, bk) can only follow (Bj, bj) in the greedy LOS
ordering. This implies that bidding Ai instead of Bi can only decrease the first term on the
RHS of (15), and completes the proof. �

Exercise 3.19 Complete the proof of Lemma 3.18: assume that Bi ⊇ Ai and show that if
(Bj , bj) and (Bk, bk) are the first bids u-blocked by the bids (Bi, bi) and (Ai, bi), respectively,
then (Bk, bk) can only follow (Bj, bj) in the greedy LOS ordering (9).
[See also the proof of Theorem 3.17 below for a similar argument.]

We now complete the proof of Theorem 3.17.

Proof of Theorem 3.17: As in the proof of Lemma 3.18, assume for contradiction that there
is a player i and a set of bids {(Bj, bj)}j 6=i for the other n − 1 players such that i obtains
strictly greater utility from falsely bidding (Bi, bi) than from truthfully bidding (Ai, αi).
By Lemma 3.18, we can assume that Bi = Ai. Let B−i denote the set {(Bj, bj)}j 6=i of other
players’ bids; BT the set B−i∪{(Ai, αi)}; and BF the set B−i∪{(Ai, bi)}. By Proposition 3.16,
we can assume that the LOS mechanism granted the bid (Ai, bi) given the input BF .

21

There are two cases. We consider only the case where bi < αi, and leave the other case as
an exercise. We can assume that the bid (Ai, bi) was granted. Since αi > bi, the bid (Ai, αi)
would have only been considered earlier in the LOS ordering and thus would also have been
granted. Suppose that (Bj , bj) is the first bid u-blocked by the false bid (Ai, bi). We can
complete the proof by showing that (Ai, αi) does not u-block any bid earlier than (Bj, bj),
as then the price (15) charged by the LOS mechanism on input BT for the bid (Ai, αi) is at
most that for the bid (Ai, bi) on the input BF .

Suppose for contradiction that the first bid (Bk, bk) that (Ai, αi) u-blocks precedes (Bj, bj)
in the LOS ordering. By the definition of u-blocking, removing the bid (Ai, αi) from BT and
rerunning the LOS algorithm on the input B−i causes the bid (Bk, bk) to be granted. A
key observation is this: if (Ai, bi) follows (Bk, bk) in the LOS ordering, (Bk, bk) would also
be granted by the LOS algorithm on the input BF —this holds because the LOS algorithm
makes identical decisions on the inputs B−i and BF , until the point that the bid (Ai, bi) is
considered in the latter execution. Since Exercise 3.15(b) implies that Ai and Bk must have
at least one item in common, and since the bid (Ai, bi) is granted by the LOS algorithm given
the input BF , this observation implies that (Ai, bi) precedes (Bk, bk) in the LOS ordering.
But then (Ai, bi) u-blocks (Bk, bk), contradicting the assumption that (Bk, bk) precedes the
first bid (Bj , bj) u-blocked by (Ai, bi). �

Exercise 3.20 Complete the proof of Theorem 3.17: show that if (bi, Ai) is a winning bid
and bi > αi, then player i’s utility would have been at least as large had it bid (αi, Ai).

Exercise 3.21 Suppose we modify the LOS mechanism so that the price pi charged for a
winning bid (Bi, bi) is given by (15), but where the bid (Bj, bj) is defined as the first bid
blocked by (Bi, bi)—the first denied bid after (Bi, bi) with Bi ∩ Bj 6= ∅. Does this result in
a strategyproof mechanism?

Exercise 3.22 Recall from Exercise 3.11 that the LOS WD algorithm can be extended
to a family of greedy algorithms, parametrized by p. Can all of these WD algorithms be
extended to truthful mechanisms via appropriate pricing schemes? What about for other
classes of greedy criteria (e.g. ordering bids according to αi/f(|Ai|), where f is a more general
nondecreasing function of set size)?

3.4 Summary

This section studied the LOS CA for single-minded bidders. On the plus side, this is our first
poly-time CA for valuations that can have some degree of complements or substitutes (in this
case, a restricted form of complements). On the minus side, the valuations can have only a
very restricted form and the CA guarantees only a relatively weak (O(

√
m)) approximation

of the maximum surplus. In terms of our guiding desiderata (P1)–(P4) from Subsection 1.3,
the LOS CA achieves incentive compatibility (P1) and computational tractability (P4) while
making serious concessions to economic efficiency (P2) and valuation generality (P3). We

22

have already seen (Corollary 3.6) that the trade-off between economic efficiency and compu-
tational tractability is fundamental, even for single-minded bidders, and even ignoring incen-
tive compatibility. The next section shows that even a weaker notion of CA tractability—
poly-time communication and unbounded computation—leads to a fundamental trade-off,
between economic efficiency and valuation generality.

4 Communication Complexity of CAs

Last section restricted attention to single-minded bidders in part to eliminate communication
difficulties and focus on the computational complexity of winner determination. This section
returns to general valuations — where all we know about each valuation vi is that vi(∅) =
0 and that vi(T1) ≤ vi(T2) whenever T1 ⊆ T2 — and shines the spotlight squarely on
communication issues.

Intuitively, since a general valuation has an exponential number of free parameters, we
don’t expect to achieve a reasonable allocation in all cases while examining only a polynomial
number of them. To make this precise, we consider the following model of computation.
(See [4] for an overview of the various standard models.) Players participate in a protocol,
decided upon in advance; at each step of the protocol, one of the players transmits a bit,
which is seen by all players. Crucially, the bit transmitted by a player can only depend on its
own private information and the protocol history so far (i.e., who transmitted what). The
communication complexity of a protocol is the worst-case number of bits that are transmitted
(over all possible private inputs of the players).

The key point to take away from this definition is how powerful the model of computation
is: in addition to dispensing with any incentive constraints (which we will do for this entire
section), unlimited computation by the players is permitted. While the point of this model
is lower bounds (which are only more compelling in such an unrealistically strong model),
let’s develop some intuition by examining some positive results.

First, observe that winner determination with single-minded bidders is trivially solvable
with a polynomial amount of communication. The following protocol works: (1) each player
broadcasts their private set and value in some predetermined order (recall we ignore incentive
constraints); and (2) each player uses these to compute an optimal solution in a consistent
way (this is an NP-hard problem, but recall we allow unbounded computation).

Second, the LOS algorithm can be used to achieve a non-trivial approximation guarantee
with polynomial communication even for general valuations in this model of computation.
The idea is to conceptually treat a single player with a general valuation vi as 2m different
single-minded players — one single-minded player for each bundle T ⊆ S, with inherited
valuation vi(T). To prevent different ”sub-players” corresponding to a single original player
from simultaneously getting their bundles granted, we add one ”dummy good” for each
original player i. We then supplement the desired set of each of i’s sub-players with this
dummy good. This ensures that every feasible allocation with the sub-players and the dummy
goods maps naturally to a feasible allocation of the original instance with the same surplus.

We have shown how to reduce surplus maximization with n players with general valua-

23

tions and m goods to surplus maximization with n2m single-minded players and m+n goods.
Solving the latter ”single-minded instance” by brute-force (as above) would require commu-
nication exponential in one of the original parameters of interest (namely, m). Running the
LOS algorithm directly on the single-minded instance suffers the same problem.

We can simulate the decisions that the LOS algorithm would make on the single-minded
instance, using only polynomial (in n and m) communication, as follows. We define a protocol
that works directly on the original instance (with n players and m goods). The protocol
proceeds in rounds. All players are initially active and all goods are initially unallocated.
In each round, each active player i broadcasts the bundle T ∗

i of unallocated goods that
maximizes vi(Ti)/

√
|Ti|. (Solving this maximization problem might require exponential time

by the player, but remember this is permitted.) All players see all proposed bundles, and
the one that maximizes vi(T

∗
i)/
√

|T ∗
i | over active players i is understood by all of the players

to be allocated. The winning player i∗ deactivates itself and the goods in its bundle T ∗
i∗

are understood by all players to now be allocated. The protocol terminates once all players
are inactive. Intuitively, each round of the protocol is executing a “two-stage tournament”
to identify the bundle that would next be selected by the LOS algorithm on the induced
single-minded instance — in the first stage, each original player runs a tournament to elect
the most viable candidate from its 2m induced single-minded players (this can be done
privately, without any communication), and the second round elects a final winner from the
polynomially many candidates that survive the first stage.

Exercise 4.1 Prove that the allocation decisions made by the above protocol for the original
instance are isomorphic to those that the LOS winner determination algorithm would make
on the induced single-minded instance, and therefore it achieves an O(

√
m)-approximation

of the surplus.

The main result in this section is a matching lower bound.

Theorem 4.2 ([6]) For every ǫ > 0, there is no polynomial-communication, O(m(1/2)−ǫ)-
approximation for the general winner determination problem.

This lower bound is ”unconditional”, in that it doesn’t depend on any complexity-theoretic
assumptions like P 6= NP . It can be extended to cover randomized and nondeterminis-
tic protocols, and similar proof techniques also yield (sometimes weaker) lower bounds for
various restricted classes of valuations. See [7, 10] for further details and references.

At the highest level, the proof of Theorem 4.2 is not unlike the familiar argument that
comparison-based sorting requires Ω(n log n) comparisons — an algorithm that employs only
k comparisons generates at most 2k distinct executions, and n! different executions are
needed to correctly distinguish the n! ordinally distinct possible inputs. (Recall log2 n! =
Θ(n log n).) The proof of Theorem 4.2 needs two additional ideas. First, the structure of the
private information implies that sets of inputs that generate identical protocol transcripts
satisfy a natural closure property. Second, to prove the strong approximation lower bound of
Ω(m(1/2)−ǫ) we require some neat combinatorics to generate winner determination instances
that admit either a high-surplus feasible solution or only very low-surplus solutions.

24

The first point is simple. Consider a protocol and let Xi denote the set of possible pri-
vate inputs of player i (e.g., possible valuations). Suppose there are two inputs (x1, . . . , xn)
and (y1, . . . , yn) for which the communication transcripts of the protocol (i.e., who sent
what bits when) are identical. Now consider the “mixed” input (y1, x2, x3, . . . , xn). By in-
duction on the rounds of the protocol: (1) player 1 cannot distinguish between the inputs
(y1, x2, x3, . . . , xn) and (y1, y2, y3, . . . , yn); and (2) the other players cannot distinguish be-
tween the inputs (x1, x2, x3, . . . , xn) and (y1, x2, x3, . . . , xn). As part of this induction, we see
that the communication transcript of the protocol on the input (y1, x2, x3, . . . , xn) matches
that of (x1, . . . , xn) and (y1, . . . , yn). Similarly, all “mixed versions” of (x1, . . . , xn) and
(y1, . . . , yn) generate identical communication transcripts. This implies that a set of inputs
with a common communication transcript form a box, meaning a subset A of X1 ×· · · · · ·Xn

that arises as a product: A = A1 × · · · × An for some Ai ⊆ Xi for each i.

Lemma 4.3 Every protocol partitions the set X = X1 × · · · × Xn of possible inputs into
boxes over which its communication transcript is invariant.

For the winner determination problem, a protocol with communication complexity k parti-
tions the set of valuations into at most 2k boxes, and in each box executes identically — in
particular, a common allocation is produced for all inputs in the same box. The heart of the
proof of Theorem 4.2 is to show that if k is too small (i.e., polynomial), then very different-
looking inputs wind up in a common box, and no common allocation can be simultaneously
near-optimal for both of them.

To construct a useful family of “different-looking” valuations, fix a set S of m goods
and a set of n = Θ(m(1/2)−ǫ) players. We first consider the following thought experiment.
Make t different copies of the goods S, called S1, . . . , St, where t is a parameter we choose
below. Randomly partition each Sj into n classes, one per player (i.e., assign each good
of Sj independently and uniformly at random to one of the classes Sj

1, . . . , S
j
n). Obviously,

two differ classes in the same copy Sj contain disjoint subsets of the original set S of goods.
What about two classes Sj

i , S
ℓ
h belonging to different copies (j 6= ℓ)? For each original good

of S, there is a 1/n2 probability that it is assigned to both Sj
i and Sℓ

h. Thus, for fixed h, i,
and j 6= ℓ, the probability that Sj

i and Sℓ
h wind up disjoint is (1 − 1/n2)m < e−m/n2

. Note
that under our assumption that n = Θ(m(1/2)−ǫ), this probability is exponentially small.
Indeed, by a Union Bound, the probability that there is any pair of sets Sj

i , S
ℓ
h with j 6= ℓ

and no good of S in common is less than t2n2e−m/n2

. Thus, even when

t =
1

n
em/2n2

, (16)

there is a positive probability that every pair Sj
i , S

ℓ
h of classes with j 6= ℓ overlaps. Ergo,

such a collection of t partitions of the goods S exists; we fix one {Sj
i } arbitrarily for the rest

of the proof.
Why is this construction useful? To gain intuition, suppose each bidder i was single-

minded and wanted the bundle S1
i , with value 1. Then we can allocate all desired bundles

to all bidders without conflict and enjoy surplus n = Θ(m(1/2)−ǫ). If, on the other hand,

25

each bidder wants a bundle that corresponds to a different copy of the goods, we can only
obtain surplus 1 (recall every pair of classes from different partitions has at least one good of
S in common). Thus this collection of t highly overlapping partitions of S generates winner
determination instances with both very high optimal surplus and very low optimal surplus.

We now give the general argument and prove Theorem 4.2. We first describe the set
of valuations that we use. Let Bi ⊆ {0, 1}t be a bit string of length t; associate these t
bits with the t partitions of S above. Interpret the ones of Bi as the partitions in which
player i is interested, and the zeros as the partitions in which it is uninterested. The string
Bi induces a valuation as follows: for every copy Sj in which i is interested, player i has
value 1 for the bundle Sj

i . The player also has value 1 for supersets of such bundles, and
value 0 for everything else. Let Xi denote the set of 2t valuations of this form. The set
X = X1 × · · · × Xn of inputs induces a family of winner determination problems.

Consider an input of X, which we can uniquely associate with bit strings B1, . . . , Bn. Call
an instance good if there is an index h such that, for every player i, the hth bit of Bi is 1 (i.e.,
all players are interested in the hth partition). As above, a good instance admits a feasible
solution with surplus n = Θ(m(1/2)−ǫ), in which each player gets its bundle corresponding
to the hth partition. At the other extreme, call an instance bad if there is at most one
player interested in each partition (i.e., the sets of indices for the ones in B1, . . . , Bn are
mutually disjoint). Since all pairs of bundles drawn from different partitions intersect, the
maximum-possible surplus in a bad instance is 1. (Of course, there are plenty of instances
that are neither good nor bad.)

Finally, consider a k-bit protocol that achieves a better-than-n approximation for every
winner determination problem in X. By Lemma 4.3, this protocol partitions X into at
most 2k boxes over which the protocol has constant behavior (and in particular, a constant
output). By the definition of good and bad instances, and the assumption that the protocol
is better than an n-approximation algorithm, good and bad instances cannot intermingle in
a common box.

Crucially, this restricts the number of bad instances that a single box can contain. To
see why, consider a box A = A1 × · · · × An of X (recall Lemma 4.3) that contains no good
instances. We claim that for each partition Sj of the goods, there is a “totally uninterested”
player i — a player i who, across all of its valuations in Ai, never wants its bundle Sj

i from
the jth partition. For otherwise, there is a partition Sj and, for each player i, a valuation
vi ∈ Ai such that, when i has this valuation, it would happily accept its bundle from the
jth partition. But then the input v1, . . . , vn belongs to this box (by the closure property of
boxes) and, by definition, is a good instance. So the claim is true — but why does it imply
an upper bound on the bad instance population of a box with no good instances? The total
number of bad instances is precisely (n + 1)t, with each arising uniquely by choosing, for
each of the t partitions, which (if any) one of the n players is interested in it. Within a box
with no good instance, each bad instance arises a choice, one per partition, of which (if any)
of the n − 1 players other than the necessarily present totally uninterested one, is interested
in it. This gives an upper bound of nt on the number of bad instances per box.

Wrapping up, the (n+1)t bad instances must be distributed across at least (n+1)t/nt =

26

(1 + 1
n
)t different boxes. This implies that the communication complexity k of the protocol

satisfies 2k ≥ (1 + 1
n
)t; taking logs and using that log(1 + x) ≈ x for small x > 0, we find

that k ≥ t/n. Since t is exponential in m (recall (16)), so is k. Summarizing, then: every
protocol with approximation factor o(min{n, m(1/2)−ǫ}) uses exponential communication.

References

[1] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11(1):17–33, 1971.

[2] T. Groves. Incentives in teams. Econometrica, 41(4):617–631, 1973.

[3] J. Hastad. Clique is hard to approximate within n1−ǫ. Acta Mathematica, 182:105–142,
1999.

[4] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1996.

[5] D. Lehmann, L. I. O’Callaghan, and Y. Shoham. Truth revelation in approximately
efficient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002. Preliminary
version in EC ’99.

[6] N. Nisan. The communication complexity of approximate set packing. In Proceedings of
the 29th Annual International Colloquium on Automata, Languages, and Programming
(ICALP), volume 2380 of Lecture Notes in Computer Science, pages 868–875, 2002.

[7] N. Nisan. Introduction to mechanism design (for computer scientists). In N. Nisan,
T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chap-
ter 9, pages 209–241. Cambridge University Press, 2007.

[8] N. Nisan and A. Ronen. Computationally feasible VCG mechanisms. Journal of Arti-
ficial Intelligence Research, 29:19–47, 2007.

[9] T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence, 135(1):1–54, 2002.

[10] I. Segal. The communication requirements of combinatorial allocation problems. In
P. Cramton, Y. Shoham, and R. Steinberg, editors, Combinatorial Auctions, chapter 11.
MIT Press, 2006.

[11] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of
Finance, 16(1):8–37, 1961.

27

