
CS364A: Take-Home Final

Due to Peerapong in Gates 460 by 6:30 PM on Thursday, December 11, 2008

Instructions: Same as the problem sets.

Problem 21

(a) (6 points) Algorithmic Game Theory, Exercise 1.2.

(b) (9 points) Algorithmic Game Theory, Exercise 1.4.

Problem 22

Let A denote the payoff matrix of a two-player zero-sum game, with Aij denoting the integral payoff from
the column player to the row player in the outcome (i, j). Let R and C denote maxx(miny xT Ay) and
miny(maxx xT Ay), respectively. (Here x and y denote mixed row and column strategies, respectively.)

(a) (4 points) At one point in lecture the instructor incorrectly defined a minimax pair as mixed strategies
x̂, ŷ with the property that R = x̂T Aŷ = C. Show by example that such a pair x̂, ŷ need not be a
mixed-strategy Nash equilibrium of the game.

(b) (6 points) The correct definition of a minimax pair x̂, ŷ is that x̂ ∈ arg maxx(miny xT Ay) and ŷ ∈
arg miny(maxx xT Ay). Prove that the mixed-strategy Nash equilibria (of a two-player, zero-sum game)
are precisely the minimax pairs.

(c) (5 points) Prove that such a minimax pair (and hence a mixed-strategy Nash equilibrium) can be
computed in polynomial time.

[Hint: you should assume and use the fact that linear programming can be solved in polynomial time.]

(d) (5 points) Can you run your same algorithm in (c) for a two-player, non-zero-sum game? If so, what
is it computing, exactly?

Problem 23

Consider a two-player, non-zero sum game, specified by payoff matrices A and B, in which both players have
n strategies. Assume that all payoffs are rational numbers between 0 and 1.

(a) (4 points) The support of a mixed strategy is the set of pure strategies that are played with strictly
positive probability. Suppose you were promised that there was a mixed-strategy Nash equilibrium of
(A,B) with row and column supports S and T , respectively. Show how you can then recover such an
equilibrium in polynomial time.

[Hint: again, feel free to use linear programming.]

(b) (3 points) Give an O(2n)-time algorithm to compute an exact mixed-strategy Nash equilibrium of a
two-player game.
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(c) (9 points) Consider a mixed-strategy Nash equilibrium (x∗, y∗) of (A,B). Suppose we draw K =
(c log n)/ε2 independent samples (r1, c1), . . . , (rK , cK) from the product distribution x∗ × y∗, where
ε > 0 is a parameter and c > 0 is a sufficiently large constant. Form the corresponding empirical
distributions x̂ and ŷ, where components are the frequencies of play in the sequence. Prove that, with
high probability, (x̂, ŷ) is an approximate Nash equilibrium in the sense that x̂T Aŷ ≥ xT Aŷ − ε for all
row mixed strategies x and x̂T Bŷ ≥ x̂T By − ε for all column mixed strategies y.

[Hint: if you don’t know about them, read up about Chernoff Bounds (e.g., in Motwani/Raghavan’s
Randomized Algorithms).]

(d) (4 points) Use (a) and (c) to give an O(n(log n)/ε2)-time algorithm for computing an ε-approximate
mixed-strategy Nash equilibrium of a two-player game.

Problem 24

We continue the study of algorithms for approximate Nash equilibria in bimatrix games, in the sense of the
previous problem; recall especially the definition of approximate equilibria from Problem 23(c).

(a) (5 points) Prove that there is a 1
2 -approximate Nash equilibrium in which one player plays a pure

strategy and the other randomizes uniformly between two strategies.

(b) (10 points) Consider the following idea for improving on (a). Suppose we form the matrix A−B, view
it as a zero-sum game, and solve for an exact mixed-strategy Nash equilibrium (x∗, y∗). (By Problem
22(c), this can be done in polynomial time.) Perhaps (x∗, y∗) is an α-approximate Nash equilibrium for
(A,B) for a satisfactory value of α; if not, we generalize (a) and have one player play a pure strategy
while the other randomizes (not necessarily uniformly) between a pure strategy and its optimal strategy
for A−B.

Can you use these ideas (with appropriate parameter choices) to improve upon the result in (a)? What
is the minimum value of ε for which your algorithm computes an ε-approximate Nash equilibrium in
polynomial time?

(c) (up to 10 extra credit points) Generalize the algorithm in (b) to compute ε-approximate Nash equilibria,
in polynomial time, for even smaller values of ε. What is the smallest value you can achieve?

Problem 25

Consider the following variant of the online learning problem discussed in class. At each time step t =
1, 2, . . . , T , n different “experts” give you advice as to some binary event (in the form of a 0 or 1). You
have to make your own guess as to the event’s realization (e.g., by following one of the expert’s advice)
and afterwards you are told whether you were right or wrong. You are promised that at least one expert is
omniscient in that, at each time step, it always predicts the actual realization of the event. Your algorithm
will be measured by its worst-case number of incorrect predictions, over all possible sequences of expert
predictions and event realizations.

(a) (5 points) Prove that the minimum number of mistakes that a deterministic algorithm can make (in
the worst case) is precisely log2 n.

(b) (10 points) Prove that the minimum expected number of mistakes that a randomized algorithm can
make (in the worst case) is precisely 1

2 log2 n.

[Hint: use the distribution induced by the advice of the remaining potentially omniscient experts.]
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