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1 Preamble

Last lecture motivated the need for a model of data to gain insight into the relative merits
of different online paging algorithms. In this lecture and the next, we explore models of data
for clustering and graph partitioning problems. We cover deterministic data models in this
lecture, and probabilistic ones in the next.

In some optimization problems, the objective function can be taken quite literally. If one
wants to maximize profit or accomplish some goal at minimum cost, then the goal translates
directly into a numerical objective function.

In other applications, an objective function is only means to an end. Consider, for
example, the problem of clustering. Given a set of data points, the goal is to cluster them
into “coherent groups”, with points in the same group being “similar” and those in different
groups being “dissimilar”. There is not an obvious unique way to translate this goal into a
numerical objective function, and as a result many different objective functions have been
studied (k-means, k-median, k-center, etc.) with the intent of making the fuzzy notion of a
“good/meaningful clustering” into a concrete optimization problem. In this case, we do not
care about an “optimal solution” per se; rather, we want to uncover interesting structure in
the data. So we’re perfectly happy to compute a “meaningful clustering” with suboptimal
objective function value; and highly dissatisfied with an “optimal solution” that fails to
indicate any patterns in the data (which suggests that we were asking the wrong question
or expecting structure where none exists).

The point is that if we are trying to cluster a data set, then we are implicitly assuming
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that interesting structure exists in the data.1 This perspective suggest that an explicit model
of data could sharpen the insights provided by a traditional worst-case analysis framework
(cf., modeling locality of reference in online paging). We explore several methods of making
this idea rigorous in this and the next lecture.

2 Stable Instances of Max Cut

The first half of this lecture is about a subset of the results in Bilu and Linial [3], on the
Max Cut problem. Here, the input is an undirected graph G = (V, E) with nonnegative
weights we on the edges, and the goal is to compute a cut (i.e., a partition (S, S̄) of V into
two non-empty parts) that minimizes the total weight of the cut edges:

∑

e : v∈S,w∈S̄

we.

For example, there is a cut that cut all of the edges if and only if the graph is bipartite (by
definition).

This is a fundamental graph optimization problem, and it is NP -hard, even to approxi-
mate to within a sufficiently small approximation factor [6, 7].2 But this hardness result is
for worst-case instances — what about for “interesting instances”, where there is a “clearly
optimal” (read: meaningful) solution?

2.1 The Model and the Main Result

Bilu and Linial propose the following definition of Max Cut instances with “clearly optimal”
solutions.

Definition 2.1 (γ-Stable Instances [3]) A weighted Max Cut instance (V, E, w) is γ-
stable if the optimal solution (S, S̄) is invariant under all scalings σe ∈ [1, γ] of edge weights
— so (S, S̄) remains optimal for G = (V, E, σw) for every such {σe}e∈E.

Again, the point of this definition is to formulate the idea that the optimal solution is
“isolated” — no other cuts come close to encroaching on its reign of optimality.

While γ-stability asserts that an optimal solution (S, S̄) survives all edge weight per-
turbations within a certain range, it is clear which perturbation is the most threatening:
if (S, S̄) is still optimal after scaling the weights of all uncut edges by γ (and leaving the
weights of cut edges the same), then it is still optimal after all allowable perturbations.

Our main result in this section is the following.

1There are exceptions of course. For example, if one is partitioning a graph as part of a divide and
conquer algorithm, then the partition is only means to an end and is not interesting in its own right.

2On the positive side, if you don’t know the beautiful algorithm and analysis of Goemans and
Williamson [4], based on semidefinite programming, that achieves a .878-approximation for Max Cut in
the worst case, then go learn it ASAP.
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Theorem 2.2 The Max Cut problem is solvable in polynomial time in (
√

n∆ + 1)-stable
instances, where ∆ denotes the maximum degree.

Note that the value of γ in Theorem 2.2 is quite large. Improving it (possibly via an algorithm
different from that below) is a nice open question. For all we know, the smallest γ necessary
for polynomial-time recoverability of the optimal solution could even be a constant.

2.2 The BL Algorithm

We analyze the following greedy algorithm for Max Cut, which bears a vague resemblance
to Kruskal’s minimum spanning tree algorithm.

Input: a γ-stable Max Cut instance (V, E, w).
Invariant #1: every edge of T is cut in the optimal solution to (V, E, w).
Invariant #2: the subgraph (V, T ) is bipartite.

1. Initialize T = ∅.

2. While (V, T ) is not connected:

(a) Let C1 = (A1, B1),. . . ,Ck = (Ak, Bk) be the (bipartite) connected components of
(V, T ).

(b) Let Cℓ have the fewest number of vertices.

(c) For each i 6= ℓ, consider the subgraph of G induced by Ci ∪ Cℓ (see Fig-
ure 2). Let Yi denote the “blue edges” (edges of E with endpoints in both Ai

and Aℓ or in both Bi and Bℓ) and Zi the “red edges” (edges of E with end-
points in both Ai and Bℓ or in both Aℓ and Bi). Let Wi denote the larger of
{total weight of Yi, total weight of Zi}.

(d) Let j maximize Wi over connected components Ci with i 6= ℓ. Merge Cj, Cℓ by
adding either the blue edges Yi or the red edges Zi to T , whichever set has larger
total weight.

3. Return the bipartition of (V, T ).

Figure 1: The Bilu-Linial (BL) algorithm.

To understand the idea behind the algorithm, suppose that it does indeed maintain the
two claimed invariants. Then, it terminates with a subset T of edges such that (V, T ) is
connected and bipartite. There is then a unique cut (S, S̄) of (V, T ) (up to the naming of
the two sides) that cuts all of the edges of T . By the first invariant, (S, S̄) must be the
maximum cut of the original graph (V, E, w).
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Figure 2: Step 2(c) of the BL algorithm. Solid edges denote those in T ; the dotted and
dashed edges indicate the blue and red edges, respectively.

The picture to have in your head in this: by assumption, there is a “planted” maximum
cut (S, S̄). The algorithm does not, of course, know what it is. The plan is to identify edges
(namely T ) that we are sure cross this (unknown) cut, and to avoid including in T any edges
that lie within S or within S̄. If we can keep doing this until (V, T ) is connected, then we
are done. The hope is that the edges in the (stable) maximum cut are conspicuous enough
(for sufficiently large γ) that we can greedily identify some of them in every iteration.

2.3 Analysis of the BL Algorithm

We first note that, by induction, the second invariant is maintained (i.e., (V, T ) is always bi-
partite). This holds because when the bipartite connected components (Aj , Bj) and (Aℓ, Bℓ)
are merged in Step 2d the result is either the bipartite component (Aj ∪Aℓ, Bj ∪Bℓ) (if the
red edges are added) or the bipartite component (Aj ∪ Bℓ, Aℓ ∪ Bj) (if the blue edges are
added).

The harder part is showing that the first invariant is maintained provided γ is sufficiently
large. We again proceed by induction. We show the following statement, which implies
Invariant #1: for each connected component Ci = (Ai, Bi), each of Ai, Bi lies entirely within
opposite sides of the planted maximum cut (S, S̄). Suppose this invariant holds up to the
current iteration, and that components Cj and Cℓ are chosen in Step 2d of this iteration.
Then either the blue edges or the red edges can be added to T without destroying the
invariant (corresponding to the cases where Aj, Bℓ are on the same side of (S, S̄) and where
Aj , Aℓ are on the same side of (S, S̄), respectively). We need to show that the BL algorithm
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Figure 3: Analysis of the BL algorithm. (S, S̄) denotes the optimal cut. Solid edges denote
those in T ; the dotted and dashed edges indicate the blue and red edges, respectively.

makes the correct choice, for sufficiently large γ.
As befits a greedy heuristic, we proceed via an exchange argument. Let Cj = (Aj , Bj)

and Cℓ = (Aℓ, Bℓ) be the components considered in Step 2d. By symmetry, we can assume
that Aj, Aℓ are contained entirely in the set S of the maximum cut (S, S̄), while Bj, Bℓ are
contained entirely in S̄ (Figure 3). We need to show that the BL algorithm adds the red
edges to T — i.e., that the weight of these edges is larger than that of the blue edges.

We now invoke the γ-stability hypothesis: the maximum cut (S, S̄) remains optimal even
after scaling the blue edges between Cj and Cℓ by a γ factor. Thus swapping Aℓ for Bℓ —
the “exchange” in this exchange argument — yields a worse cut ((S \Aℓ)∪Bℓ, (S̄ \Bℓ)∪Aℓ),
even after we have scaled all of the blue edges. We next use this fact to lower bound the
weight of the red edges in terms of that of the blue edges (and γ).

What is the effect on the cut value of swapping Aℓ and Bℓ? First, none of the blue edges
were cut by (S, S̄), but all are cut after the swap. Thus the weight of the newly cut edges is
at least γ ·wt(blue), where wt(blue) denotes the total weight of the blue edges in the original
(pre-scaled) instance (V, E, w). Next we upper bound the weight of edges that are cut in
(S, S̄) but not cut after the swap. All of the red edges certainly fall into this category. In
addition, consider some other connected component Ci = (Ai, Bi) with i 6= j, ℓ. Swapping
Aℓ and Bℓ causes all of the red edges or all of the blue edges (but not both) between Ci

and Cℓ to no longer be cut. Recall that Wi was defined in Step 2c as the larger of the two
corresponding total weights. This is at most Wj by our choice of j. Summarizing, an upper
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bound on the total weight of the edges cut in (S, S̄) but not after the swap is

wt(red) + Wj · Nℓ,

where Nℓ is the number of connected components Ci adjacent to Cℓ. (If there is no edge
with endpoints in Ci and Cℓ, then we can safely ignore Ci in our cost-benefit analysis of the
exchange.)

To upper bound Nℓ, suppose that Cℓ has t vertices. Since Cℓ was chosen as the smallest
connected component of (V, T ), there are at most n/t such components. Also, since G has
maximum degree ∆, at most t∆ other components can be adjacent to Cℓ. Since Nℓ is upper
bounded by n/t and by t∆, it is also upper bounded by the square root of their product:√

n∆.
Recall that swapping Aℓ and Bℓ can only yield a cut worse that (S, S̄), even after scaling

the blue edges by γ. Thus,

γ · wt(blue) < wt(red) + Wj ·
√

n∆.

Since Wj = max{wt(blue), wt(red)} and γ =
√

n∆ + 1, we must have wt(red) > wt(blue).
Thus the BL algorithm adds the red edges in Step 2d and maintains the first invariant; this
concludes the proof of correctness.

3 Isolated Instances of k-Median

3.1 Definitions and Motivation

This section continues the theme of “planted” or “isolated” target solutions in clustering
problems, though for a different problem and with a different definition of “clearly optimal.”
The model and results are from Balcan, Blum, and Gupta [2].

We study the k-median problem, defined as follows. The input is an n-point metric
space (X, d), meaning that d is a nonnegative function on X × X satisfying d(x, x) = 0 for
all x ∈ X, d(x, y) = d(y, x) for all x, y ∈ X (symmetry), and d(x, y) ≤ d(x, z) + d(z, y) for
all x, y, z ∈ X (triangle inequality). A k-clustering of a finite metric space is a partition of
its points into k non-empty sets. The goal in the k-median problem is to identify a subset
S ⊆ X of k centers to minimize the sum of the points’ distances to their respective nearest
centers: ∑

x∈X

(
min
c∈S

d(c, x)

)
.

Note that a choice of centers induces a k-clustering (one cluster per center, the points for
which that center is the closest). Around 10 years ago Guha and Khuller [5] proved that it
is NP -hard to approximate the k-median problem to within a factor strictly smaller that
1 + 2

e
≈ 1.736. The best upper bound known is 3 [1].

The key definition is this.
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Definition 3.1 ((c, ǫ)-Isolated [2]) The optimal k-median solution is (c, ǫ)-isolated if every
c-approximate k-clustering agrees with the optimal one on more than a (1 − ǫ) fraction of
the points.

Definition 3.1 says that the only way to achieve a near-optimal k-median solution is to
agree with the optimal solution on almost all points. Thus numerical similarity (in objective
function value) implies structural similarity (in the classification of points). The motivation
for Definition 3.1 is the following. Why might a 3-approximation algorithm (say) for a
clustering problem be interesting? Such a worst-case guarantee is both technically impressive
and robust in a rigorous sense, but 200% error is obviously not acceptable in all applications.
An obvious (and good) answer is that one would hope for or even expect much better
approximation factors on “most” or on “real” inputs, for many of the ways that we might
define these terms. For example: if the optimal solution is more than a factor of 3 better than
every other feasible solution, then a 3-approximation algorithm is guaranteed to recover the
optimal (target) clustering. Since small perturbations of an optimal clustering will typically
have near-optimal objective function value, a more general statement is more useful: if the
optimal solution is more than a factor of 3 better than every other “significantly different”
feasible solution, then a 3-approximation algorithm is guaranteed to “almost recover” the
optimal (target) clustering. Definition 3.1 makes precise the types of instances for which this
conclusion is valid.

Some further comments on Definition 3.1. First, when we speak of two (unordered) k-
clusterings “agreeing” on more than a (1 − ǫ) fraction of the points, we mean that there
is a way to label each of the two collections of k clusters with the names 1, 2 . . . , k so that
more than (1 − ǫ)n points of X get the same label in both k-clusterings. (That is, we take
an optimal correspondence of the clusters in the two k-clusterings.) Second, Definition 3.1
implicitly assumes that the target clustering is the one with the optimal k-median objective
function value. The more general definition in [2] allows the target clustering to have a sub-
optimal objective function value (though it must be close to optimal for the isolation property
to hold, as you should verify).3 Finally, compare and contrast Definitions 2.1 and 3.1. The
notion of “isolation” is somewhat different in the two cases — the former looks at “nearby
instances”, the latter at “nearby solutions” to a single instance. The goal in the last section
was to recover the optimal solution, but we accomplished this only for relatively large values
of the isolation parameter γ. Here, we identify a clustering this is only close to the target
one, but we can handle isolation parameters arbitrarily close to 1 (see Theorem 3.2 below).

The inapproximability factor of 1 + 2
e

for general k-median instances carries over to
(c, ǫ)-isolated instances. The proof idea is to reduce from the standard k-median problem
by adding lots (like n/ǫ) “dummy points” that are all very far from each other and from
the original points, and to increase k by the same amount. In the ensuing instance, every
reasonable solution makes each dummy point a center (this contributes nothing to the objec-
tive function) and then effectively has to solve the original problem for the original points.
Further details are left to the reader.

3The keen reader might want to rework the proofs in this lecture to apply to this more general setup.
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In (c, ǫ)-isolated instances, approximating the k-median objective to within a factor of c
guarantees the correct classification of all but an ǫ fraction of the points. What about the
converse? If all we care about is correctly classifying most points, do we necessarily have
to approximate the k-median objective? The main take-away point of Balcan et al. [2] is a
negative answer: in isolated k-median instances, accurate classification is strictly easier than
approximation.

Theorem 3.2 ([2]) For every pair α, ǫ of constants, there is a polynomial-time algorithm
that, for every (1 + α, ǫ)-isolated k-median instance, recovers a k-clustering that agrees with
the optimal one on all but an O(ǫ/α) fraction of the points.

Note that when α < 2/e, Theorem 3.2 guarantees nearly correct classification even when
numerical approximation is NP -hard.4 At a high level, this is possible because the isolation
property — which cannot be directly checked by an efficient algorithm — implies the presence
of detectable structure this is sufficient for near-optimal classification. We now make this
precise.

3.2 Preliminaries

We show a variant of Theorem 3.2 which is easier to prove. The result itself will be incom-
parable to Theorem 3.2: it requires an additional non-trivial assumption about the input
(see below) but correctly classify all but an ǫ fraction of the points (rather than an O(ǫ/α)
fraction).

Consider a k-median instance with a (1 + α, ǫ)-isolated optimal solution, where α, ǫ > 0
are constants. For simplicity, assume that we know the objective function value OPT of
the optimal k-clustering C∗

1 , . . . , C
∗
k . (We don’t know the C∗

i ’s themselves, of course.) As an
exercise, the reader should verify that the following algorithm and analysis can be adapted
to solve the real problem (where OPT is unknown), by using successively doubling guesses
for the value of OPT .

Definition 3.3 For x ∈ X, let w(x) denote x’s contribution minc∈S∗ d(c, x) to the optimal
solution (with centers S∗). Note that the average value of w(x) is precisely OPT/n.

1. The point x is close if

w(x) ≤ OPT

n
· α

5ǫ
. (1)

2. The point x is well separated if

w2(x) − w(x) >
OPT

n
· α

ǫ
, (2)

where w2(x) denotes the distance between X and its second-closest center in the opti-
mal solution S∗.

4It turns out that ǫ, α need to be strictly positive to enable the polynomial-time recovery of a good
clustering, though this is not obvious [2].
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3. The point x is good if it is close and well separated, and bad otherwise.

Note that Definition 3.3 is just for the sake of analysis; an algorithm (which is ignorant of
the optimal solution) has no idea which points are good and which points are bad.

An averaging argument (i.e., Markov’s inequality) implies that a constant fraction of all
points are close, whether the instance is isolated or not.

Lemma 3.4 For every k-median instance, all but 5ǫ
α
n points are close.

Using the isolation hypothesis, we can also limit the number of points that are not well
separated.

Lemma 3.5 Less than ǫn points are not well separated.

Proof: If not, start with the optimal clustering and consider reassigning ǫn points that are
not well separated to their second-closest centers. This yields a clustering that misclassifies
at most an ǫ fraction of the points, and that has objective function value at most

OPT + ǫn
OPT

n
· α

ǫ
= (1 + α) · OPT.

This contradicts the assumption that the instance is (1 + α, ǫ)-isolated. �

Combining Lemmas 3.4 and 3.5, we find that there are at most

b := ǫn

(
1 +

5

α

)
(3)

bad points.

Non-trivial assumption: For the rest of this lecture, we assume that every cluster C∗
i in

the optimal clustering contains at least 2b+2 points, and hence at least b+2 good points. This
“large optimal clusters” assumption is strong enough that the k-median problem becomes
polynomial-time solvable — it implies that k = O(1/ǫ) and hence an optimal solution can be
computed in polynomial time via brute-force search. In the next section we give a much more
efficient algorithm for this case. Balcan et al. [2] use a few extra ideas to also handle the case
where some optimal clusters are small, which proves Theorem 3.2 without any assumptions
(see the paper for details).

3.3 The BBG Algorithm and Analysis

We now give an intertwined presentation of the algorithm and analysis of [2] for the “large
optimal cluster” version of Theorem 3.2. The high-level idea is to form a graph on the
points X based on pairwise distances, and to run some efficient algorithms on this graph to
illuminate easily detectable signatures of the hidden optimal clusters C∗

1 , . . . , C
∗
k .
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≤ τ/2 since

y close

Figure 4: Observation #2 in the analysis of the BBG algorithm.

Step 1 of the BBG Algorithm: Set

τ :=
OPT

n
· 2α

5ǫ
,

which is twice the right-hand side of (1) and 2/5 times the right-hand side of (2). Form the
graph G = (X, E), where the edge (x, y) is in E if and only if d(x, y) ≤ τ . (The algorithm
is in a position to construct G, provided it knows OPT as discussed earlier.)

Observation #1: all good points within a single C∗
i form a clique in G. The reason

is that, by (1), all such points are within τ/2 of the center of C∗
i , and so by the triangle

inequality they are all within distance τ of each other.

Observation #2: if x, y are both good and are in different optimal clusters C∗
i and C∗

j ,
then there are no 1-hop or 2-hop x-y paths in G. To see this, refer to Figure 4. Since x is
well separated, its distance from the center cj of C∗

j is more than 5
2
τ . Since y is close, its

distance to cj is at most τ/2. The triangle inequality implies that d(x, y) > 2τ , and hence
at least 3 hops in G are needed to get between x and y.

Figure 5 summarizes what the graph G looks like in light of these two observations —
a clique for each cluster C∗

i , with different cliques connected only by relatively long paths.
Unfortunately, this is not immediately useful because finding a large clique in a graph is an
NP -hard problem. The next step of the algorithm filters the edges of G to highlight better
the cliques.

Step 2 of the BBG Algorithm: Form the graph H = (X, F ), where (x, y) ∈ F if and
only if (x, y) ∈ E and x, y have at least b common neighbors in G (recall (3)).

Our third observation is immediate from the definitions.
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cliques on

Figure 5: The graph G after the first step of the BBG algorithm.

Observation #3: the cliques of good points in G (each on at least b + 2 nodes) survive
in H.

The fourth observation follows easily from the second one.

Observation #4: the neighbors of a bad point in G consist of other bad points (at most
b − 1 of them) and possibly some good points from a single cluster C∗

i .

Thus, two bad points are adjacent in H only if each is adjacent in G to good points
from the same cluster C∗

i , and necessarily to no good points from the other clusters. The
second observation then implies that every clique of good points lies in a different connected
component of H .

Thus, the graph H has precisely k connected components that have size at least b + 2,
and each of these contains all of the good points from some C∗

i . These k components can be
identified in linear time, and small components (of bad points) can be merged in arbitrarily
to get a k-clustering (Ĉ1, . . . , Ĉk). This k-clustering correctly classifies all good points, which
constitute at least a 1 − ǫ(1 + 5

α
) fraction of all of the points.

Step 3 of the BBG Algorithm. After Step 2, we have correctly classified all but an
O(ǫ/α) fraction of the points (all but the bad points). This is the guarantee asserted in the
original statement of Theorem 3.2, without the “big optimal clusters” assumption. We now
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show that under the latter assumption, we can correctly classify all but the ǫ fraction of the
points that are not well separated.5 Thus the goal is correctly classify points that are well
separated but that might not be close. The idea is to use a clever form of majority vote.

Precisely, we execute the following procedure in parallel (i.e., independently) for each
x ∈ X:

1. For each cluster Ĉi computed in Step 2, look at the median distance d(x, y) among

points y ∈ Ĉi (not including x itself, in case it is already in Ĉi).

2. Re-assign x to the cluster to which its median distance is the smallest.

Every Well Separated Point Is Correctly Re-assigned: Suppose x rightfully belongs
to the optimal cluster C∗

i . (It may or may not be there already.) Then for all of the ≥ (b+1)

good points of C∗
i that are different from x (which are all also members of Ĉi), the triangle

inequality implies that

d(x, y) ≤ d(x, ci)︸ ︷︷ ︸
(where ci is the center of C∗

i
)

+ d(ci, y)︸ ︷︷ ︸
≤τ/2 since y is close

≤ d(x, ci) +
τ

2
. (4)

Since at most b points of Ĉi are not good, the median distance d(x, y) with y ∈ Ĉi \ {x} also
satisfies (4).

For some other cluster Ĉj , and for all of the good points y in C∗
j (and Ĉj) different than

x, the triangle inequality implies that

d(x, y) ≥ d(x, cj)︸ ︷︷ ︸
≥d(x,ci)+5τ/2 since x well separated

− d(ci, y)︸ ︷︷ ︸
≤τ/2 since y is close

≥ d(x, ci) + 2τ. (5)

Again, the median distance d(x, y) with y ∈ Ĉi \ {x} must also satisfy this inequality.
Comparing (4) and (5), we see that every well separated point x is inevitably re-assigned to
the correct cluster.

4 Take-Away Points

We conclude with two comments that apply to both of the papers studied in this lecture.
First, in both works, the theme is to begin with an uncheckable assumption about an

“isolated” optimal solution, and to then deduce from this assumption detectable structure
in the problem instance — such as a heavy-weight collection of edges between two subsets of
nodes, or a large and dense connected component in a graph defined from pairwise distances.
Relatively straightforward algorithmic techniques can then be used to recover the planted

5Previous uses of the “big optimal clusters” assumption can be essentially removed with some further
work. However, it is not clear how to implement this third step without this assumption.
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solution, or something close to it. We will see further examples of this algorithmic and
analysis approach in the next lecture.

Second, both of the algorithms that we studied are reasonably natural, and one can
imagine extracting from them useful heuristics for finding good cuts and clusterings. On
the other hand, the algorithms do feel a bit tailored to the underlying data model. Pushing
toward less specific data models is an important goal, and should encourage the design of
more robust heuristics. The next lecture offers further progress along these lines.
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