CS369N: Problem Set #3

Due to Qiqi Yan by 11:30 AM on Thursday, December 10, 2009

Instructions: same as the first two homeworks.

Problem 11

(12 points) Recall from Lecture #6 that we proved the following (the Leftover Hash Lemma). Suppose X is
a random variable with collision probability ¢p(X) at most 1/K. Suppose H is a (2-)universal family of hash
functions (from the range of X to the range {0,1,2,..., M —1}), and h is chosen uniformly at random from
H. Then the statistical distance between the joint distribution of (h, h(X)) and of the uniform distribution
(on H x {0,1,2,...,M —1}) is at most 3/M/K.

For this problem, assume that you have a sequence X1, ..., Xt of random variables, with the property that
for every 4 and fixed values of X1,..., X, 1, the (conditional) collision probability of X; is at most 1/K (i.e.,
a “block source”). Prove that the statistical distance between the joint distribution of (h, h(X71),. .., h(X7))
and of the uniform distribution is at most £ \/M/K.

[Hint: One high-level approach is to prove, by downward induction on 4, a bound of @\/ M/K on
the statistical distance between (h, h(X;y1),...,h(Xr)) and the uniform distribution for every fixed value
of Xi,...,X;. The increase in statistical distance in the inductive step should come from the Triangle
Inequality.]

Problem 12

(20 points) You are given n points x1, . . ., Z, in some bounded real interval ([0, 1], if you like) and a parameter
k. The goal is to partition the n points into k clusters Cy,...,C; and designate points my,...,mi € R
as cluster centers to minimize ® = Zle ijecq-, (x; —m;)?. One can easily check that, given the C;’s, the
optimal thing to do is to set m; equal to the average value of the points in C;.

In this problem we will analyze a particular local search heuristic, which works as follows. Iteration 0
begins with an arbitrary clustering C, ..., Cy with each C; non-empty. In an odd iteration, we hold the C;’s
fixed and re-compute m; as the average value of the points in C;. In an even iteration, we independently
and simultaneously re-assign each point x; to the cluster C; that had mean m; closest to x;. You should
check that every non-vacuous iteration (i.e., one that makes some change) strictly decreases ®. Thus,
this heuristic is guaranteed to terminate (with a “locally optimal” clustering). Prove that the heuristic
has polynomial smoothed complexity, meaning that for every point set x1,...,z,, if an independent (one-
dimensional) Gaussian with standard deviation o is added to each x;, then the expected running time (over
the perturbation) of the local search heuristic is polynomial in n, k, and 1/o.

[Hint: You might look to the analysis of the 2-OPT heuristic for TSP for inspiration. Try to identify
a sufficient condition on the input that guarantees that every improving local move makes a non-trivial
improvement to ®, and prove probability bounds on the likelihood that the condition is satisfied.]



Problem 13

(15 points) Recall the Balance algorithm for non-clairvoyant online scheduling from Lecture #8. In lecture,
we studied the objective of minimizing the average flow (or response) time, > ,(Cj —r;). One concern about
such objectives is that minimizing the average might require assigning huge delays to a small number of jobs.
This problem proves that this concern is unwarranted for the Balance algorithm.

Precisely, consider the objective of minimizing the maximum idle time of a job, where the idle time is
C;—r;—(p;/s), where Cj; is the job’s completion time, r; is its release date, p; is its processing time, and s is
the machine speed. Show that the maximum idle time of a job under the Balance algorithm with a machine
of speed 1 + € is at most 1/e times that of an optimal (clairvoyant and offline) solution with a machine of
unit speed.

Problem 14

Recall from Lecture #8 the definition of a selfish routing network, of an equilibrium flow, and of the price
of anarchy. For a given network G with continuous and nondecreasing edge cost functions and a traffic rate
r between a source s and sink ¢, let 7(G,r) denote the ratio of the costs of equilibrium flows at rate r and
rate r/2. By the resource augmentation result from lecture, the price of anarchy in the network G at rate r
is at most 7(G, ).

(a) (8 points) Prove a “loosely competitive” guarantee using the above resource augmentation bound: for
every G and r, and for at least a constant fraction of the traffic rates 7 in [r/2,r], the price of anarchy
in G at traffic rate 7 is O(log (G, )).

(b) (7 points) Prove that for every constant K, there exists a network G with continuous, nondecreasing
edge cost functions and a traffic rate r such that the price of anarchy in G is at least K for every traffic
rate 7 € [r/2,r].

Problem 15

(15 points) Recall that in Lecture #9 we studied the problem of selling a good with unlimited supply to n
potential buyers to maximize revenue. Now suppose you have only k& copies of the good, where k < n.

Let’s begin with the thought experiment where there is a distribution over inputs, with each valuation v,
drawn IID from a known distribution F'. It turns out that the truthful auction that maximizes the expected
revenue is the Vickrey auction with a reserve price r (where r depends on F' — e.g., it is % if F' is the uniform
distribution on [0, 1]).> This auction sells to all of the buyers that have a valuation v; above 7 and are also
amongst the top k valutions overall. All winners pay either r or the (k+ 1)th highest valuation, whichever is
larger. As usual, define Cp as the set of all such auctions (i.e., the Vickrey auction with all possible choices
of the reserve 7).

Assume that k£ > 2 and design a truthful auction that has the same type of guarantee as the RSPE auction
from Lecture #9. That is, for every input v, your (randomized) auction should have expected revenue at
least a constant fraction of every auction in Cp that sells to at least 2 buyers. (You don’t have to compete
with an auction of Cp that sells to only one bidder on input v, just like in Lecture #9).

I Actually, this assertion holds only under a mild technical condition on F, but you don’t need to worry about that for this
problem.



