
CS369N: Beyond Worst-Case Analysis
Lecture #9: From Average-Case Analysis to Instance

Optimality∗

Tim Roughgarden†

December 4, 2009

1 Optimal Algorithms and Instance Optimality

Recall from Lecture #1 that an algorithm A is α-instance optimal if for every algorithm A
and input z,

cost(A, z) ≤ α · cost(B, z). (1)

This is the strongest-possible optimality notion for an algorithm (assuming that α is small)
and, as such, for many problems instance optimal algorithms do not exist (recall HW #1).

There are several more attainable versions of instance optimality that remain meaningful
(recall also Lecture #1). Today we investigate restricting the algorithm B on the right-hand
side of (1) to lie in some restricted class C of algorithms. (The algorithm A will not be so
restricted.)

To some extent, we already took this approach in Lecture #1. When we proved the
instance optimality of the Threshold Algorithm, we compared it only to other algorithms
that use random access only on objects that it already discovered via sequential search
(i.e., an algorithm can not ”guess” the existence of an unseen object). In the 2-D Maxima
problem, we used a definition that was intuitively trying to restrict attention to algorithms
whose running time is independent of the order in which the point set was listed (again, to
avoid algorithms that ”memorize an answer”).1

The obvious question is: what is an appropriate choice of C? If we take C to be too
big (e.g., all algorithms) then we’re probably going to be stuck with negative results saying
that no algorithm is instance optimal. If we take C too small, then an instance optimality

∗ c©2009, Tim Roughgarden.
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Recall that idea was implemented not by restricting the class of allowable algorithms, but by evaluating

the performance of an algorithm on a given point set via its worst-case performance on an ordering of the
points.

1

guarantee might not be very impressive. Ideally, we want to choose C so that at least one
but very few algorithms are instance optimal.

The plan for today is to follow a principled, two-step approach for identifying classes C
of algorithms.

1. Choose a set D of distributions over inputs, which ideally is as rich as possible.2 ‘

2. Define
CD := {algorithms A : A optimal for some D ∈ D, } . (2)

where an optimal algorithm for a distribution D the one that minimizes expected cost
Ez∼D[cost(A, d)].

An easy fact is that if A is approximately instance optimal with respect to the set CD,
then A is simultaneously has near-optimal expected cost with respect to every distribution
D ∈ D.

Proposition 1.1 If A is α-instance optimal with respect to CD, then

Ez∼D[cost(A, z)] ≤ α · Ez∼D[cost(OPTD, z)] (3)

for every D ∈ D, where OPTD denotes the optimal algorithm for the distribution D.

The guarantee in Proposition 1.1 is interesting because the algorithm OPTD on the right-
hand side of (3) is carefully tailored to the distribution D, while the algorithm A on the
left-hand side is defined independently of D.3

Proof of Proposition 1.1: Fix D ∈ D. By the definition of CD, OPTD ∈ CD. By the definition
of instance optimality, cost(A, z) ≤ α · cost(OPTD, z) for every input z. Taking expectations
completes the proof. �

We emphasize the being α-instance optimal with respect to CD is strictly stronger than
the guarantee in Proposition 1.1, since it applies input-by-input rather than merely to ex-
pectations. Also, it is important to understand that distributions over inputs are used only
to define the set CD, and thereafter the goal is a distribution-free (input-by-input) guarantee.

2 Online Decision Making

2.1 The Setup

Consider the following rather unfair game, which takes place over T rounds. At each round
t = 12, . . . , T :

2Examples from previous lectures include Markov paging (where D is the distributions generated by
Markov Chains), diffuse adversaries and block sources (where D is the ”sufficiently random/uniform” distri-
butions), and self-improving algorithms (where D is the distributions with independent components).

3This implies that no algorithm, whether is CD or not, can be α-instance optimal with respect to CD with
α < 1.

2

1. you probabilistically choose a strategy st from a fixed set S of strategies.

2. an adversary, who knows your probability distribution but not your actual strategy
choice, chooses a cost vector ct : S → [0, 1].

The cost cost(A, c) of an online algorithm A for playing this game is defined in the expected
value (of A’s random coin flips) of

∑T
t=1 ct(st).

An easy fact is that no online algorithm is instance optimal against all online algorithms.
The problem again is algorithms that ”memorize the input”. In more detail, fix an online
algorithm A. If an adversary randomizes between the cost vectors (1, 0) and (0, 1) at every
round, then the expected cost incurred by A is T/2. This implies that there exists a fixed
input z such that cost(A, z) ≥ T/2. On the other hand, there exists an online algorithm
B with cost(B, z) = 0 (where B just correctly guesses the zero-cost strategy at every time
step).

2.2 From Average-Case Analysis to Instance Optimality

The unnaturalness of the algorithm B above suggests looking for an instance optimality
guarantee with respect to a smaller set of ”reasonable algorithms”. We use the two-step
approach from Section 1 for this purpose.

The first step is a thought experiment: if the input (i.e., the cost vectors) where gen-
erated by a probability distribution, then what would we do? We consider the simple case
where each vector ct is an IID draw from a known distribution D. (There can be arbitrary
dependence between the cost of different strategies, but there is no dependence between the
the cost vectors at different rounds.) In the case, the optimal online algorithm is obvious:
to minimize the expected cost, just set

st = argmin
s∈S

Ect∼D

[
ct(s)

]
.

Observe that since D is independent of t, the optimal choice of st is time-invariant. Thus,
ranging over all such distributions D: if D is the set of IID cost vector distributions, then
CD is the set of constant (time-invariant) online algorithms.

Having defined the set CD of algorithms that we seek to compete with, we now dispense
with any distributions and seek an input-by-input guarantee — α-instance optimality with
respect to CD. The main result of this section is a classic one.

Theorem 2.1 ([?]) There is a randomized online algorithm for online decision-making that
is α-instance optimal with respect to the above set CD, where α is essentially 1.

The meaning of ”essentially 1” will be clear at the end of the proof. Theorem 2.1 has
been rediscovered numerous times over the years in various communities. In the vocabulary
of learning theory, it establishes the existence of a no (external) regret algorithm.

3

2.3 The Algorithm

The algorithm is simple and based on two principles. First, a strategy should be chosen
randomly with the probabilities based on their past performances. (Note that since the
input is arbitrary and not generated by a distribution, it’s not obvious that this is the
right thing to do.) Second, the probability assigned to poorly performing actions should be
decreased aggressively (i.e., exponentially). The precise algorithm is as follows. Note that

1. Initialize ws = 1 for every s ∈ S.

2. For each t = 1, 2, . . . , T :

(a) Choose strategy s with probability proportional to the weights: with probability
wt

s/W
t, where W t =

∑
s wt

s.

(b) After seeing the cost vector ct, update wt+1
s = wt

s(1−ε)ct(s), where ε > 0 is a small
(subconstant) parameter whose value we’ll fix later.

Figure 1: How to make decisions on-line.

the weights of strategies only decrease. For example, if strategy s incurs zero cost at some
time step, its weight stays the same; if it incurs unit cost, its weight is multiplied by a (1− ε)
factor.

2.4 The Analysis

The high-level idea of the analysis is to use the total weight W t of all strategies as an
intermediary to relate the two quantities we care about, the cost of the best time-invariant
strategy and the cost of our algorithm.

1. We can lower bound W T as a function of the cost incurred by the best time-invariant
strategy — if a good such strategy exists, it single-handedly provides a good lower
bound on W T .

2. The total weight W T decreases exponentially fast with the cost incurred by our algo-
rithm.

After these two ideas are formalized, the proof follows by a suitable rearrangement of terms.

Proof of Theorem 2.1: Consider an input c1, . . . , cT . Let s∗ denote the optimal time-invariant
strategy (i.e., the smallest cost incurred by an algorithm in CD. Define

OPT =
T∑

t=1

ct(S∗).

4

Then,

W T ≥ wT
s∗ = w1

s∗

T∏
t=1

(1− ε)ct(s∗) = (1− ε)OPT . (4)

On the other hand, for every t, we can track the contraction of W t in terms of the expected
cost of our algorithm:

W t+1 =
∑
s∈S

wt+1
s =

∑
s∈S

wt
s(1− ε)ct(S) ≤

∑
s∈S

wt
s(1− εct(s)) = W t (1− εγt) , (5)

where the inequality holds because ε ∈ [0, 1
2
] and ct(s) ∈ [0, 1] (as you are invited to check)

and where γt is defined to make the last equality hold, as

γt =
∑
s∈S

ct(S) · wt
s

W t
.

Observe that γt is more famously known as the expected cost incurred by our algorithm at
time t.

Iterative (5) for all t and combining the result with (4) yields

(1− ε)OPT ≤ W T ≤ n︸︷︷︸
=W 1

T∏
t=1

(1− εγt).

This inequality is a good start because it relates the two quantities that we care about, OPT
and our expected cost

∑
t γt. To relate them more directly, we take logarithms to get

OPT ln(1− ε) ≤ ln n +
T∑

t=1

ln(1− εγt).

To extract the γt’s, we apply the Taylor series

ln(1 + x) = x− x2

2
+

x3

3
− · · ·

to the right-hand side with x = −εγt (and, while we’re at it, to the left-hand side too). Since
ε ∈ [0, 1

2
] and γt ∈ [0, 1], we can get away with throwing out all but the first term on the

right-hand side (yielding an overestimate) and by doubling the second term on the left-hand
side (yielding an underestimate of ln(1− ε)):

OPT (−ε− ε2) ≤ ln n +
T∑

t=1

(−εγt)

and hence
T∑

t=1

γt ≤ OPT ·
(

1 + ε +
ln n

εOPT

)
. (6)

5

The traditional interpretation of the guarantee (6) is that the per-round additive loss (εOPT+
ε−1 ln n)/T tends to 0 as T → ∞, provided ε is chosen appropriately (a natural choice is
ε =

√
(ln n)/T , to equalize the two additive loss terms). If we want to think in terms of a

relative approximation of cost, as in α-instance optimality, then the simplest interpretation
is: as OPT grows large (asymptotically larger than ln n we can take ε to be subconstant and
hence the relative approximation factor in (6) is 1 + o(1). �

3 Auctions for Digital Goods

3.1 The Setup

Our second example is an instance optimal guarantee for revenue-maximizing auctions. The
simple setup is: there is a single type of good with can be produced in unlimited supply
at zero cost (e.g., a mp3 that you want to sell). There are n potential buyers, each with a
valuation vi that represents i’s maximum willingness to pay for the good.

Our ”computational model” will be called the truthful auctions. If you haven’t seem them
before, the model might seem a bit unnatural and limited. Nevertheless, truthful auctions
are a good abstraction of arbitrary selling procedures (as can be justified formally, though
we won’t do so here).

Formally a truthful auction has the following form: separately for each buyer i =
1, 2, . . . , n:

1. Using only v−i (the valuations other than vi), formulate a ”take-it-or-leave-it” offer
price pi(v−i) for i (or, a probability distribution over such prices).

2. The revenue obtained from i is defined as pi(v−i) if pi(v−i) ≤ vi (since i accepts the
offer) and 0 otherwise (since i declines the offer).

A digression: the motivation for forcing the offer price to i to be independent of i’s valuation
is that typically the vi is a priori known only to the potential buyer and not to the seller.
The seller then has no choice but to (implicitly or explicitly) solicit a bid — which is then
used as a proxy for vi — from the potential buyer (e.g., you do this when you type a bid
into eBay). If pi was allowed to depend on vi, this would encourage bidders to manipulate
the system — this is generally undesirable and, in the present context, doesn’t increase the
maximum-obtainable revenue anyways.

For example, the Vickrey auction is defined as follows: it sells only one item, the buyer
with the highest valuation, and charges the value of the second-highest valuation. As you
should verify, this corresponds to the pricing functions pi(v−i) = maxj 6=i vj for each i. If you
think about eBay, it is precisely an implementation of the Vickrey auction — in particular,
if you win, the price you pay is governed by the next-highest bid and not by the value of
your own bid.

Of course, with an unlimited supply of goods, one wouldn’t use the Vickrey auction.
So which truthful auction is the best for revenue-maximization? As usual, the strongest-
possible argument would exhibit an auction A that is α-instance optimal (with α small) with

6

respect to all truthful auctions. As in the online decision-making problem, this guarantee
is simply not possible. The first observation is that, for every input v, there is a truthful
auction A that obtains the full revenue

∑n
i=1 vi (A ”memorized the input” and sets pi(·)

to be the constant function vi). The second observation is that no (possibility randomized)
truthful auction always earns revenue at least a constant fraction of

∑n
i=1 vi. At the risk of

oversimplifying things, the basic intuition is that pi(v−i) is essentially a guess about what vi

is — and vi could be anything, from 1, to a million, to a billion, and so on. Thus any (even
randomized) guess will perform poorly for some values of vi.

3.2 From Average-Case Analysis to Instance Optimality

Again, the use of input-memorizing algorithms in the above discussion motivates proving
an instance optimality guarantee with respect to a smaller set algorithms that is generated
using the paradigm in Section 1.

Recall that we start with a thought experiment: if the input (i.e., the valuations) is
drawn from a probability distribution, what would we do? We consider the simple case
where each valuation vi is an IID draw from a known distribution D. Under this assumption,
the expected revenue-maximizing truthful auction is easy to characterize: for each buyer i,
choose

pi(v−i) = argmax
p

p︸︷︷︸
revenue from sale

· (1− F (p))︸ ︷︷ ︸
probability of sale

,

where F is the distribution function of D.
Observe that this offer price is independent of v−i (because of the independence of the

vi’s) and of i (because buyers’ valuations are identically distributed) Thus, ranging over all
such distributions D: if D is the set of IID valuation distributions, then CD is the set of
auctions that always offer all buyers some fixed and common offer price p∗.

Now that the relevant set CD has been defined, we forget about distributions and look for
an instance optimality guarantee. A simple observation: an auction A is α-instance optimal
with respect to CD if and only if for all sorted inputs v (with v1 ≥ v2 ≥ · · · ≥ vn), the
expected revenue of A is at least

1

α
max
1≤i≤n

i · vi. (7)

Restricting attention to sorted vectors is without loss (by renaming the bidders) since we
only use auctions that are symmetric, meaning that the expected revenue is invariant under
permutations of an input. For a sorted vector, we claim the maximum in (7) is the maximum
revenue obtainable by a common offer price (i.e., by an auction of CD on the input v) —
this is because, for each i, among all common offer prices p that sell to exactly i bidders, vi

generates the most revenue (namely i · vi).
We prove a result that is a little weaker than instance optimality.

7

Theorem 3.1 ([?]) There is a randomized auction A such that, for every sorted input v,
the expected revenue of A is at least

1

4
max
2≤i≤n

i · vi. (8)

Comparing (7) and (8), we see that Theorem 3.1 is 4-instance optimal only on the subset
of inputs for which argmax1≤i≤n ivi ≥ 2. Note that the inputs which fail to satisfy this
property are those with a single bidder with an extremely high valuation compared to the
others. This deficiency is necessary, more or the less for the same reason it’s impossible to
always obtain revenue at least a constant fraction of

∑n
i=1 vi (even if you know that there

is a single very wealthy buyer and you who it is, you still don’t know what price to offer
them). Fortunately, inputs with argmax1≤i≤n ivi = 1 don’t seem very relevant in theory or
in practice. For example, if the valuations are IID draws from a distribution that satisfies
some mild conditions, then almost all of the expected revenue will come from inputs that
satisfy argmax1≤i≤n ivi ≥ 2 anyway — in this case, the inputs for which Theorem 3.1 doesn’t
apply are of little importance.

3.3 The Algorithm

The key subroutine in the auction of Theorem 3.1 is called a Profit Extractor. It takes as
input valuations v and a revenue target R. The subroutine tries to find a set S of buyers
are willing to pay at least R/|S|, starting from the set of all potential buyers and removing
cheapskates as necessary.

Input: valuations v and a revenue target R.

1. Initialize S to be the set of all potential buyers.

2. While there is a buyer i ∈ S for which vi < R/|S|, delete an arbitrary such bidder.

3. Return the final set S of winners, and (if S 6=) charge each of them R/|S|.

Figure 2: The Profit Extract subroutine.

This subroutine can be implemented as a truthful auction by setting pi(v−i) as follows:
imagine, as a thought experiment, resetting vi to +∞ and running ProfitExtract on v. It
halts with at least one winner (i, if no one else) and charges all winners S some price R/|S|.
Setting pi(v−i) to this value of R/|S| for each i is the same as running the above 3-step
auction (as you should verify). Note that pi(v−i) is independent of vi in this definition, as
required.

The point of the Profit Extractor is to reduce revenue maximization to a decision version,
namely whether or not raising a given amount of revenue R is possible. The subroutine solves
this decision problem in the following sense.

8

Lemma 3.2 If there is a common offer price that extracts revenue R from the sorted input
v (i.e., maxi≤i≤n i · vi ≥ R), then ProfitExtract will successfully compute such a price (and
halt with S 6= ∅).

Proof: Assume that i · vi ≥ R with T being the top i bidders, so vj ≥ R/i for every j ∈ T .
Initially, T ⊆ S. By induction on the number of iterations, T ⊆ S at the end of the algorithm
(since |S| ≥ |T | = i, every buyer j ∈ T is only asked to pay prices at most R/|S| ≤ R/i ≤ vj).
�

So, if we can identify a suitable revenue target R, then we are done because of the Profit
Extractor. You might wonder why we don’t just set R to be the maximum revenue obtainable
from all bidders and then run the Profit Extractor. The reason is that this is not a truthful
auction — the value R is now a function of every valuation vi, and the prices offered by the
Profit Extractor then inherit this dependence. Instead, we need to make sure every buyer
participates in a Profit Extractor while wielding no influence over the corresponding revenue
target. Perhaps the simplest implementation of this idea is the Random Sampling Profit
Extractor (RSPE) auction.

Input: valuations v.

1. Randomly partition the valuations v into two groups, x and y. (Flip an independent
and fair coin for each of the potential buyers.)

2. Set R1 to be the maximum revenue obtainable from the valuations x via common offer
price.

3. Set R2 to be the maximum revenue obtainable from the valuations y via common offer
price.

4. ProfitExtract(x, R2).

5. ProfitExtract(y, R1).

Figure 3: The RSPE auction.

This is a truthful auction because, for each i, the valuation vi does not affect the revenue
target for the group to which i belongs, and because for a fixed revenue target the price
offered to i by ProfitExtract is independent of vi.

The next example shows that the RSPE auction is no better than 4-instance optimal,
even when restricting to sorted inputs v for which argmax1≤i≤n ivi ≥ 2.

Example 3.3 Suppose n = 2, v1 = 1, and v2 = 1
2
. Note that max2≤i≤n ivi = 1. With

50% probability, the RSPE auction will put two bidders in one group and zero in the other

9

— in this case it will try to ProfitExtract 0 from the two bidders (successfully, for what
its worth) and 1 from the empty group (unsuccessfully), for a revenue of 0. With 50%
probability, the RSPE auction will split the two bidders into different groups — then, it will
successfully extract revenue 1

2
from the first bidder and will unsuccessfully try to extract

1 from the second bidder. In this case its revenue is 1
2
. Overall, its expected revenue is

1
4

= 1
4
·max2≤i≤n ivi.

3.4 The Analysis

We now prove Theorem 3.1. We start with an easy lemma.

Lemma 3.4 With probability 1, the revenue of the RSPE auction is at least min{R1, R2}.

Proof: Lemma 3.2 and the definition of the RSPE auction imply that Whichever of R1, R2

is smaller will be successfully extracted from the opposite group of valuations. �

Thus the key lemma, which completes the proof of Theorem 3.1, is the following.

Lemma 3.5 For every sorted input v,

Esplits (x,y)[min{R1, R2}] ≥
1

4
·
[

min
2≤i≤n

i · vi

]
.

Proof:, Fix a sorted input v, and let i = argmax2≤j≤n j · vj. Let i1 and i2 denote the number
of the top i bidders that are in x and y, respectively (so i1 + i2 = i with probability 1). Now,
vi is one candidate common offer price for both x and y, and it will generate revenue i1 · vi

and i2 · vi, respectively. Since R1, R2 are defined using the best common offer price for each
group, we have

min{R1, R2} ≥ vi ·min{i1, i2}.

Thus, we only need to prove that

Esplits[min{i1, i2}] ≥
i

4
(9)

for every i ≥ 2. (Inequality (9) would certainly be false when i = 1, since the left-hand side
would be 0.) Note that, combinatorially, inequality (9) is asking about throwing i balls into
two urns, and claim that the split is balanced 25%-75% or better on average.

We warm up with a little case analysis. When i = 2, min{i1, i2} is either 0 or 1, with
50/50 probability. So the left-hand side of (9) is 1

4
, which is the same as the right-hand side

in this case. (Cf., Example 3.3.) When i = 3, min{i1, i2} is again either 0 or 1, now with
25/75 probability. The left-hand side of (9) is now 3

4
, as is the right-hand side in this case.

For a general number i ≥ 2 of balls, we first throw in either 2 or 3 balls, depending on
whether or not i is even or odd, respectively. We know (9) holds at this point. Now we
throw in balls a pair at a time. Each time, i goes up by 2 and the right-hand side of (9)
goes up by 1

2
. Each time, there is a 50% chance that the two balls go into different urns, in

10

which case the minimum population in an urn goes up by 1. Thus, the left-hand side goes
up by at least 1

2
each time. The proof (of Lemma 3.5 and hence Theorem 3.1) is complete.

�

11

