
CS369N: Problem Set #2

Due in class on Tuesday, November 8, 2011

Instructions: Same as the first homework.

Problem 6

(20 points) This problem is about parameterized running time analysis with respect to an input property.
Recall that in the Steiner tree problem you are given an undirected graph with costs on edges, k vertices

t1, . . . , tk are distinguished terminals, and the goal is to compute the minimum cost subgraph that spans all
of the terminals (and possibly other vertices as well, if needed). This problem is NP-hard in general.

Give an algorithm that solves the Steiner tree problem correctly in every graph and, morover, runs in
time O(f(t)·g(n, k)), where f is an arbitrary function, g is a polynomial function, and t denotes the treewidth
of the input graph. You can use without proof any of the definitions, theorems, and algorithms from Sections
10.4 and 10.5 of the book Algorithm Design, by Kleinberg and Tardos. (Copies of the book are on reserve,
for my CS161 class, at the Engineering library.)

Problem 7

Recall from Lecture #7 the model of online paging with access graphs.

(a) (4 points) Consider the online paging problem in which the access graph G is a line on k + 1 pages.
(Recall that in every legal input, every page must be a neighbor of the previous one; the first page can
be arbitrary.) Recall from the lecture notes that LRU has competitive ratio 1 on this graph. Show
that the competitive ratio on G of the FIFO paging algorithm is Ω(k), where k is the size of the cache.

(b) (6 points) Consider the online paging problem in which the access graph G is a cycle on k + 1 pages.
Recall from the lecture notes that LRU has competitive ratio k on this graph. Give an online algorithm
that has competitive ratio O(log k) for G.

(c) (5 points) Suppose we change the cost model so that every cache hit costs 1 and every cache miss
costs m ≥ 1. Recall from Lecture #3 how we break a sequence σ into blocks σ1, σ2, . . . , σb, where each
σi is a maximal sequence in which only k distinct pages are requested. A simplistic and sequence-
dependent model of locality is as follows: for a given σ, define its locality L(σ) as its average block
length (the number of requests divided by b). Note that this does make at least some intuitive sense
as a locality measure. Prove that for every sequence σ with locality at least αm, the cost (in this new
cost model) of LRU is at most 1 + k−1

α+1 times that of the optimal (furthest-in-future) algorithm.

(d) (Extra credit) Formulate a definition of a “graph-independent” algorithm (like FIFO or LRU but unlike
the one you presumably designed in part (b)). Say whatever you can (examples, lemmas, conjectures)
about whether or not there are better graph-independent algorithms than LRU.

Problem 8

(15 points) Recall from Lecture #6 that randomly ordering the vertices of a graph G = (V,E) with vertex
weights w and then running a simple greedy algorithm produces an independent set with expected value at

1



least
∑

v∈V
wv

deg(v)+1 . (Just analyze one vertex and then use linearity of expectations.) Give a deterministic
algorithm with the same guarantee.

One approach to this problem is to derandomize the randomized algorithm above. Alternatively, you can
prove the guarantee directly for a suitable deterministic greedy algorithm.

Problem 9

(15 points) Recall that in the Vertex Cover problem, you are given an undirected graph G = (V,E) where
each vertex has a nonnegative weight wv. The goal is to compute the subset S of V of minimum total weight
with the property that every edge has at least one of its endpoints in S.

Call a Vertex Cover instance γ-stable if its optimal solution S∗ remains optimal even after each vertex v is
scaled by an arbitrary factor σv ∈ [1, γ]. Prove that in ∆-stable Vertex Cover instances, the optimal solution
can be recovered in polynomial time. (Here ∆ denotes the maximum degree of the graph.)

Problem 10

(20 points) This problem is about resource augmentation, as discussed in Lectures #3 and #4. The biggest
“killer application” for this technique has been in scheduling problems. First, familiarize yourself with the
notes from Lecture #8 of the 2009 version of this course (listed on the Web page for this year under the
third lecture).

Recall the Balance algorithm for non-clairvoyant online scheduling described in those notes. There, we
studied the objective of minimizing the average flow (or response) time,

∑
j(Cj − rj). One concern about

such objectives is that minimizing the average might require assigning huge delays to a small number of jobs.
This problem proves that this concern is unwarranted for the Balance algorithm.

Precisely, consider the objective of minimizing the maximum idle time of a job, where the idle time is
Cj−rj−(pj/s), where Cj is the job’s completion time, rj is its release date, pj is its processing time, and s is
the machine speed. Show that the maximum idle time of a job under the Balance algorithm with a machine
of speed 1 + ε is at most 1/ε times that of an optimal (clairvoyant and offline) solution with a machine of
unit speed.
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