
CS364A: Problem Set #1

Due to the TAs by noon on Friday, October 11, 2013

Instructions:

(1) Form a group of at most 3 students and solve as many of the following problems as you can. You
should turn in only one write-up for your entire group.

(2) Turn in your solutions directly to one of the TAs (Kostas or Okke). You can give them a hard copy
or send a soft copy by email to cs364a-aut1314-submissions@cs.stanford.edu. Please type your
solutions if possible and feel free to use the LaTeX template provided on the course home page.

(3) If you don’t solve a problem to completion, write up what you’ve got: partial proofs, lemmas, high-level
ideas, counterexamples, and so on.

(4) Except where otherwise noted, you may refer to your course notes, and to the textbooks and research
papers listed on the course Web page only. You cannot refer to textbooks, handouts, or research papers
that are not listed on the course home page. If you do use any approved sources, make you sure you
cite them appropriately, and make sure that all your words are your own.

(5) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(6) No late assignments will be accepted.

Problem 1

(10 points) Identify a real-world system in which the goals of some of the participants and the designer are
fundamentally misaligned, leading to non-trivial strategic behavior by the participants. You should also give
proposals for how the system could be improved to mitigate the incentive problems. You should include:

• A description of the system, detailed enough that you can express clearly the incentive problems and
your solutions for them.

• Evidence that participants are gaming the system in undesirable ways. This could be anecdotal evi-
dence, something that has or can be measured, or something that you demonstrate yourself. (Feel free
to include screen shots or pictures.)

• A convincing argument why your proposed changes would reduce or eliminate the strategic behavior
that you identified.

We emphasize that a “system” could be any number of things — a Web site, a competition, a political
process, etc.

Problem 2

(a) (3 points) Prove that for every false bid bi 6= vi by a bidder in a Vickrey auction, there exist bids b−i

by the other bidders such that i’s payoff when bidding bi is strictly less than when bidding vi.
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(b) (4 points) Consider a Vickrey auction with n bidders and suppose a subset S of the bidders decide
to collude, meaning that they submit false bids in a coordinated way to maximize the sum of their
payoffs. Prove necessary and sufficient conditions on the set S (in terms of the private valuations of
the bidders) such that the bidders of S can increase their collective payoff via non-truthful bidding.

(c) (3 points) We proved that the Vickrey auction is truthful under the assumption that every bidder’s
utility function is quasi-linear — of the form ui(vi, pi) = vi · xi − pi (where xi is 1 if i wins and 0
otherwise). State some significantly weaker assumptions on the utility functions ui(vi, pi) under which
truthful bidding is a dominant strategy for every bidder.

Problem 3

Recall the sponsored search auction problem discussed in Lectures #2 and 3: there are k slots, the jth slot
has a known click-through rate (CTR) of αj (nonincreasing in j), and the payoff of bidder i in slot j is
αj(vi − pj), where vi is the (private) value-per-click of the bidder and pj is the price charged per-click in
that slot. For historical reasons, modern search engines do not use the truthful auction discussed in class.
Instead, they use auctions derived from the Generalized Second-Price (GSP) auction, defined as follows:

(1) Rank advertisers by bid; assume without loss of generality that b1 ≥ b2 ≥ · · · ≥ bn.

(2) For i = 1, 2, . . . , k, assign the ith bidder to the i slot.

(3) For i = 1, 2, . . . , k, charge the ith bidder a price of bi+1 per click.

(a) (4 points) Prove that for every k ≥ 2 and sequence α1 ≥ · · · ≥ αk > 0 of CTRs, there exist valuations
for the bidders such that the GSP auction is not truthful.

(b) [Do not hand in.] Fix CTRs for slots and valuations-per-click for bidders. We can assume that k = n
by adding dummy slots with zero CTR (if k < n) or dummy bidders with zero valuation (if k > n). A
bid vector b is an equilibrium of GSP if no bidder can increase its payoff by changing its bid. Verify
that this translates to the following conditions, assuming that b1 ≥ b2 ≥ · · · ≥ bn: for every i and
higher slot j < i,

αi(vi − bi+1) ≥ αj(vi − bj);

and for every lower slot j > i,
αi(vi − bi+1) ≥ αj(vi − bj+1).

(Derive these by adopting i’s perspective and “targeting” the slot j.)

(c) [Do not hand in.] A bid vector b with b1 ≥ · · · ≥ bn is envy-free if for every bidder i and higher slot
j < i,

αi(vi − bi+1) ≥ αj(vi − bj+1);

and for every lower slot j > i,
αi(vi − bi+1) ≥ αj(vi − bj+1).

Verify that an envy-free bid vector is necessarily an equilibrium. (The terminology “envy-free” stems
from the following interpretation: write pj = bj+1, for the current price-per-click of slot j; then the
above inequalities say: “each bidder i is as happy getting its current slot at its current price as it would
be getting any other slot and that slot’s current price”.)

(d) (6 points) A bid vector is locally envy-free if the inequalities in (c) hold for adjacent slots (i.e., for every
i and j = i− 1, i + 1). Prove that, as long as the CTRs are strictly decreasing, a locally envy-free bid
vector must in fact be envy-free.

[Hint: you might want to first prove that the bidders must be sorted in nonincreasing order of valua-
tions.]
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(e) (5 points) Prove that, for every set of αj ’s and vi’s, there is an equilibrium of the GSP auction for
which the outcome (i.e., the assignment of bidders to slots) and the prices paid precisely match those
of the truthful auction discussed in class. If you want, you can assume that the CTRs are strictly
decreasing.

[Hint: Recall that you know a closed-form solution for the payments made by the truthful auction.
What bids would yield these payments in a GSP auction? Part (d) might be useful for proving that
they form an equilibrium.]

Problem 4

Recall the Knapsack problem studied in lecture, and the DSIC 2-approximation mechanism that we gave for
it. There are n bidders, each with a private valuation vi and a publicly known size ci. There is a publicly
known budget (or “knapsack capacity”) C. The feasible allocations correspond to subsets S of bidders for
which

∑
i∈S ci ≤ C. We assume that ci ≤ C for every i.

The problem of computing the surplus-maximizing feasible allocation is precisely the Knapsack problem.
Recall that this problem is NP-hard but can be solved in pseudo-polynomial time using dynamic programming
(in time poly(n) ·C when the costs and budget are integral, and in time poly(n) ·maxi vi when the valuations
are integral). In lecture we discussed a well-known 2-approximation algorithm. See any algorithms textbook
(or the instructor’s Coursera lectures on algorithms) for proofs of these facts.

(a) [Do not hand in.] We next review a fully polynomial-time approximation scheme (FPTAS) for the
Knapsack problem. Given a parameter ε > 0 consider the following algorithm Aε:

– Round each vi up to the nearest multiple of V ε/n, call it v′i.

– Multiply through by n/V ε to get integers v′′1 , . . . , v′′n.

– Solve the Knapsack problem for the v′′i ’s exactly using a pseudo-polynomial-time algorithm.

Recall (or look up the fact) that, if we set the parameter V to be maxi vi, then the algorithm Aε runs
in polynomial time and gives a (1− ε)-approximation for the Knapsack problem.

(b) (3 points) Prove that if V is fixed up front, then the algorithm Aε defines a monotone allocation rule
(for any ε).

(c) (4 points) Suppose we try to first set V = maxi vi and then run the algorithm Aε. Prove that this
combined algorithm does not always define a monotone allocation rule.

(d) (7 points) Give a truthful fully polynomial-time approximation scheme for the Knapsack problem with
private valuations. The running time of your algorithm should be polynomial in both n and 1/ε.

[Hint: Under what conditions does taking the better of two monotone allocation rules yield another
monotone allocation rule?]

(e) (5 points) Suppose, for this part of the problem only, that we have two knapsacks with known capacities.
An obvious approach is to use the 2-approximation algorithm discussed in lecture to pack one knapsack,
and then to use it again to pack the other knapsack using the remaining bidders. Does this algorithm
define a monotone allocation rule? Either prove that it does or give an explicit counterexample.

(f) (6 points) Suppose, for this part of the problem only, that each bidder i has a private valuation vi and
also a private size ci. The first step of a sealed-bid mechanism thus accepts a reported valuation bi

and a reported capacity ai from each bidder i. The second step of a mechanism decides how much
capacity yi to award to each bidder i, subject to the constraint that

∑n
i=1 yi ≤ C. The third step of

a mechanism charges a price pi to each bidder i. The utility of a bidder i in an outcome is defined
as vixi − pi, where xi is 1 if the bidder gets its required capacity (yi ≥ ci) and 0 otherwise (if yi < ci).

The mechanism from class extends naturally to this setting of private sizes. Specifically, the mechanism
uses the 2-approximation algorithm (with the reported data b and a) to select a subset S of winning
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bidders whose reported sizes fit in the knapsack (i.e.,
∑

i∈S ai ≤ C). Second, the mechanism awards
capacity ai to each winner i ∈ S and capacity 0 to each losing bidder. Third, the mechanism charges
payments as if the reported sizes were known a priori: that is, the payment of a winning bidder i ∈ S
is the minimum bid b′i at which it would continue to win (holding its reported size ai fixed).

Is this extended mechanism DSIC? Prove it or give an explicit counterexample.

Problem 5

Consider an auction setting with a set M of distinct goods. Each bidder i has a publicly known subset Ti ⊆ M
of goods that it wants, and a private valuation vi of getting them. If bidder i receives the goods Ai ⊆ M at
a total price of p, then its utility is vixi − p, where xi is 1 if Ai ⊇ Ti and 0 otherwise.

(a) (5 points) A subset S of bidders is feasible if every good of M is sought by at most one bidder of S —
that is, if Ti∩Tj = ∅ for each distinct i, j ∈ S. Consider the problem of computing the feasible subset of
bidders that maximizes the social surplus

∑n
i=1 vixi. Prove that this problem is NP-hard. Specifically,

prove that computing a maximum-weight Independent Set of a graph with maximum degree d reduces
to the problem of maximizing the social surplus of bidders who each desire a set Ti with cardinality at
most d.1

(b) (5 points) Here is a natural greedy algorithm for the above social surplus maximization problem, given
a reported bid from each player:

(1) Initialize S = ∅, X = M .

(2) Sort and re-index the bidders so that b1 ≥ b2 ≥ · · · ≥ bn.

(3) For i = 1, 2, 3, . . . , n:

∗ If Ti ⊆ X, then:
· Delete Ti from X.
· Add i to S.

Does this algorithm define a monotone allocation rule? Prove it or give an explicit counterexample.

(c) (5 points) Prove that if all bidders report truthfully and have sets Ti of cardinality at most d, then the
outcome of the mechanism in (b) has social surplus at least 1

d times that of the maximum possible.

Problem 6

In this problem we compare the revenue achieved by first- and second-price auctions for a single good.
Analyzing what happens in a first-price auction is not trivial; the easiest way to proceed is to assume that
each valuation vi is drawn i.i.d. from a known prior distribution F . A strategy of a bidder i in a first-
price auction is then a predetermined formula for (under)bidding: formally, a function bi(·) that maps its
valuation vi to a bid bi(vi). You should conceptually think of this strategy (i.e., this function) as being
announced to all of the other bidders in advance; but of course, the other bidders do not know the actual
value of vi (and hence do not know the corresponding bid bi(vi)). We will call such a family b1(·), · · · , bn(·)
of bidding functions a (Bayes-Nash) equilibrium if for every bidder i and every valuation vi, the bid bi(vi)
maximizes i’s expected payoff, where the expectation is with respect to the random draws of the other
bidders’ valuations (which, via their bidding functions, induce a distribution over their bids).

(a) (7 points) Suppose each valuation is an independent draw from the uniform distribution on [0, 1]. Prove
that one equilibrium is given by setting bi(vi) = vi(n− 1)/n for every i and vi.

(b) (8 points) Prove that the expected revenue of the seller at this equilibrium of the first-price auction is
exactly the expected revenue of the seller with truthful bidding in a Vickrey auction (where in both
cases the expectation is over the valuation draws).

1The Independent Set problem is discussed in every textbook that covers NP-completeness.
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(c) (8 extra-credit points) Extend the conclusion in (b) to the case of an arbitrary distribution F with
positive and differentiable density f on support [0, 1].

[Hint: You can prove this directly, but Myerson’s Lemma will shorten the argument somewhat.]

Extra Credit

(Up to 20 points, redeemable by December 13th, 2013) Can you produce a better physical demonstration
of Braess’s Paradox than those currently on YouTube? Possible dimensions for improvement include the
magnitude of the weight’s rise, production values, and dramatic content.
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