
CS364A: Problem Set #4

Due to the TAs by noon on Friday, November 22, 2013

Instructions:

(0) We’ll grade this assignment out of a total of 75 points; if you earn more than 75 points on it, the extra
points will be treated as extra credit.

(1) Form a group of at most 3 students and solve as many of the following problems as you can. You
should turn in only one write-up for your entire group.

(2) Turn in your solutions directly to one of the TAs (Kostas or Okke). Please type your solutions if possible
and feel free to use the LaTeX template provided on the course home page. Email your solutions to
cs364a-aut1314-submissions@cs.stanford.edu. If you prefer to hand-write your solutions, you can
give it to one of the TAs in person.

(3) If you don’t solve a problem to completion, write up what you’ve got: partial proofs, lemmas, high-level
ideas, counterexamples, and so on.

(4) Except where otherwise noted, you may refer to your course notes, and to the textbooks and research
papers listed on the course Web page only. You cannot refer to textbooks, handouts, or research papers
that are not listed on the course home page. If you do use any approved sources, make you sure you
cite them appropriately, and make sure that all your words are your own.

(5) You can discuss the problems verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

(6) No late assignments will be accepted.

Problem 22

(a) (7 points) Consider an atomic selfish routing game in which all players have the same source vertex and
sink vertex (and each controls one unit of flow). Assume that edge cost functions are nondecreasing, but
do not assume that they are affine. Prove that a (pure-strategy) Nash equilibrium (i.e., an equilibrium
flow) can be computed in polynomial time.

[Hint: Remember the potential function from Lecture 13. You can assume without proof that the
minimum-cost flow problem can be solved in polynomial time. If you haven’t seen the min-cost flow
problem before, you can read about it in any book on “combinatorial optimization”. Be sure to discuss
the issue of fractional vs. integral flows, and explain how (or if) you use the hypothesis that edge cost
functions are nondecreasing.]

(b) (7 points) Prove that in an atomic selfish routing network of parallel links, every equilibrium flow
minimizes the potential function.

(c) (6 points) Show by example that (b) does not hold in general networks, even when all players have a
common source and sink vertex.

1

Problem 23

This problem develops some theory about potential games, which were introduced in Lecture 13. We consider
an abstract finite game with n players with finite strategy sets S1, . . . , Sn. Each player has a payoff function
πi mapping outcomes (elements of S1 × · · · × Sn) to real numbers. Recall that a potential function Φ for
such a game is defined by the following property: for every outcome s ∈ S1 × · · · × Sn, every player i, and
every deviation s′i ∈ Si,

πi(s′i, s−i)− πi(si, s−i) = Φ(s′i, s−i)− Φ(si, s−i).

(a) (8 points) A team game is a game in which all players have the same payoff function: π1(s) = · · · = πn(s)
for every outcome s. In a dummy game, the payoff of every player i is independent of its strategy:
πi(si, s−i) = πi(s′i, s−i) for every s−i and every si, s

′
i ∈ Si.

Prove that a game with payoffs π1, . . . , πn is a potential game (i.e., admits a potential function Φ) if and
only if it is the sum of a team game πt

1, . . . , π
t
n and a dummy game πd

1 , . . . , πd
n (i.e., πi(s) = πt

i(s)+πd
i (s)

for every i and s).

(b) (4 points) Prove that if a game admits two potential functions Φ1 and Φ2, then Φ1 and Φ2 differ by a
constant. That is, for some c ∈ R, Φ1(s) = Φ2(s) + c for every outcome s of the game.

Thus, it is well defined to speak of “the potential function maximizer” of a potential game.

(c) (8 points) Prove that a finite game admits a potential function if and only if for every two outcomes
s1 and s2 that differ in two players’ choices (say players i and j),(

πi(s2
i , s

1
−i)− πi(s1)

)
+

(
πj(s2)− πj(s2

i , s
1
−i)

)
=

(
πj(s2j , s1−j)− πj(s1)

)
+

(
πi(s2)− πi(s2

j , s
1
−j)

)
.

Problem 24

Recall from Lecture 13 that a congestion game is like an atomic selfish routing game except we drop the
assumption that strategies represent paths in a network. That is, there is a ground set E (previously, the
edges), and each e ∈ E has a cost function ce. Each player i has a strategy set Si, and each strategy si ∈ Si

is a subset of E (previously, a path). In an outcome s, if xe players are using a strategy that contains e, then
player i’s cost is

∑
e∈si

ce(xe). We effectively proved in lecture that every congestion game is a potential
game. In this problem we prove the converse.

Two games G1 and G2 are isomorphic if: (i) they have the same number k of players; (ii) for each i,
there is a bijection fi from the strategies Ai of player i in G1 to the strategies Bi of player i in G2; and
(iii) these bijections preserve payoffs, so that π1

i (s1, . . . , sn) = π2
i (f1(s1), . . . , fn(sn)) for every player i and

outcome s1, . . . , sn of G1. (Here π1 and π2 are the payoff functions of G1 and G2, respectively.)

(a) (7 points) Prove that every team game (see Problem 22) is isomorphic to a congestion game.

(b) (7 points) Prove that every dummy game (see Problem 22) is isomorphic to a congestion game.

(c) (6 points) Prove that every potential game is isomorphic to a congestion game.

Problem 25

(10 points) Algorithmic Game Theory, Exercise 19.14.

Problem 26

(a) (10 points) Algorithmic Game Theory, Exercise 19.16(b). Proving that these games are “valid utility
games” just means proving that they satisfy the same 3 properties as the location games discussed in
Lecture 14: surplus is at least the sum of players’ payoffs; the payoff of a player is at least the surplus

2

increase caused by the presence of its location1; and surplus is a submodular function of the set of
chosen locations.

(b) (5 points) Prove that the games in part (a) are potential games.

Problem 27

(10 points) Algorithmic Game Theory, Exercise 19.17(b).

Problem 28

Consider n identical machines and m selfish jobs (the players). Each job j has a processing time pj . Once
jobs have chosen machines, the jobs on each machine are processed serially from shortest to longest. (You
can assume that the pj ’s are distinct.) For example, if jobs with processing times 1, 3, and 5 are scheduled
on a common machine, then they will complete at times 1, 4, and 9, respectively. The following questions
concern the game in which players choose machines in order to minimize their completion times, and the
objective function of minimizing the sum

∑m
j=1 Cj of the jobs’ completion times.

(a) (5 points) Define the rank Rj of job j in a schedule as the number of jobs on j’s machine with processing
time at least pj (including j itself). For example, if jobs with processing times 1, 3, and 5 are scheduled
on a common machine, then they have ranks 3, 2, and 1, respectively.

Prove that in these scheduling games, the objective function value of an outcome can also be written
as

∑m
j=1 pjRj .

(b) (5 points) Prove that the following algorithm produces an optimal outcome: (i) sort the jobs from
largest to smallest; (ii) for i = 1, 2, . . . ,m, assign the ith job in this ordering to machine i mod m
(where machine 0 means machine m).

(c) (15 points) Prove that for every such scheduling game, the expected objective function value of every
coarse correlated equilibrium is at most twice that of an optimal outcome.

[Hint: In Lecture 14, the (λ, µ)-smoothness condition was required for all pairs s, s∗ of outcomes.
Weaken the definition so that this condition only needs to hold for some optimal outcome s∗ and all
outcomes s. Observe that the POA of coarse correlated equilibria remains at most λ

1−µ assuming only
this weaker condition (with the same proof as before). Prove that these scheduling games satisfy this
weaker condition with λ = 2 and µ = 0.]

Problem 29

Recall the set-up for online regret-minimization: there is a fixed set A of actions; each day t = 1, . . . , T you
pick an action at ∈ A (possibly from a probability distribution) based only on information from previous
days; and then a cost vector ct : A → [0, 1] is unveiled. The goal is to design a (randomized) algorithm
that, for every sequence of cost vectors, has small expected average regret. [Recall that the (average, per
time-step) regret is the difference between your average cost (1

T

∑T
t=1 ct(at)) and that of the best fixed action

(mina∈A
1
T

∑T
t=1 ct(a)).]

(a) (5 points) Suppose that, every day, you pick the action that performed best in the past (i.e., that
minimizes the cumulative cost

∑t−1
s=1 cs(a) over a ∈ A). Show that, in the worst case, the average

regret of this algorithm is Ω(1) as T →∞.

1In the location games in lecture, this held with equality. You should check that the weaker property here is sufficient for
the POA bound of 1

2
.

3

(b) (5 points) Let’s consider the following randomized pre-processing step: independently for each action a,
initialize the starting cumulative cost to a geometric random variable −Xa with parameter ε (i.e., to
the number of coin flips needed until you get “heads”, assuming that the probability of “heads” is ε).
Then, every day, you pick the action that minimizes the perturbed cumulative cost −Xa +

∑t−1
s=1 cs(a)

over a ∈ A.

First prove that, for each day t, with probability at least 1− ε, the smallest perturbed cumulative cost
of an action prior to day t is at least 1 less than the second-smallest perturbed cumulative cost of an
action prior to day t.

(c) (5 points) As a thought experiment, consider the (unimplementable) algorithm that, every day, picks
the action that minimizes the perturbed cumulative cost −Xa +

∑t
s=1 cs(a) over a ∈ A, taking into

account the current day’s cost vector. Prove that the average regret of this algorithm is at most
(maxa Xa)/T .

(d) (5 points) Prove that E[maxa Xa] = O(ε−1 log n), where n is the number of actions.

(e) (5 points) Use (c) and (d) to prove that, for a suitable choice of ε, the algorithm in (b) has expected

average regret O(
√

log n
T), just like the multiplicative weights algorithm covered in class. (Make any

assumptions you want about how ties between actions are broken.)

4

