
CS264: Homework #8

Due by midnight on Wednesday, November 19, 2014

Instructions:

(1) Students taking the course pass-fail should complete the exercises. Students taking the course for a
letter grade should also complete some of the problems — we’ll grade your problem solutions out of a
total of 40 points (with any additional points counting as extra credit).

(2) All other instructions are the same as in previous problem sets.

Lecture 15 Exercises

Exercise 47

A fully polynomial-time approximation scheme (FPTAS) for a maximization problem takes as input a problem
instance and a parameter ε, and returns a feasible solution with objective function value at least (1 −
ε) times the maximum possible, in time polynomial in the size of the instance and in 1

ε . Prove that if
a binary optimization problem with a maximization objective admits an FPTAS, then it also admits a
pseudopolynomial-time algorithm (i.e., an exact algorithm that, when the objective function coefficients vi
are integers, runs in time polynomial in the instance size and maxni=1 vi).

[Comment: there are also converses to this statement, but they are harder to prove.]

Exercise 48

Look up the terms “strongly NP-hard” and “ZPP .” Recall from lecture that if a binary optimization
problem admits an algorithm with polynomial smoothed complexity, then it also admits a randomized
pseudopolynomial-time algorithm. Explain why this result implies that strongly NP -hard binary optimiza-
tion problems do not have polynomial smoothed complexity, unless NP ⊆ ZPP .

Exercise 49

Here is the original form of the Isolation Lemma. Consider a binary optimization problem with a maxi-
mization objective, as defined in lecture. Let each vi be a positive integer chosen uniformly at random from
{1, 2, 3, . . . , n2}. Prove that with high probability (i.e., approaching 1 as n→∞), the resulting instance has
a unique optimal solution.

Exercise 50

The point of this exercise is to investigate the independence assumptions we’ve been making in our smoothed
analyses. Recall the following:

(i) In Lecture #13, our perturbation model assumed that each point in the TSP instance was drawn
independently from a distribution with density function bounded above by 1/σ.

(ii) In Lecture #14, our perturbation model assumed that each item weight in the Knapsack instance was
drawn independently from a distribution with density function bounded above by 1/σ.
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(iii) In Lecture #15, our perturbation model assumed that each value in the instance of a binary optimiza-
tion problem was drawn independently from a distribution with density function bounded above by
1/σ.

Suppose we relax these independence assumptions to the following: for every point/item weight/value,
conditioned arbitrarily on the other points/item weights/values, the conditional distribution has density
function bounded above by 1/σ.

Which of our three smoothed analyses from Lecture #13-15 continue to hold, with the same proofs, under
this relaxed assumption? Justify your answer.

Lecture 16 Exercises

Exercise 51

Let D1, D2 denote two probability distributions on a finite set Ω. Define the statistical distance between D1

and D2 as
max
S⊆Ω
|PrD1 [S]−PrD2 [S]| .

Define the `1 distance as ∑
ω∈Ω

|PrD1 [ω]−PrD2 [ω]| .

Prove that the statistical distance is precisely half the `1 distance.

Problems

Problem 24

Recall the scheduling problem mentioned in lecture, which provides another example of a binary optimization
problem that can be solved in pseudopolynomial (and hence, by Lecture #15, smoothed polynomial) time.
The input consists of n jobs, each with a known a positive processing time pj , deadline dj , and cost cj .
You should assume that all costs are integral. The feasible solutions are orderings of these jobs on a single
machine. The finishing time Fj of a job j in an ordering is the sum of pj and the processing times of all the
jobs scheduled prior to j. A job is late in an ordering if its finishing time is strictly larger than its deadline.
The goal of the problem is to compute the ordering of the jobs that minimizes the total cost of the late jobs.

(a) (3 points) Prove that if a subset S of jobs can all be scheduled to finish by their deadlines, then
scheduling them in order of increasing deadline accomplishes this.

(b) (7 points) Give a dynamic programming algorithm that solves the scheduling problem in time polyno-
mial in n and C, where C = maxnj=1 Cj .

Problem 25

(15 points) The point of this problem is show that the pseudopolynomial-time (and hence, by Lecture #15,
polynomial smoothed complexity) algorithm for the Knapsack problem extends to the case where there are
k knapsacks, where k is a constant.

Precisely, there are again n items. For i = 1, 2, . . . , n and j = 1, 2, . . . , k, there is a positive value vij of
placing item i in the jth knapsack and a positive weight wij of item i in the jth knapsack. For j = 1, 2, . . . , k,
the jth knapsack has a capacity Wj . You should assume that all the wij ’s and Wj ’s are integers. The goal
is to place items in knapsacks, respecting all knapsack capacities, to maximize the total value in all of the
knapsacks.

Give an algorithm for the multiple knapsack problem that runs in time polynomial in n and maxkj=1Wj .
The running time can have arbitrary dependence on the number of knapsacks k.
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Problem 26

(15 points) The point of this problem is to investigate analogs of the Isolation Lemma that accommodate
random constraints rather than a random objective function value. Consider a binary optimization problem
with a maximization objective. Let the objective function max

∑n
i=1 vixi be fixed, with vi > 0 for every i.

Also fixed is a preliminary feasible set F ⊆ {0, 1}n. You can assume that for every i = 1, 2, . . . , n, there are
members x of F with xi = 0 and with xi = 1. In addition, we consider a random linear constraint of the
form

∑n
i=1 wixi ≤ W . Assume that W is fixed and at least t, where t ≥ 0 is the minimum number of 1s

in a member of F . Assume that each wi is drawn independently from [0, 1] according to one of our usual
smoothed distributions, with density function fi : [0, 1] → [0, 1

σ ] for a parameter σ. The final (random)
feasible set is defined as the set of x ∈ F with

∑n
i=1 wixi ≤ W . Note that under our assumptions, the

feasible set is non-empty with probability 1.
Define the loser gap L as follows: let V ∗ denote the maximum value of a feasible solution, let x̄ minimize∑n
i=1 wixi over all x ∈ F with

∑n
i=1 vixi > V ∗ and

∑n
i=1 wixi > W , and set L =

∑n
i=1 wix̄i −W . Note

that L is a random variable. Prove that the probability (over the wi’s) that L is less than ε is at most nε/σ.

[Hint: follow the same proof template as for analyzing the winner gap. Analyze the probability that a
variable xi is “ε-bad,” in the sense that if x̄(i) denotes the maximum-value feasible solution with xi = 0,
then there is a solution x(i) ∈ F with xi = 1,

∑n
j=1 vjx

(i)
j >

∑n
j=1 vj x̄

(i)
j , and

∑n
j=1 wjx

(i)
j ∈ (W,W + ε).]

Problem 27

(15 points) Recall from Lecture #16 that we proved the following (the Leftover Hash Lemma). Suppose X is
a random variable with collision probability cp(X) at most 1/K. Suppose H is a (2-)universal family of hash
functions (from the range of X to the range {0, 1, 2, . . . ,M − 1}), and h is chosen uniformly at random from
H. Then the statistical distance between the joint distribution of (h, h(X)) and of the uniform distribution
(on H× {0, 1, 2, . . . ,M − 1}) is at most 1

2

√
M/K.

For this problem, assume that you have a sequenceX1, . . . , XT of random variables, with the property that
for every i and fixed values of X1, . . . , Xi−1, the (conditional) collision probability of Xi is at most 1/K (i.e.,
a “block source”). Prove that the statistical distance between the joint distribution of (h, h(X1), . . . , h(XT ))
and of the uniform distribution is at most T

2

√
M/K.

[Hint: One high-level approach is to prove, by downward induction on i, a bound of (T−i)
2

√
M/K on

the statistical distance between (h, h(Xi+1), . . . , h(XT )) and the uniform distribution for every fixed value
of X1, . . . , Xi. The increase in statistical distance in the inductive step should come from the Triangle
Inequality.]
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