
CS264: Homework #9

Due by midnight on Wednesday, December 3, 2014

Instructions:

(1) Students taking the course pass-fail should complete the exercises. Students taking the course for a
letter grade should also complete some of the problems — we’ll grade your problem solutions out of a
total of 40 points (with any additional points counting as extra credit).

(2) All other instructions are the same as in previous problem sets.

Lecture 17 Exercises

Exercise 52

Prove that every distribution p with support size s — i.e., there are only s points x ∈ X with px > 0 — has
entropy at most log2 s.

[Hint: prove and use that the entropy function
∑
x∈X px log2

1
px

is convex.]

Exercise 53

This exercise considers a minor variant of the optimal search tree problem mentioned in lecture. Recall that
a binary search tree on a totally ordered set X is a binary tree with nodes in correspondence with X, with
the property that every node in the left (right) subtree of a node x must be less than (greater than) x. Recall
that there are many different binary search trees on the same set X (from long chains to balanced trees).
The search time sT (x) for a node x in a search tree T is one plus its depth in the tree (1 for the root, 2
for the root’s immediate children, and so on.). Given a positive probability px for every x ∈ X, the optimal
search tree is the search tree T that minimizes the expected search time for a node x ∈ X,

∑
x∈X pxsT (x).

Give a dynamic programming algorithm that, given px’s for all x ∈ X, computes an optimal search tree.

[Hints: shoot for a dynamic programming algorithm that solves O(n2) subproblems in time O(n) each. (Here
n = |X|.) To get started, if you happened to know the root node of the optimal search tree, what could you
say about its subtrees?]

Exercise 54

The point of this exercise is to explain why, when constructing a near-optimal search tree, it is enough to
consider only the elements with large (at least 1/|X|ε) probability, handling the rest via binary search. This
justifies the implementation of the approximate search tree construction outlined at the end of lecture.

The precise exercise is the following. Consider a totally ordered set X with n elements. Let D = {px}x∈X
be a probability distribution on X and S ⊆ X the elements with px ≥ n−ε, where ε > 0 is an arbitrary
constant. Prove that ∑

x∈S
px log2

1
px

+
∑
x/∈S

px log2 n = O(H(D)),

where the constant hidden in the big-oh notation can depend on ε. Explain the relevance of this statement
to the algorithm described in lecture.

1

Exercise 55

Name at least two places in the proof of this lecture’s main result where we used the assumption that the
xi’s are independent.

[Hint: one is in one of the Problems, below.]

Lecture 18 Exercises

Exercise 56

This exercise and the next concern the Vickrey auction. As in lecture, assume there is a seller with a single
item to sell. But assume now that there are two potential buyers.1 An auction must decide which, if any, of
the buyers to sell the item to. A natural approach is to ask each buyer i to submit a bid bi and then award
the good to the higher bidder. In the Vickrey auction, the winning bidder pays a price equal to the lower
bid.2

Define the utility of a bidder i with value vi as 0 if it loses (and pays nothing) and as vi − p if it wins
and pays the price p. Prove that for each bidder i = 1, 2, no matter i’s value vi is and no matter the other
bidder’s bid is, i maximizes its utility by setting its bid bi equal to its value vi.

[Hint: consider two cases.]
[Remark: such auctions are called “truthful.”]

Exercise 57

The Vickrey auction is “prior-independent,” in the sense that its description does not depend on any prior
distribution (in contrast to the monopoly price, for example). The point of this exercise is to use results
from lecture to prove that, when bidders’ values happen to be i.i.d. draws from a distribution, the Vickrey
auction has pretty good expected revenue.

Specifically, suppose there are two buyers and that their values v1, v2 are drawn i.i.d. from a regular
distribution F (i.e., a distribution with a concave revenue curve). Prove that the expected (over v1, v2)
revenue of the Vickrey auction is at least maxp p(1 − F (p)), the optimal expected revenue that can be
obtained from a single bidder (via the monopoly price).

[Hint: show that each bidder effectively faces a random price drawn from F , and apply a result from lecture.]

Problems

Problem 28

This problem fills in a gap from Lecture #17, that with high probability over the set V of n bucket boundaries,
the expected (over a new random input x1, . . . , xn) squared size of every bucket is at most a constant. Recall
how V is constructed: for c a sufficiently large constant and λ = c lnn, a sorted list of all the elements in
the first λ inputs (λn inputs in all) is constructed, and V is defined as every λth element of this sorted list
(n elements in all). You can assume throughout this problem that n is sufficiently large.

(a) (5 points) Consider the λn elements in the first λ inputs, in their original unsorted order. For k, ` ∈
{1, 2, . . . , λn}, suppose that the kth and `th elements take on values a and b with the property that
the expected number of the other elements (out of the other λn − 2) that lie between a and b is at
least 4λ. Prove that, for c sufficiently large, the probability (over the other elements) that less than λ
of the other elements lie in this interval is at most 1/n2(λn)2.

[Hint: Chernoff bounds.]

1We restrict attention to two buyers for simplicity; everything in this and the next exercise extends naturally to any number
of bidders.

2This seems weird the first time you see it, but think about an English auction (like at Christie’s or Soethby’s) or eBay —
the winning bidder does not generally pay its maximum willingness-to-pay, but rather that of its nearest competitor.

2

(b) (5 points) Prove that, with high probability over the choice of V (at least 1 − 1/n2), the expected
number of elements (out of a new random input x1, . . . , xn) landing in each bucket is at most 4.

(c) (5 points) Prove that, with high probability over the choice of V (at least 1 − 1/n2), the expected
squared number of elements landing in each bucket is at most 20.

[Hint: write the bucket size as a sum of indicator random variables and expand.]

Problem 29

The point of this problem is to prove that, for interesting positive results for self-improving sorting algo-
rithms, some type of restriction on the distribution over inputs (like independence of the xi’s) is necessary.
Throughout this problem, you can restrict attention to deterministic sorting algorithms (for simplicity), and
you can assume that the array length n is sufficiently large.

(a) (2 points) For a set S of 2n permutations of {1, 2, . . . , n}, let DS denote the distribution that is uniform
on S (and 0 for permutations outside S). Explain why the entropy of DS is n.

[Remark: this means that we are aspiring toward a self-improving sorter that uses O(n) expected
comparisons whenever the inputs are i.i.d. draws from a distribution of the form DS .]

(b) (2 points) Prove that there are at least (n!/2n)2
n

distinct choices of S and hence of DS .

(c) (2 points) Suppose that sorting algorithm A uses at most cn expected comparisons to sort inputs
drawn from DS . Prove that A correctly sorts at least half of the permutations of S using at most 2cn
comparisons.

(d) (2 points) How many different permutations can a sorting algorithm correctly sort using at most k
comparisons?

(e) (8 points) Let c > 0 be an arbitrary constant (independent of n). Prove that if A is a collection of
sorting algorithms such that, for every distribution of the form DS , there is an algorithm A ∈ A that
requires at most cn expected comparisons to correctly sort inputs drawn from DS , then A has size
doubly exponential in n.

[Hint: use (c) and (d) to upper bound the number of distinct distributions of the form DS that a single
sorting algorithm can simultaneously have good performance for. Then use (b).]

(f) (4 points) Explain why (e) implies that every self-improving sorter that works for arbitrary input
distributions requires space and a number of samples that is exponential in n.

Problem 30

This problem fills in a gap from Lecture #18, that with high probability over the samples v1, . . . , vm ∼ F ,
the hypotheses of the relaxed version of Claim 1 hold. Throughout this problem, assume that the number
m of samples is at least cHε2 ln H

ε , where c is a sufficiently large constant, H is such that the support of the
distribution F lies in [1, H], and ε > 0 is an approximation parameter. Recall that q(p) = 1− F (p) denotes
the probability (over v ∼ F) of a sale at the price p.

(a) (5 points) Prove that with probability at least 1− ε
H , for every t ∈ [1

H , 1], there exists a sample vi such
that q(vi) ∈ [t

1+ε , t].

[Hint: this is an elementary calculation, plus a Union Bound.]

(b) (6 points) Prove that with probability at least 1− ε
H , for every sample vi with q(vi) ≥ 1

H(1+ε) ,

q̂(vi) ∈ [(1− ε)q(vi), (1 + ε)q(vi)]

and hence
vi · q̂(vi) ∈ [(1− ε)vi · q(vi), (1 + ε)vi · q(vi)].

3

(Recall from lecture that q̂(vi) = ni/m, where ni is the number of vj ’s that are at least vi (including
vi itself).)

[Hint: Chernoff bounds.]

(c) (4 points) Prove that with probability at least 1 − ε
H , the Algorithm from lecture will not return a

sample vi with q(vi) < 1
H(1+ε) .

[Hint: use (b) to deduce that every such sample vi satisfies q̂(vi) < 1
H .]

Problem 31

(15 points) In Lecture #18, in the course of proving a sample complexity bound of O(Hε2 ln H
ε) to achieve

an expected revenue-approximation of (1 − ε), we noted that the selling probability q∗ = 1 − F (p∗) of the
monopoly price p∗ is at least 1

H .
Explain the changes to the proof (in Lecture #18 and Problem #30) required to prove the following

more general statement. (Or, if you prefer, simply reprove it from scratch.) Suppose F is an unknown
distribution, with arbitrary support, but it is known a priori that the selling probability q∗ at the monopoly
price p∗ is at least δ > 0. Then, provided m ≥ c 1

δε2 ln 1
δε for a sufficiently large constant c, with probability

at least 1− εδ, the Algorithm from lecture returns a price p such that p · (1− F (p)) ≥ (1− ε)p∗ · 1− F (p∗).

4

