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1 Preamble

We begin in Sections 2–4 with three examples that clearly justify the need for a course like
this, and for alternatives to the traditional worst-case analysis of algorithms. Our discussion
is brief and informal, to provide motivation and context. Later lectures treat these examples,
and many others, in depth.

2 Caching: LRU vs. FIFO

Our first example demonstrates how the worst-case analysis of algorithms can fail to differ-
entiate between empirically “better” and “worse” solutions. The setup should be familiar
from your system courses, if not your algorithms courses. There is a small fast memory (the
“cache”) and a big slow memory. For example, the former could be an on-chip cache and
the latter main memory; or the former could be main memory and the latter a disk. There
is a program that periodically issues read and write requests to data stored on “pages” in
the big slow memory. In the happy event that the requested page is also in the cache, then
it can be accessed directly. If not — on a “page fault” a.k.a. “cache miss” — the requested
page needs to be brought into the cache, and this requires evicting an incumbent page. The
key algorithmic question is then: which page should be evicted?

For example, consider a cache that has room for four pages (Figure 1). Suppose the first
four page requests are for a, b, c, and d; these are brought into the (initially empty) cache in
succession. Perhaps the next two requests are for d and a — these are already in the cache
so no further actions are required. The party ends when the next request is for page e —
now one of the four pages a, b, c, d needs to be evicted to make room for it. Even worse,
perhaps the subsequent request is for page f , requiring yet another eviction.
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Figure 1: FIFO and LRU under the page request sequence a, b, c, d, d, a, e, f .

Evicting a page is exasperating because, for all you know, it’s about to be requested
again and you’ll just have to bring it right back into the cache. As a thought experiment,
if you were clairvoyant and knew the future — the entire sequence of page requests — then
it is intuitive that evicting the page requested furthest in the future (FIF), thereby delaying
regret for the eviction as long as possible, is a good idea. Indeed, Bélády proved in the 1960s
that the FIF algorithm achieves the minimum-possible number of page faults — some are
inevitable (like the two in Figure 1), but FIF incurs no more than these. This is a classic
optimal greedy algorithm.1

Without clairvoyance about the future page requests, in practice we resort to heuristic
cache eviction policies. For example, the first-in first-out (FIFO) policy evicts the page that
has been in the cache the longest. In Figure 1, FIFO would evict page a to make room for
e, and b for f . Another famous caching policy is least recently used (LRU), which evicts the
page whose most recent request is further in the past. LRU behaves differently than FIFO
in the example in Figure 1, evicting b for e and c for f (since a was requested right before e).

You should have learned in your systems classes that the LRU policy kicks butt in prac-
tice, and is certainly much better than the FIFO policy. Indeed, cache policy designers
generally adopt LRU as the “gold standard” and strive to simulate it using minimal re-
sources, since keeping track of the most recent request to every page in the cache can be
too expensive. There is strong intuition for LRU’s superior empirical performance: request
sequences generally possess locality of reference, meaning that a page requested recently is
likely to be requested again soon. (Just think of a program’s code; if you just executed
a given line and are in a loop, you’ll probably execute it again shortly.) Another way to
think about LRU is that it is attempting to simulate the optimal FIF algorithm, using the
assumption that the near future will look like the recent past.

Research Challenge 1 Develop theory to explain LRU’s empirical superiority.

1Can you prove its optimality? It’s not so easy.
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Figure 2: Visualization of linear programming instance with n = 2.

Challenge 1 is surprisingly non-trivial; the most satisfying solutions to date are only from the
2000s, and we will cover them in a few lectures. One immediate challenge is that FIFO and
LRU are in some sense incomparable, in that each outperforms the other on some request
sequences. (They are incomparable in a quite strong sense; see Homework #3.) For example,
in Figure 1, if the request after f is for page c, then LRU looks like a bad idea in hindsight.
If the following request is for a, then FIFO looks like the wrong choice.

One prerequisite for addressing Challenge 1 is to at least implicitly propose a model of
data. After all, we believe LRU is better than FIFO because of properties of real-world data
— locality of reference — and only mathematical models that reflect this have a chance of
differentiating between them.

3 Linear Programming

This section reviews a famous example where worst-case analysis gives a wildly inaccurate
prediction of the empirical performance of an algorithm. Recall that in a linear programming
problem, the goal is to maximize a linear function (max cT x) subject to linear constraints
(s.t. Ax ≤ b), or equivalently over an intersection of halfspaces. Here c and x are n-vectors;
b is an m-vector; and A is an m× n matrix. In Figure 2, n = 2.

In practice, the linear programming algorithm of choice is called the simplex method.
This is an ancient algorithm (1940s) but, amazingly, despite lots of advances in linear pro-
gramming, suitably optimized versions of the simplex method remain the most commonly
used algorithms in practice. The empirical performance of the simplex method is excellent,
most commonly running in time linear in the number of variables (i.e., in n). What does
worst-case analysis have to say about the algorithm?

Theorem 3.1 ([4]) The worst-case running time of the simplex method is exponential in n.

To add insult to injury, there are other linear programming algorithms that run in worst-
case polynomial time but have far worse empirical performance than the simplex method.
The ellipsoid method [3], while beautiful and extremely useful for proving “polynomial-time
in principle” results, is the most egregious of these.
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Theorem 3.1 shows that worst-case analysis is an unacceptable way to analyze linear
programming algorithms — it radically mischaracterizes the empirical performance of a
great algorithm and, as a result, implicitly recommends (empirically) inferior algorithms to
superior ones.

Research Challenge 2 Develop theory to explain the empirical performance of the simplex
method.

This is another tough problem, with the most satisfying explanation coming from the in-
vention of “smoothed analysis” in 2001. The take-away from this theory is that the simplex
method provably runs in polynomial time on “almost all” instances, in a very robust sense
— sort of like average-case analysis, but on steroids. We’ll cover some of the greatest hits of
smoothed analysis in future lectures.

4 Clustering

Our final motivating example concerns clustering problems. The goal here is “unsupervised
learning,” meaning finding patters in unlabeled data. The point of running a clustering
algorithm is to identify “meaningful groups” of data points. For example, maybe you have
mapped a bunch of images to Euclidean space (using bitmaps or some features), and the
hope is that a clustering algorithm identifies groups that correspond to “pictures of cats”
and “pictures of dogs.”

Identifying “meaningful groups” is an informal goal, and some choice of formalization is
necessary prior to tackling it by computer. The usual approach is to specify a numerical
objective function defined on clusterings — perhaps you’ve heard of k-means, k-median,
correlation clustering, etc. — and then optimize it. What does worst-case analysis say
about this approach?

Meta-Theorem 4.1 Every standard approach of modeling clustering as an optimization
problem results in an NP -hard problem.

Thus, assuming P 6= NP , no polynomial-time algorithm solves any of these clustering-
motivated optimization problems, at least not exactly on every instance.

In practice, however, fast clustering algorithms often find meaningful clusterings. This
fact suggests the following challenge for theory.

Research Challenge 3 Prove that clustering is hard only when it doesn’t matter.

In other words, there’s no need to dispute Meta-Theorem 4.1 — we can agree that there
are computationally intractable instances of clustering problems. But we only care about
instances of clustering for which a “meaningful solution” exists — and in such special cases,
it’s plausible that the input contains extra clues, footholds that an algorithm can exploit
to quickly compute a good solution. This has been a hot topic in algorithms and machine
learning research over the past five years, and we’ll survey the highlights of this literature in
a few weeks.
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5 Course Information

• There will be weekly homeworks, a mix of exercises (filling in details from lecture) and
problems (which develop the lecture material further). These go out on Wednesdays
and are due one week later. No late assignments accepted.

• Students also have the option of skipping the last few homework sets and submitting a
paper-reading report instead (10-12 pages, summarizing and synthesizing 1-2 research
papers suggested by the instructor).

• Pass-fail students only have to do roughly half of the homework (see instructions for
details).

• Note that we’re posting videos of all lectures on youTube for your review.

6 Analysis of Algorithms: What’s the Point?

Why bother trying to mathematically analyze the performance of algorithms? Having moti-
vated the need for alternative algorithm analysis frameworks, beyond traditional worst-case
analysis, let’s zoom out and clarify what we want from such alternative frameworks.

6.1 Goals of Analyzing Algorithms

We next list several well-motivated and conceptually distinct reasons why we want rigor-
ous methods to reason about algorithm performance. This course covers a lot of different
definitions and models, and whenever we introduce a new way of analyzing algorithms or
problems, it’s important to be clear on which of these goals we’re trying to achieve.

Goal 1 (Performance Prediction) The first goal is to explain or predict the empirical
performance of algorithms. Frequently this goal is pursued for a fixed algorithm (e.g., the
simplex method); and, sometimes, with a particular set of or distribution over inputs in
mind (e.g., “real-world instances”).

One motivation of Goal 1 is that of a natural scientist — taking an observed phenomenon
like “the simplex method is fast” as ground truth, and seeking a transparent mathematical
model that explains it. A second is that of an engineer — you’d like a theory that advises
you whether or not an algorithm will perform well for a problem that you need to solve.
Making sense of Goal 1 is particularly difficult when the performance of an algorithm varies
wildly across inputs, as with the running time of the simplex method.

Goal 2 (Identify Optimal Algorithms) The second goal is to rank different algorithms
according to their performance, and ideally to single out one algorithm as “optimal.”
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At the very least, given two algorithms A and B for the same problem, we’d like a theory
that tell us which one is “better.” The challenge is again that an algorithm’s performance
varies across inputs, so generally one algorithm A is better than B on some inputs and vice
versa (recall the FIFO and LRU caching policies).

Note that Goals 1 and 2 are incomparable. It is possible to give accurate advice about
which algorithm to use (Goal 2) without accurately predicting (absolute) performance —
preserving the relative performance of different algorithms is good enough. Goal 1 is usually
pursued only for a single or small set of algorithms, and algorithm-specific analyses do not
always generalize to give useful predictions for other, possibly better, algorithms.

Goal 3 (Design New Algorithms) Guide the development of new algorithms.

Once a measure of algorithm performance has been declared, the Pavlovian response of
most computer scientists is to seek out new algorithms that improve on the state-of-the-art
with respect to this measure. The focusing effect triggered by such yardsticks should not be
underestimated. For an analysis framework to be a success, it is not crucial that the new
algorithms it leads to are practically useful (though hopefully some of them are). Their role
as “brainstorm organizers” is already enough to justify the proposal and study of principled
performance measures.

6.2 Summarizing Algorithm Performance

Worst-case analysis is the dominant paradigm of mathematically analyzing algorithms. For
example, most if not all of the running time guarantees you saw in introductory algorithms
used this paradigm.2

To define worst-case analysis formally, let cost(A, z) denote a cost measure, describing
the amount of relevant resources that algorithm A consumes when given input z. This cost
measure could be, for example, running time, space, I/O operations, or the solution quality
output by a heuristic (e.g., the length of a traveling salesman tour). We assume throughout
the entire course that the cost measure is given; its semantics vary with the setting.3

If cost(A, z) defines the “performance” of a fixed algorithm A on a fixed input z, what
is the “overall performance” of an algorithm (across all inputs)? Abstractly, we can think
of it as a vector {cost(A, z)}z indexed by all possible inputs z. Most (but not all) of the
analysis frameworks that we’ll study summarize the performance of an algorithm by com-
pressing this infinite-dimensional vector down to a simply-parameterized function, or even
to a single number. This has the benefit of making it easier to compare different algorithms
(recall Goal 2) at the cost of throwing out lots of information about the algorithm’s overall
performance.

2Two common exceptions, which use average-case analysis, are the running time analysis of deterministic
Quicksort on a random input array, and the performance of hash tables with random data.

3Figuring out the right cost measure to optimize can be tricky in practice, of course, but this issue is
application-specific and outside the scope of this course.
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Worst-case analysis summarizes the performance of an algorithm as its maximum cost
— the `∞ norm of the vector {cost(A, z)}z:

max
inputs z

cost(A, z). (1)

Often, the value in (1) is parameterized by one or more features of z — for example, the
worst-case running time of A as a function of the length n of the input z.

6.3 Pros and Cons of Worst-Case Analysis

Recall from your undergraduate algorithms course the primary benefits of worst-case anal-
ysis.

1. Good worst-case upper bounds are awesome. In the happy event that an algorithm
admits a good (i.e., small) worst-case upper bound, then to first order the problem
is completely solved. There is no need to think about the nature of the application
domain or the input — whatever it is, the algorithm is guaranteed to perform well.

2. Mathematical tractability. It is usually easier to establish tight bounds on the worst-
case performance of an algorithm than on more nuanced summaries of performance.
Remember that the utility of a mathematical model is not necessary monotone increas-
ing in its realism — a more accurate mathematical model is not helpful if you can’t
deduce any interesting conclusions from it.

3. No data model. Worst-case guarantees make no assumptions about the input. For this
reason, worst-case analysis is particularly sensible for “general-purpose” algorithms
that are expected to work well across a range of application domains. For example,
suppose you are tasked with writing the default sorting subroutine of a new program-
ming language that you hope will become the next Python. What could you possibly
assume about all future applications of your subroutine?

The motivating examples of Sections 2–4 highlight some of the cons of worst-case analysis.
We list these explicitly below.

1. Overly pessimistic. Clearly, summarizing algorithm performance by the worst case can
overestimate performance on most inputs. As the simplex method example shows,
for some algorithms, this overestimation can paint a wildly inaccurate picture of an
algorithm’s overall performance.

2. Can rank algorithms inaccurately. Overly pessimistic performance summaries can pre-
vent worst-case analysis from identifying the right algorithm to use in practice. In
the caching problem, it cannot distinguish between FIFO and LRU; for linear pro-
gramming, it implicitly suggests that the ellipsoid method is superior to the simplex
method.
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3. No data model. Or rather, worst-case analysis corresponds to the “Murphy’s Law” data
model: whatever algorithm you choose, nature will conspire against you to produce the
worst-possible input. This algorithm-dependent way of thinking does not correspond
to any coherent model of data.

In many applications, the algorithm of choice is superior precisely because of properties
of data in the application domain — locality of reference in caching problems, or
the existence of meaningful solutions in clustering problems. Traditional worst-case
analysis provides no language for articulating domain-specific properties of data, so
it’s not surprising that it cannot explain the empirical superiority of LRU or various
clustering algorithms. In this sense, the strength of worst-case analysis is also its
weakness.

Remark 6.1 Undergraduate algorithms courses focus on problems and algorithms for which
the strengths of worst-case analysis shine through and its cons are relatively muted. Most of
the greatest hits of such a course are algorithms with near-linear worst-case running time —
MergeSort, randomized QuickSort, depth- and breadth-first search, connected components,
Dijkstra’s shortest-path algorithm (with heaps), the minimum spanning tree algorithms of
Kruskal and Prim (with suitable data structures), and so on. Because every correct algorithm
runs in at least linear time for these problems (the input must be read), these algorithms are
close to the fastest-possible on every input. Similarly, the performance of these algorithms
cannot vary too much across different inputs, so summarizing performance via the worst case
does not lose too much information.

Many of the slower polynomial-time algorithms covered in undergraduate algorithms,
in particular dynamic programming algorithms, also have the property that their running
time is not very sensitive to the input. Worst-case analysis remains quite accurate for these
algorithms. One exception is the many different algorithms for the maximum flow problem
— here, empirical performance and worst-case performance are not always well aligned (see
e.g. [1]).

We should celebrate the fact that worst-case analysis works so well for so many funda-
mental computational problems, while at the same time recognizing that the cherrypicked
successes highlighted in undergraduate algorithms can paint a potentially misleading picture
about the range of its practical relevance.

6.4 Report Card for Worst-Case Analysis

Recall Goals 1–3 — how does worst-case analysis fare? On the third goal, it has been tremen-
dously successful. For a half-century, researchers striving to optimize worst-case performance
have devised thousands of new algorithms and data structures, many of them useful. On
the second goal, worst-case analysis earns a middling grade — it gives good advice about
which algorithm or data structure to use for some important problems (e.g., shortest paths),
and bad advice for others (e.g., linear programming). Of course, it’s probably unreasonable
to expect any single analysis framework to give accurate algorithmic advice for every single
problem that we care about. Finally, worst-case analysis effectively punts on the first goal
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— taking the worst case as a performance summary is not a serious attempt to predict or
explain empirical performance. When worst-case analysis does give an accurate prediction,
because of low performance variation across inputs (Remark 6.1), it’s more by accident than
by design.

7 Instance Optimality

We conclude the lecture with the concept of instance optimality, which was first emphasized
by Fagin, Lotem, and Naor [2].4 This concept is best understood in the context of Goal 2,
the goal of ranking algorithms according to performance. For starters, suppose we have two
algorithms for the same problem, A and B. Under what conditions can we declare, without
any caveats, that A is a “better” algorithm than B? One condition is that A dominates B
in the sense that

cost(A, z) ≤ cost(B, z) (2)

for every input z. If (2) holds, there is no excuse for ever using algorithm B. Conversely,
if (2) fails to hold in either direction, then A and B are incomparable and choosing one over
the other requires a trade-off across different inputs.

Similarly, under what conditions can we declare an algorithm A “optimal” without invit-
ing any controversy? Perhaps the strongest-imaginable optimality requirement for an al-
gorithm A would be to insist that it dominates every other algorithm. This is our initial
definition of instance optimality.

Definition 7.1 (Instance Optimality — Tentative Definition) An algorithm A for a
problem is instance optimal if for every algorithm B and every input z,

cost(A, z) ≤ cost(B, z).

If A is an instance-optimal algorithm, then there is no need to reason about what the input
is or might be — using A is a “foolproof” strategy.

Definition 7.1 is extremely strong — so strong, in fact, that only trivial problems have
instance-optimal algorithms in the sense of this definition.5 For this reason, we relax Def-
inition 7.1 in two, relatively modest, ways. First, we modify inequality (2) by allowing a
(hopefully small) constant factor on the right-hand side. Second, we impose this requirement
only for “natural” algorithms B. Intuitively, the goal of this second requirement to avoid
getting stymied by algorithms that have no point other than to foil the theoretical devel-
opment, like algorithms that “memorize” the correct answer to a single input z. The exact
definition of “natural” varies with the problem, but it will translate to quite easy-to-swallow
restrictions for the problems that we study in the homework and in the next lecture.

Summarizing, here is our final definition of instance optimality.

4This paper was the winner of the 2014 ACM Gödel Prize, a “test of time” award for papers in theoretical
computer science.

5Talk is cheap when it comes to proposing definitions — always insist on compelling examples.
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Definition 7.2 (Instance Optimality — Final Definition) An algorithm A for a prob-
lem is instance optimal with approximation c with respect to the set C of algorithms if for
every algorithm B ∈ C and every input z,

cost(A, z) ≤ c · cost(B, z),

where c ≥ 1 is a constant, independent of B and z.

Even this relaxed definition is very strong, and for many problems there is no instance-
optimal algorithm (with respect to any sufficiently rich set C); see the Exercises. Indeed,
for most of the problems we study in this course, we need to make additional assumptions
on the input or compromises in our analysis to make progress on Goals 1–3. There are,
however, a few compelling examples of instance-optimal algorithms, and we focus on these
in the following lectures and the homework.
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