
CS264: Beyond Worst-Case Analysis
Lecture #15: Smoothed Complexity and

Pseudopolynomial-Time Algorithms∗

Tim Roughgarden†

November 5, 2014

1 Preamble

Previous lectures on smoothed analysis sought a better theoretical understanding of the
empirical performance of algorithms. In our last lecture on the topic, we use the lens of
smoothed analysis to understand the complexity of problems. We ask the question: which
problems admit algorithms that run in smoothed polynomial time? There is a surprisingly
crisp answer to this question — essentially the problems that are solvable in worst-case
pseudopolynomial time.1

2 Binary Optimization Problems

To make the connection between smoothed polynomial-time algorithms and pseudopolynomial-
time algorithms, we focus on the rich class of binary optimization problems. The Knapsack
problem is a special case, as are many others. An instance of such a problem involves n 0-1
variables x1, x2, . . . , xn (e.g., xi = 1 if and only if item i is placed in the knapsack). There
is abstract set of feasible solutions, which is just some subset F of vectors in {0, 1}n. (E.g.,
for some weight vector w and capacity W , we could define F as the vectors x that satisfy

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Recall that the running time of an algorithm is pseudopolynomial if it runs in time polynomial in the

size of the input and the magnitudes of the numbers involved. Equivalently, the running time is allowed to
be exponential in the binary representation of the numbers in the input. For example, the canonical dynamic
programming algorithm for the Knapsack problem with integer item weights runs in time O(nW), where W
is the knapsack capacity. The natural encoding length — the number of keystrokes necessary to describe W
— is ≈ logW , and the running time is exponential in this quantity.

1

∑n
i=1wixi ≤ W .) Finally, there are nonnegative values v1, v2, . . . , vn. The goal is to compute

the feasible solution x ∈ F that maximizes the total value vTx =
∑n

i=1 vixi.
2

The Knapsack problem, which is NP -hard but can be solved in pseudopolynomial time
(as in last lecture), is clearly a binary optimization problem. In general, the worst-case
complexity of such a problem depends on the feasible set F . For example, if F is simply the
vectors x with at most k 1’s, then the problem is easy to solve in polynomial time. But prob-
lems much harder than the Knapsack problem, such as the maximum-weight independent
set problem (see Lecture #5), can also be easily encoded as binary optimization problems.

If you only keep one concrete problem in mind as we go through this lecture, Knapsack
would be a good one. If you want a second such problem, consider the following scheduling
problem, which is likely all too familiar from real life. Given are n jobs, each with a known
processing time pj, deadline dj, and integral cost cj. The goal is to sequence the jobs on
a single machine to minimize the total cost of the jobs not completed by their respective
deadlines. This problem isNP -hard but can be solved in pseudopolynomial time via dynamic
programming (see Homework #8). The positive results of this lecture apply directly to this
scheduling problem (when the cj’s are perturbed).

3 Main Result

The goal of this lecture is to characterize the binary optimization problems that have poly-
nomial smoothed complexity. We use exactly the same perturbation model as in last lecture,
with each value vi drawn independently according to a “not too spiky” density function
fi : [0, 1] → 1

σ
, where σ is a parameter that intuitively measures the “size of the perturba-

tion,” or the “amount of randomness” contained in each vi. Note that when working with
a smoothed instance, we assume that the values lie in [0, 1]; this is more or less without
loss of generality, by a scaling argument. Recall that a problem has polynomial smoothed
complexity if there is an algorithm that can solve the problem with expected running time
polynomial in the input size and in 1

σ
. Recall that a pseudopolynomial time algorithm runs

in time polynomial in the input size and in 2b, where b is the maximum number of bits used
to represent any number in the input.

Theorem 3.1 ([2]) A binary optimization problem has smoothed polynomial complexity if
and only if it can be solved by an algorithm with pseudopolynomial expected running time.

When we introduced smoothed analysis, for example to analyze the running time of
the simplex method, we saw that moving from a worst-case input model to a smoothed
input model can drop the running time of an algorithm from slow (exponential time) to fast
(polynomial) time. Theorem 3.1 shows that moving from worst-case to smoothed analysis can
drop the computational complexity of a problem from hard (meaning there is no polynomial-
time solution, assuming P 6= NP) to easy (meaning there is a (smooth) polynomial-time
solution). The theorem also nicely corroborates real-world experience with NP -complete

2Everything we say today applies also to minimization problems.

2

problems — those with pseudopolynomial solutions are generally the empirically easiest of
the bunch. It is very cool that smoothed analysis yields a novel reformulation of an age-old
concept like pseudopolynomial-time solvability.3

4 Proof of “Only If” Direction

To prove the “only if” direction of Theorem 3.1, consider a binary optimization problem that
admits an algorithm A with smoothed polynomial complexity. We need to show that this
problem also admits a (worst-case over inputs) expected pseudopolynomial time algorithm,
presumably by invoking A as a black box.

Consider a worst-case instance I, specified by arbitrary rational values v1, v2, . . . , vn.
Clearing denominators if necessary, we can assume that all of the vi’s are integral. Then, if
two different feasible solutions to I have different objective function values, this difference
is at least 1. Now let vmax = maxni=1 vi and scale all the values by vmax so that they lie in
[0, 1]. After scaling, distinct objective function values differ by at least 1

vmax
.

Our new algorithm has two simple steps.

1. Perturb (i.e., add to) each vi by a random amount δi, chosen uniformly at random
from the interval (0, 1/nvmax).

2. Run the algorithm A on the perturbed instance, and return the resulting feasible
solution.

Previously, we always regarded perturbations as an assumption about inputs. In the above
algorithm, the input is arbitrary, and we’re making up fictitious perturbations to ensure that
the given algorithm A runs quickly!4

Next we discuss the correctness of the algorithm. The perturbations add a number be-
tween 0 and 1/nvmax to each vi, and hence a number between 0 and 1/vmax to each feasible
solution (since there are only n vi’s). In terms of Figure 1, every feasible solution moves
upward in objective function value, but by less than 1/vmax. Prior to the perturbations,
distinct objective function values differed by at least 1/vmax. This means that, with prob-
ability 1, the optimal solution after the perturbations was also an optimal solution prior to
the perturbation, and is safe to return.5

For the running time, observe that every perturbed value vi fed into algorithm A is
distributed uniformly on an interval of length 1/nvmax, which corresponds to a value of
1
σ

= nvmax. By assumption, A has expected (over the perturbation) running time polynomial
in n and 1

σ
= nvmax. Thus, for every input, our two-step algorithm has expected running

time polynomial in n and vmax, as desired.

3These two concepts are also closely connected to the existence of a “fully polynomial-time approxima-
tion scheme (FPTAS),” meaning an algorithm that achieves an approximation guarantee of 1 ± ε in time
polynomial in the input size and in 1

ε . See Homework #8 for more details.
4See [4, 6] for two other algorithmic applications of similar fictitious perturbations.
5Note that if the original instance had multiple optimal solutions, the algorithm winds up returning the

one that gets perturbed the most.

3

Figure 1: Distinct objective function values are separated by at least 1/vmax, and the per-
turbations increase each objective function value by less than 1/vmax. The optimal solution
remains unchanged after the perturbation.

Remark 4.1 Why should we care about this direction of Theorem 3.1? The obvious rea-
son is the satisfaction of having an “if and only if” characterization of the problems solv-
able in smoothed polynomial time. In principle, one could use the “only if” direction to
design novel pseudopolynomial-time algorithms, by instead designing an algorithm with
smoothed polynomial complexity. It is not clear this is useful, since it seems easier to de-
sign pseudopolynomial-time algorithms than smoothed polynomial-time algorithms (think
of Knapsack, for example). In its contrapositive form, however, the “only if” direction is
definitely interesting: if a problem does not admit a (randomized) pseudopolynomial-time
algorithm, then it does not have smoothed polynomial complexity. In particular, strongly
NP -hard problems (see e.g. [5]) do not have smoothed polynomial complexity, under ap-
propriate complexity assumptions. While weakly NP -hard problems like Knapsack go from
“hard” to “easy” when passing from worst-case to smoothed instances, most NP -hard prob-
lems do not. See also Homework #8.

5 Proof of “If” Direction

The rest of this lecture proves the converse. Here, we consider a problem that admits a
worst-case pseudopolynomial-time algorithm A, and our job is to construct an algorithm
with expected polynomial running time on smoothed instances. This is an impressive gen-
eralization of our result for the Knapsack problem in the last lecture. Again, since we know
nothing about the problem other than the fact that A exists, we’ll presumably proceed by
invoking A as a black box (perhaps multiple times). Unlike previous lectures, we’re not using
smoothed analysis to explain the performance of an existing algorithm — we’re using the
goal of polynomial smoothed complexity as a guide to designing a new algorithm.

5.1 The Isolation Lemma

The key tool in the proof is an “Isolation Lemma.” (For the original form of this result,
used to design a randomized parallel algorithm for the maximum matching problem, see
Homework #8.) This part of the proof applies to every binary optimization problem, not
just those that admit pseudopolynomial-time algorithms. This is also the part of the proof
where we identify bad events that mesh well with the smoothed instance assumption —

4

similar to and a bit simpler than our analysis of the Nit indicator random variables in the
last lecture.

Fix a smoothed instance of a binary optimization problem, with every value vi drawn
from a distribution with density function bounded above by 1

σ
. For a parameter ε > 0,

call the variable xi ε-bad if the optimal solution subject to xi = 0 and the optimal solution
subject to xi = 1 have objective function values within ε of each other.

We claim that, for every ε > 0 and i ∈ {1, 2, . . . , n}, the probability that xi is ε-bad is
at most 2ε/σ. We show that this is true even after conditioning on the value of vj for every
j 6= i — vi alone has sufficient randomness to imply the upper bound. Let S−i and S+i

denote the optimal solutions with xi = 0 and xi = 1, respectively.6 Since S−i involves only
feasible solutions with xi = 0, both it and its value V−i are fixed after conditioning on vj for
every j 6= i. Since vi contributes the same amount to every feasible solution with xi = 1, the
identity of S+i is also fixed — it is simply the feasible solution with xi = 1 that maximizes∑

j 6=i vjxj. The value of S+i can be written as Z + vi, where Z is the (fixed) sum of the vj’s
with xj = 1 in S+i. The variable xi is ε-bad if and only if the objective function values of
S+i and S−i are within ε of each other, which occurs if and only if vi = V−i − Z ± ε. By
assumption, vi’s distribution has density at most 1

σ
everywhere, so the probability that vi

lands in this interval is at most 2ε/σ. This completes the proof of the claim.
We now come to the formal statement of the isolation lemma. Let V (1) and V (2) denote

the highest and second-highest objective function values of a feasible solution. Then

Pr

V (1) − V (2)︸ ︷︷ ︸
“winner gap”

≤ ε

 ≤ 2εn

σ
. (1)

In proof, let S(1) and S(2) denote the best and second-best feasible solutions (with objective
function values V (1) and V (2), respectively). Since S(1) 6= S(2), there is some variable xi that
is set to 0 in exactly one of these two feasible solutions. Say xi = 0 in S(1) and xi = 1
in S(2); the other case is symmetric. Since S(1) is the maximum-value feasible solution, it
is certainly the maximum-value feasible solution that also satisfies xi = 0. Since S(2) is
the maximum-value feasible solution different from S(1), it is certainly the maximum-value
feasible solution that also satisfies xi = 1. Thus, if V (1) − V (2) < ε, then xi is ε-bad. It
follows that the probability that the winner gap is less than ε is at most the probability that
there is an ε-bad variable. By the claim above and a Union Bound over the n variables, this
probability is at most 2εn/σ, as claimed.

Remark 5.1 This isolation lemma is essentially tight; see Homework #8.

6If xi = 1 in every feasible solution, or xi = 0 in every feasible solution, then xi cannot be ε-bad. So, we
can assume that S−i and S+i are well defined.

5

5.2 Completing the Proof of Theorem 3.1

We now return our attention to a binary optimization problem that admits a pseudopolynomial-
time algorithm A.7 Given a smoothed instance, with random vi’s in [0, 1], we execute the
following algorithm (left underdetermined for now):

1. For b = 1, 2, 3, . . .:

(a) Let vbi denote the most significant b bits of vi.
8

(b) Invoke algorithm A to compute the optimal solution xb for the values vb.

(c) (Detailed further below) If xb is optimal for v under any setting of the unseen
bits of the vi’s, halt and output xb.

Because A is a pseudopolynomial algorithm (recall Section 1), the running time of step (b)
is polynomial in n and 2b. If we implement step (c) correctly and the algorithm halts, then
it is clear that it halts with an optimal solution.

Intuitively, in the third step, we want to implement the following thought experiment:
would xb remain optimal even under a “worst-case” unveiling of the remaining bits of the vi’s?
From xb’s perspective, the worst case occurs when all remaining bits are 0 for the values vi
with xi = 1, and all remaining bits are 1 for the values vi with xi = 0. These remaining
bits minimize the reward to xb for each variable set to 1, and maximize the penalty for each
variable not set to 1. If xb remains optimal in this case, then it is optimal no matter what
the true values v are.

More formally, we implement step (c) as follows. We define v̄bi = vbi whenever xi = 1
and v̄bi = vbi + 2−b whenever xi = 0. These v̄b values are even worse for xb than the worst
case of the previous paragraph, and have the added advantage of being at most b + 1 bits
long. Thus, we can check if xb is optimal for v̄b with one further invocation of A, in time
polynomial in n and 2b. If it is, then we can safely halt and return xb, since it must be
optimal for the true values v as well.

We’ve argued that the algorithm is correct; what is its running time? The answer depends
on how big b needs to get before the stopping condition gets triggered. Since A runs in time
exponential in b, we’re hoping that a logarithmic number of bits (in all parameters of interest)
is enough.

To begin the analysis, note that, by definition,

vbi ∈ [vi − 2−b, vi]

and
v̄bi ∈ [vi − 2−b, vi + 2−b]

7For simplicity, we assume that A is deterministic. Essentially the same argument works if A is random-
ized, with expected pseudopolynomial running time.

8Since vi ∈ [0, 1], the first bit is “1” if and only if vi ≥ 1
2 , the second bit is “1” if and only if vi ∈ [14 ,

1
2)

or vi ≥ 3
4 , and so on.

6

Figure 2: As b increases the blue and green points get closer to their respective black points.
Eventually the optimal solution under vb and v̄b is the same, and the algorithm terminates.

for each i = 1, 2, . . . , n. Since there are only n coordinates, for every feasible solution x,

n∑
i=1

vbixi and
n∑
i=1

v̄bixi ∈

[
n∑
i=1

vixi − n2−b,
n∑
i=1

vixi + n2−b

]
.

In terms of Figure 2, switching the objective function from v to either vb or v̄b moves the
objective function value of every feasible solution up or down by at most n2−b. Thus, if x∗

is the optimal solution for the objective function v and the winner gap is more than 2n2−b,
then x∗ is also the optimal solution for the objective functions vb and v̄b. We conclude that
the algorithm terminates by the time b is so large that the winner gap exceeds 2n2−b, if not
earlier. How long does this take?

Using inequality (1) in the isolation lemma, with ε = 2n2−b, we get that the probability
that the winner gap is at most 2n2−b is at most 2n22−b/σ. (All probabilities are over the
randomness in the vi’s.) For every δ > 0, this is at most δ once b = Θ(log n

σδ
). Since the

running time of the algorithm above is polynomial in n and 2b, we obtain:

For every δ > 0, the probability that the algorithm terminates in time polynomial in
n, 1

σ
, and 1

δ
, is at least 1− δ.

For example, taking δ = 1
n
, we find that the algorithm runs in smoothed polynomial time

with high probability. This is a bit weaker than our usual definition of smoothed polynomial
complexity, which insists that the expected running time of the algorithm is polynomial in
the input size and in 1

σ
, but it is still a pretty satisfying positive result.

6 Final Comments

The analysis in Section 5 considered a smoothed objective function. Last lecture, for the
Knapsack problem, we considered smoothed item weights, which corresponds to a smoothed
feasibility constraint. The analysis of this lecture can be extended, using more involved
versions of the same arguments, to smoothed constraints [2]. The setup is that, in addition
to an arbitrary feasible set F , there is one (or even a constant number) of constraints of the
form

∑n
i=1wixi ≤ W , with the wi’s chosen independently from distributions with density

7

functions bounded above by 1
σ
. It is again true that the existence of a worst-case random-

ized pseudopolynomial-time algorithm implies the existence of a smoothed polynomial-time
algorithm for the problem.

A key step in the proof of Theorem 3.1 was to show that, with high probability, the
winner gap is not too small (1). This turns out to be useful also in the analysis of “message-
passing” algorithms such as “Belief Propagation.” For many problems, such as maximum
bipartite matching, these algorithms perform poorly in the worst case but well in practice.
One explanation for this is: the running time of such algorithms can often be parameterized
by the winner gap, and run quickly whenever the winner gap is large (e.g. [1]).9 As shown
in this lecture, most (smoothed) instances have a reasonably large winner gap. See [3] for
further discussion.

References

[1] M. Bayati, D. Shah, and M. Sharma. Max-product for maximum weight matching:
Convergence, correctness, and lp duality. IEEE Transactions on Information Theory,
54(3):1241–1251, 2008.

[2] René Beier and Berthold Vöcking. Typical properties of winners and losers in discrete
optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

[3] T. Brunsch, K. Cornelissen, B. Manthey, and H. Röglin. Smoothed analysis of belief
propagation for minimum-cost flow and matching. Journal of Graph Algorithms and
Applications, 17(6):647–670, 2013.

[4] S. Dughmi and T. Roughgarden. Black-box randomized reductions in algorithmic mech-
anism design. SIAM Journal on Computing, 43(1):312–336, 2014.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.

[6] J. A. Kelner and D. A. Spielman. A randomized polynomial-time simplex algorithm for
linear programming. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 51–60, 2006.

9Recalling our user’s guide to parameterizations (Lecture #5), this is in the genre of parameters that
measure how prominently the optimal solution “sticks out.”

8

