CS369N: Beyond Worst-Case Analysis
Lecture #5: Self-Improving Algorithms*

Tim Roughgarden’
September 18, 2010

1 Preliminaries

Last lecture concluded with a discussion of semi-random graph models, an interpolation
between worst-case analysis and average-case analysis designed to identify robust algorithms
in the face of strong impossibility results for worst-case guarantees. This lecture and the
next two give three more analysis frameworks that blend aspects of worst- and average-case
analysis. Today’s model, of self-improving algorithms, is the closest to traditional average-
case analysis. The model and results are by Ailon, Chazelle, Comandar, and Liu [1].

The Setup. For a given computational problem, we posit a distribution over instances.
The difference between today’s model and traditional average-case analysis is that the dis-
tribution is unknown. The goal is to design an algorithm that, given an online sequence of
instances — each an independent and identically distributed (i.i.d.) sample — quickly con-
verges to an algorithm that is optimal for the underlying distribution. Thus the algorithm
is “automatically self-tuning.” The challenge is to accomplish this goal with fewer “training
samples” and smaller space than a brute-force “learn the data model” approach.

Main Example: Sorting. The obvious first problem to apply the self-improving paradigm
to is sorting in the comparison model, and that’s what we do here. Each instance is an array
of n elements, with the ith element drawn from a real-valued distribution D;. A key assump-
tion is that the D;’s are independent distributions; Section 5.3 discusses this assumption.
The distributions need not be identical. Identical distributions are uninteresting in our con-
text, since in this case the relative order of the elements is a uniformly random permutation.
Every correct sorting algorithm requires 2(nlogn) expected comparisons in this case, and a
matching upper is bound is achieved by MergeSort (say).

*(©2009-2010, Tim Roughgarden.
"Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford,
CA 94305. Email: tim@cs.stanford.edu.

2 The Entropy Lower Bound

Since a self-improving algorithm is supposed to run eventually as fast as an optimal one for
the underlying distribution, we need to understand some things about optimal sorting algo-
rithms. In turn, this requires a lower bound on the running time of every sorting algorithm
with respect to a fixed distribution.

The distributions Dy, ..., D, over x1,...,x, induce a distribution II over permutations of
{1,2,...,n} via the ranks of the x;’s. (Assume throughout this lecture there are no ties.) As
noted earlier, if IT is (close to) the uniform distribution over the set S,, of all permutations,
then the worst-case comparison-based sorting bound of Q2(nlogn) also applies here in the
average case. On the other hand, sufficiently trivial distributions II can obviously be sorted
faster. For example, if the support of II involves only a constant number of permutations,
these can be distinguished in O(1) comparisons and then the appropriate permutation can
be applied to the input in linear time. More generally, the goal is to beat the Q(nlogn)
sorting bound when the distribution II has “low entropy”; and there is, of course, an implicit
hope that “real data” can sometimes be well approximated by a low-entropy distribution.!

Mathematically, by entropy we mean the following.

Definition 2.1 (Entropy of a Distribution) Let D = {p,}.cx be a distribution over the
finite set X. The entropy H(D) of D is

1
pr 10g2 N (1)

zeX Pz

where we interpret 0log, § as 0.

For example, H(D) = log, | X| if D is uniform. When X is the set S,, of all permutations
of {1,2,...,n}, this is O(nlogn). If D puts positive probability on at most 2" different
elements, then H(D) < h. [Exercise: prove this assertion. Use convexity to argue that, for
a fixed support, the uniform distribution maximizes the entropy.]

Happily, we won’t have to work with the formula (1) directly. Instead, we use Shannon’s
characterization of entropy in terms of average coding length.

Theorem 2.2 (Shannon’s Theorem) For every distribution D over the set X, the en-
tropy H(D) characterizes (up to an additive +1 term) the minimum possible expected en-
coding length of X, where a code is a function from X to {0,1}* and the expectation is with
respect to D.

Proving this theorem would take us too far afield, but it is accessible and you should look it
up.

IFor sorting, random data is the worst case and hence we propose a parameter to upper bound the amount
of randomness in the data. This is an interesting contrast to the next two lectures, where random data is an
unrealistically easy case and the analysis framework imposes a lower bound on the amount of randomness in
the input.

leaves = single

permutations

Figure 1: Every correct comparison-based sorting algorithm induces a decision tree, which
induces a binary encoding of the permutations S,, on n elements.

A simple but important observation is that a correct sorting algorithm induces a bi-
nary encoding of S,. To see this, recall that such an algorithm can be represented as a
tree (Figure 1), with each comparison corresponding to a node with two children — the
subsequent execution of the algorithm as a function of the comparison outcome. At a leaf,
where the algorithm terminates, correctness implies that the input permutation has been
uniquely identified. Label each left branch with a “0”and each right branch with a “1”.
By correctness, each permutation of S,, occurs in at least one leaf; if it appears at multiple
leaves, pick one closest to the root. The sequence of 0’s and 1’s on a root-leaf path encodes
the permutation. If there are distributions D = D, Ds, ..., D, over the z;’s, inducing the
distribution II(D) over permutations (leaves), then the expected number of comparisons of
the sorting algorithm is at least the expected length of the corresponding encoding, which
by Shannon’s Theorem is at least H(m(D)).

Upshot: Our goal should be to design a correct sorting algorithm that, for every dis-
tribution D, quickly converges to the optimal per-instance expected running time of O(n +
H(II(D))). [The second term is the necessary expected number of comparisons, and the first
term is the time required to read the input and write the output.]

For example, if the induced distribution II(D) has support size 2™ then the algorithm
should converge to a per-instance expected running time of O(n). The rest of this lecture
provides such an algorithm.

the V-list \
/ \ ecee

O O O O seee OO O soee O OO ones

A — 1 elements A — 1 elements

Figure 2: Construction of the V-list. After merging the elements of A random instances,
take every Ath element.

3 The Basic Algorithm

3.1 High-Level Approach

Our self-improving algorithm is inspired by BucketSort, a standard method of sorting when
you have good statistics about the data. For example, if the input elements are i.i.d. samples
from the uniform distribution on [0, 1], then one can have an array of n buckets, with the
ith bucket meant for numbers between (i — 1)/n and i/n. A linear pass through the input
is enough to put elements in their rightful buckets; assuming each bucket contains O(1)
elements, one can quickly sort each bucket separately and concatenate the results. The total
running time in this case would be O(n).

There are a couple of challenges in making this idea work for a self-improving algorithm.
First, since we know nothing about the underlying distribution, what should the buckets be?
Second, even if we have the right buckets, how can we quickly place the input elements into
the correct buckets? (Recall that unlike traditional BucketSort, here we're working in the
comparison model.) Note that if H(II(D)) = o(nlogn), then we can’t afford to use standard
binary search to distribute the input elements among the buckets.

3.2 Phase I: Constructing the V-List

Our first order of business is identifying good buckets, where “good” means that on future
(random) instances the expected size of each bucket is O(1). (Actually, we need something
a little stronger than this.)

Set A = clogn for a sufficiently large constant c¢. Our self-improving algorithm will, in
its ignorance, sort the first A instances using (say) MergeSort to guarantee a run time of
O(nlogn) per instance. At the same time, however, our algorithm will surreptitiously build
a sorted “master list” L of the A\n = O(nlogn) corresponding elements. [Easy exercise:
this can be done without affecting the O(nlogn) per iteration time bound.] Our algorithm
defines the set V' C L — the “V-list” — as every Ath element of L (Figure 2), for a total of
n overall. The elements in V' are our “bucket boundaries”, and they split the real line into
n + 1 buckets in all.

The next lemma (proved in Section 4) justifies our V-list construction by showing that,
with high probability over the choice of V', expected bucket sizes (squared, even) of future

leaves = single

permutations

Figure 3: Every correct comparison-based searching algorithm induces a decision tree.

instances have constant size. This ensures that we won’t waste any time sorting the elements
within a single bucket.

For a fixed choice of V' and a bucket i (between the ith and (i + 1)th element of V'),
let m; denote the (random) number of elements of an instance that fall in the ith bucket.

Lemma 3.1 (Elements Are Evenly Distributed) Fiz distributions D = Ds,...,D,.
With probability at least 1 — 1/n? over the choice of V', Ep[m?] < 20 for every bucket i.

3.3 Interlude: Optimal Bucket Classification

The next challenge is, having identified good buckets, how do we quickly classify which
element of a random instance belongs to which bucket? Remember that this problem is
non-trivial because we need to compete with an entropy bound, which can be small even for
quite non-trivial distributions over permutations.

To understand the final algorithm, it is useful to first cheat and assume that the distri-
butions D; are known. (This is not the case, of course, and our analysis of Phase I does
not assume this.) In this case, we might as well proceed in the optimal way: that is, for
a given element z; from distribution D;, we ask comparisons between z; and the bucket
boundaries in the way that minimizes the expected number of comparisons. As with sorting
(Figure 1), comparison-based algorithms for searching can be visualized as decision trees
(Figure 3), where each leaf corresponds to the (unique) bucket to which the given element
can belong given the results of the comparisons. Unlike sorting, however, it can be practical
to explicitly construct these trees for optimal searching. For starters, they have only O(n)
size, as opposed to the (n!) size trees that are generally required for optimal sorting.

Precisely, let B; denote the distribution on buckets induced by the distribution D;. (This

is with respect to a choice of V', which is now fixed forevermore.) Computing the optimal
search tree T; for a given distribution B; is then bread-and-butter dynamic programming.
The key recurrence is

E[T;)] =1+ min {E[Tilz,---,j—l] +E[7-v2j+1,j+2,...,n:| }’

]:1727"'777/

where Ti“""’b denotes the optimal search tree for locating x; with respect to the bucket bound-
aries a,a+1,...,b. In English, this recurrence says that if you knew the right comparison to
ask first, then one would solve the subsequent subproblem optimally. The dynamic program
effectively tries all n possibilities for the first comparison. There are O(n?) subproblems (one
per contiguous subset of {1,2,...,n}) and the overall running time is O(n?). Details are left
to the reader. For a harder exercise, try to improve the running time to O(n?) by exploiting
extra structure in the dynamic program. Given such a solution, the total time needed to
construct all n trees — a different one for each D;, of course — is O(n?). We won’t worry
about how to account for this work until the end of the lecture.

Since binary encodings of the buckets {0,1,2,...,n} and decision trees for searching are
essentially in one-to-one correspondence (with bits corresponding to comparison outcomes),
Shannon’s Theorem implies that the expected number of comparisons used to classify x; via
the optimal search tree T; is essentially the entropy H(B;) of the corresponding distribution
on buckets. We relate this to the entropy that we actually care about (that of the distribution
on permutations) in Section 4.

3.4 Phase II: The Steady State

For the moment we continue to assume that the distributions D; are known. After the V-list
is constructed in Phase I and the optimal search trees Ti,...,T,, over buckets are built in
the Interlude phase, the self-improving algorithm runs as shown in Figure 4 for every future
random instance.

Input: a random instance x1, ..., x,, with each x; drawn independently from D;.

1. For each 7, use T} to put x; into the correct bucket.
2. Sort each bucket (e.g., using Insertion Sort).

3. Concatenate the sorted buckets and return the result.

Figure 4: The steady state of the basic self-improving sorter.

4 Running Time Analysis of the Basic Algorithm

We have already established that Phase I runs in O(nlogn) time per iteration, and that the
Interlude requires O(n?) computation (to be refined in Section 5.2). As for Phase II, it is
obvious that the third step can be implemented in O(n) time (with probability 1, for any
distribution). Bounding the expected running time of each of the first two steps requires a
non-trivial argument.

For the first step, we have already argued that the expected running time is proportional
to >, H(B;), where B; is the distribution on buckets induced by D;. (Recall that the
choice of V' in Phase I determines the buckets.) The next lemma shows that this quantity is
no more than the target running time bound of O(n + H(II(D))).

Lemma 4.1 With probability 1 over the choice of V in Phase I,
> H(B;) = O(n+ H(II(D))).
i=1

Proof: Fix an arbitrary choice of bucket boundaries V. By Shannon’s Theorem, we only need
to exhibit a binary encoding of the buckets to which zy,...,x, belong that has expected
length O(n + H(II(D))) over D. As usual, our encoding is the comparison results of an
algorithm, which we define for the purposes of analysis only. Given z1, ..., x,, the first step
is to sort the x;’s using an optimal (for D) sorting algorithm. Such an algorithm exists (in
principle), and Shannon’s Theorem implies that it uses ~ H (II(D)) comparisons on average.
The second step is to merge the sorted list of z;’s together with the bucket boundaries V'
(which are also sorted). Merging these two lists requires O(n) comparisons, the results of
which uniquely identify the correct buckets for all of the x;’s — the last bucket boundary
to which x; is compared is the right endpoint of its bucket. The comparison results of this
two-step algorithm can be interpreted as a binary encoding of the buckets to which the x;’s
belong that has expected length O(n + H(II(D))).> A

Finally, we prove that the expected running time of the second step of Phase IT is O(n).
This follows easily from Lemma 3.1. With probability at least 1 — # over the choice of V' in
Phase I, the expectation of the squared size of every bucket is at most 20, so Insertion Sort
runs in O(1) time on each of the O(n) buckets. For the remaining probability of at most
-, we can use the O(n?) worst-case running time bound for Insertion Sort; even then, this
exceptional case contributes only O(1) to the expected running time of the self-improving
sorter.

We conclude the section by proving Lemma 3.1. The proof is a conceptually straightfor-
ward but nicely executed application of the Chernoff and Union bounds.

2The astute reader will have noticed that this proof actually upper bounds the entropy of the joint
distribution (B, ..., By). Independence of the x;’s implies that the entropy H(Bi,..., B,) equals the sum
of the entropies of the components), H(B;), which gives the desired bound.

Proof of Lemma 3.1: The basic reason the lemma is true, and the reason for our choice of A,
is because the Chernoff bound has the form

PriX < (1—0)pu] ~ e ™%, (2)

where we are ignoring constants in the exponent on the right-hand side, and where p is
defined as E[X]. Thus: when the expected value of the sum of Bernoulli random variables is
at least logarithmic, even constant-factor deviations are highly unlikely.

To make use of this fact, consider the An elements S that belong to the first A inputs,
from which we draw V. Consider fixed indices k,¢ € {1,2,..., An}, and define &, as the
(bad) event (over the choice of S) that

(i) the kth and ¢th elements take on a pair of values a,b € R for which Ep[mg] > 4\,
where m,;, denotes the number of elements of A random inputs (i.i.d. samples from D)
that lie between a and b; and

(ii) at most A other elements of S lie between a and b.

That is, & is the event that the kth and ¢th samples are pretty far apart and yet there is
an unusually sparse population of other samples between them.

We claim that for all k,¢, Pr[€,] is very small, at most 1/n°. To see this, fix k,¢
and condition on the event that (i) occurs, and the corresponding values of a and b. Even
then, the Chernoff bound (2) implies that the (conditional) probability that (ii) occurs is
at most 1/n°, provided the constant ¢ in the definition of X is sufficiently large. (We can
take p = 4clogn and 6 = 3, for example.) Taking a Union Bound over the at most (An)?
choices for k, ¢, we find that Pr[Vy ¢Ex] < 1/n?. This implies that, with probability at least
1-— #, for every pair a,b € S of samples with less than A other samples between them, the
expected number of elements of A future random instances that lie between a and b is at
most 4\. This guarantee applies in particular to consecutive bucket boundaries, since only
A — 1 samples separate them.

To recap, with probability at least 1 — # (over S), for every bucket B defined by two
consecutive boundaries a and b, the expected number of elements of A independent random
inputs that lie in B is at most 4\. By linearity, the expected number of elements of a single
random input that land in B is at most 4.

To finish the proof, consider an arbitrary bucket B; and let X; be the random variable
indicating whether or not the jth element of a random instance lies in B;. We have the
following upper bound on the expected squared size m? of bucket i:

E[(X; +Xo+ -+ X,)?] =) E[X]] +2) E[X]]-E[X)]

< (ZW@]) N (ZW@]) |

where the equality uses linearity of expectation and the independence of the X;’s, and the
inequality uses the fact that the X;’s are 0-1 random variables. With probability at least

8

1-— #, > i E[X,] < 4 and hence this upper bound is at most 20, simultaneously for every
bucket B;. B

5 Extensions

5.1 Optimizing the Space

We begin with a simple and clever optimization that also segues into the next extension,
which is about generalizing the basic algorithm to unknown distributions.

The space required by our self-improving sorter is ©(n?), for the n optimal search trees
(the T;’s). Assuming still that the D;’s are known, suppose that we truncate each T; after
level elogn, for some € > 0. These truncated trees require only O(n¢) space each, for a
total of O(n'™). What happens now when we search for z;’s bucket in T; and fall off the
bottom? We just locate the correct bucket by standard binary search! This takes O(logn)
time, and we would have had to spend at least elogn time searching for it in the original
tree T; anyways. Thus the price we pay for maintaining only the truncated versions of the
optimal search trees is a % blow-up in the expected bucket location time, which is a constant-
factor loss for any fixed ¢ > 0. Conceptually, the big gains from using an optimal search
tree instead of standard binary search occur at leaves that are at very shallow levels (and
presumably are visited quite frequently).

5.2 Unknown Distributions

The elephant in the room is that the Interlude and Phase II of our self-improving sorter
currently assume that the distributions D are known a priori, while the whole point of the
self-improving paradigm is to design algorithms that work well for unknown distributions.
The fix is the obvious one: we build (near-optimal) search trees using empirical distributions,
based on how frequently the ith element lands in the various buckets.

More precisely, the general self-improving sorter is defined as follows. Phase I is defined
as before and uses O(logn) training phases to identify the bucket boundaries V. The new
Interlude uses further training phases to estimate the B;’s (the distributions of the x;’s over
the buckets).

The analysis in Section 5.1 suggests that, for each ¢, only the ~ n® most frequent bucket
locations for z; are actually needed to match the entropy lower bound. For V' and 7 fixed, call
a bucket frequentif the probability that x; lands in it is at least 1/n¢, and infrequent otherwise.
An extra ©(nlogn) training phases suffice to get accurate estimates of the probabilities of
frequent buckets (for all i) — after this point one expects (logn) appearances of z; in
every frequent bucket for i, and using Chernoff bounds as in Section 4 implies that all of
the empirical frequency counts are close to their expectations (with high probability). The
algorithm then builds a search tree 7} for 4 using only the buckets (if any) in which Q(logn)
samples of z; landed. This involves O(n¢) buckets and can be done in O(n*) time and O(n¢)
space. For e < %, this does not affect the O(nlogn) worst-case running time bound for every

Figure 5: A Delaunay triangulation in the plane with circumcircles shown.

training phase. One can show that the T)’s are essentially as good as the truncated optimal
search trees of Section 5.1, with buckets outside the trees being located via standard binary
search, so that the first step of Phase II of the self-improving sorter continues to have an
expected running time of O(, H(B;)) = O(n+ H(II(D))). The arguments have a similar
flavor to the proof of Lemma 3.1, although the details are a bit different and are left to the
reader (or see [1]). Finally, the second and third steps of Phase II of the self-improving sorter
obviously continue to run in time O(n) [expected] and O(n) [worst-case|, respectively.

5.3 Beyond Independent Distributions

The assumption that the D;’s are independent distributions is strong. Some assumption is
needed, however, as a self-improving sorter for arbitrary distributions II over permutations
provably requires exponential space — intuitively, there are too many fundamentally distinct
distributions that need to be distinguished (see [1] for the counting argument that proves
this). An interesting open question is to find an assumption weaker than (or incomparable
to) independence that is strong enough to allow interesting positive results. The reader is
encouraged to go back over the analysis above and identify all of the (many) places where
we used the independence of the D;’s.

10

5.4 Delaunay Triangulations

Clarkson and Seshadhri [2] give a non-trivial extension of the algorithm and analysis in [1], to
the problem of computing the Delaunay triangulation of a point set. The input is n points in
the plane, where each point z; is an independent draw from a distribution D;. One definition
of a Delaunay triangulation is that, for every face of the triangulation, the circle that goes
through the three corners of the face encloses no other points of the input (see Figure 5
for an example and the textbook [3, Chapter 9] for much more on the problem). The main
result in [2] is again an optimal self-improving algorithm, with steady-state expected running
time O(n+ H(A(D))), where H(A(D)) is the suitable definition of entropy for the induced
distribution A(D) over triangulations. The algorithm is again an analog of BucketSort, but
a number of the details are challenging. For example, while the third step of Phase II of the
self-improving sorter — concatenating the sorted results from different buckets — is trivially
linear-time, it is much less obvious how to combine Delaunay triangulations of constant-size
“buckets” into one for the entire point set. It can be done, however; see [2].

References

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Self-improving algorithms. In Proceed-
ings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
261-270, 2006.

[2] K. L. Clarkson and C. Seshadhri. Self-improving algorithms for Delaunay triangulations.
In Proceedings of the 24th Annual ACM Symposium on Computational Geometry (SCG),
pages 148-155, 2008.

[3] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geom-
etry: Algorithms and Applications. Springer, 2000. Second Edition.

11

