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1 Preamble

This lecture closes the loop on the course’s circle of ideas, by connecting our most recent topic
(algorithms for unknown input distributions) to our first topic (instance optimality guaran-
tees). We use this connection to reinterpret classical results about “no-regret algorithms”
for online decision-making.

2 Instance Optimality via the Distributional Thought

Experiment

2.1 Review of Instance Optimality

Recall from Lecture #1 that an algorithm A is instance optimal if there is a constant α such
that, for every algorithm B and input z,

cost(A, z) ≤ α · cost(B, z).

For small α, this is the strongest possible and least controversial notion that one could
hope for. Indeed, the guarantee is so strong that, for many problems, no instance-optimal
algorithms exist (recall Homework #1).

A relaxation of instance optimality that can enable meaningful positive results is to
replace the condition “for every algorithm B” by “for every algorithm B belonging to a class
C of ‘natural’ algorithms.” Obviously, the strength of such a guarantee increases with the
set C of “competing algorithms.”
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Our main example of instance optimality, the Kirkpatrick-Seidel algorithm for computing
the maxima of a point set in the plane, essentially made use of such a relaxation. Recall
that our formalism in Lecture #2 effectively restricted attention to algorithms — or rather,
running time bounds of algorithms — that are independent of the order in which the points
are listed in the input. This maneuver excluded silly algorithms that memorize the answer
for a single input.

Applying this relaxed version of instance optimality requires a choice of a set C of algo-
rithms. What’s a good choice? We’re looking for a sweet spot — a class that is small enough
to permit illuminating positive results, yet big enough that an instance-optimality guarantee
is impressive. Ideally, we want to choose C so that at least one but very few algorithms are
instance optimal.

2.2 From Distributions to Algorithms

We can use input distributions to provide a principled two-step approach to choosing the set
C of competitor algorithms. While the last several lectures took a distributional assumption
literally, and sought algorithms that perform well with respect to the assumed distribution,
here we use distributions only in a “thought experiment” to define the set C. With respect
to this set, we’ll seek input-by-input (i.e., instance-optimal) performance guarantees.

Precisely, for a computational problem, the first step is to choose a set D of input distri-
butions. You’re accustomed to such families from our many discussions of semi-random and
hybrid analysis frameworks — such as perturbed versions of worst-case inputs (as in Lectures
#12-15), “sufficiently random” distributions (as in Lecture #16), distributions over arrays
with independent entries (Lecture #17), or “regular” distributions (Lecture #18). Any of
these are examples of a set D of input distributions, and of course there are many other
natural examples.

The second step is to use the set D of input distributions to define a corresponding set
CD of algorithms:

CD := {algorithms A : A is optimal w.r.t. some D ∈ D} . (1)

By “optimal with respect to distribution D,” we mean that the algorithm A minimizes
the expected cost Ez∼D[cost(B, z)] over all algorithms B, where the expectation is over the
random input (distributed according to D). Conceptually, we iterate over all distributions
D ∈ D of interest, and put all of the corresponding optimal algorithms into the set CD.

The key point is that an instance-optimal guarantee with respect to CD is at least as
strong as a guarantee that holds for an arbitrary unknown input distribution from D.

Proposition 2.1 Let D be a set of input distributions and define CD as in (1). If algorithm
A is instance-optimal with respect to CD with approximation factor α, then

Ez∼D[cost(A, z)] ≤ α · Ez∼D[cost(OPTD, z)] (2)

for every D ∈ D, where OPTD denotes the expected cost-minimizing algorithm with respect
to the input distribution D.
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What’s important to notice is that the algorithm A on the left-hand side of (2) is independent
of the distribution D, while the algorithm OPTD on the right-hand side is tailored to this
distribution. In other words, algorithm A is simultaneously near-optimal for all distributions
D ∈ D, and as such is a robustly excellent solution for an unknown input distribution in D.1

Proposition 2.1 is an even stronger statement — it offers an instance-optimality guarantee
that has meaning even if we don’t impose any distributional assumptions on inputs.

The proof of Proposition 2.1 is straightforward.

Proof of Proposition 2.1: Fix an input distribution D ∈ D. By the definition (1) of CD, the
optimal algorithm OPTD for D is a member of CD. Since A is instance optimal with respect
to CD with approximation factor α,

cost(A, z) ≤ α · cost(OPTD, z)

for every input z. Taking expectations (over z ∼ D) establishes (2), as desired. �

The next section gives an application of this paradigm to deriving instance-optimality
guarantees with respect to a restricted set of algorithms, for the problem of online decision-
making. The paradigm automatically regenerates the standard “no-regret” framework for
analyzing such algorithms.2

3 Online Decision-Making

3.1 The Model

The following online decision-making problem has been studied exhaustively (e.g. [1]). There
is a finite set A of actions; even the case |A| = 2 (e.g., buy/sell stock) is interesting. There
is a known time horizon T . Then:

• At each time step t = 1, 2, . . . , T :

– Your algorithm picks an action at, possibly according to a probability distribution.

– A cost vector ct : A→ [0, 1] is unveiled.

Inputs z thus correspond to cost vector sequences c1, c2, . . . , cT . The cost of an online decision
making algorithm B on such a sequence is

cost(B, z) =
T∑
t=1

ct(at).

1This implies that no algorithm, whether in CD or not, can be α-instance optimal with respect to CD with
α < 1.

2Other examples where this paradigm regenerates standard optimality notions occur in data structures,
such as the “static optimality” property of binary search trees (see e.g. [4]), and in prior-free auction design
(see [2]).
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Remark 3.1

1. We assume in this lecture that the time horizon T is known a priori. The results in
this lecture extend to the case of an unknown time horizon with a modest amount of
additional work.

2. An adversary is adaptive if it can choose the cost vectors ct as a function of the al-
gorithm’s coin flips on days 1 through t − 1, and oblivious otherwise. For simplicity,
this lecture focuses on oblivious adversaries, which effectively have to choose the cost
vector sequence c1, c2, . . . , cT with knowledge of the code of the employed algorithm
B but not its coin flips. There also exist online decision-making algorithms that have
good performance with respect to adaptive adversaries.

Your first reaction to the model is probably that it seems pretty unfair. Indeed, because
the adversary can choose its cost vectors as a function of the employed algorithm, it is
impossible for any online algorithm to compete with the best action sequence in hindsight.
For example, if |A| = 2 and B is a deterministic algorithm, then the adversary can choose
either the cost vector (1, 0) or the cost vector (0, 1), depending on whether or not B is about
to choose the first or second action, respectively. (Since the adversary has the code to B, it
knows what it will do.) The algorithm B incurs cost T on this input while the best action
sequence in hindsight has zero cost. Even if the algorithm B is randomized, an adversary
can force it to incur cost expected cost at least 1

2
at each time step (when |A| = 2), despite

the fact that zero cost could have been achieved with hindsight.

3.2 From Distributions to a “No-Regret” Benchmark

The bad example above can be interpreted as an impossibility result for instance-optimal
algorithms, where the class of “competitor algorithms” is all possible action sequences. We
next apply the paradigm of a “distributional thought experiment” to define a restricted class
of competitor algorithms to enable instance optimality results.

Purely as a thought experiment, imagine that each cost vector ct is an i.i.d. draw from a
known distribution D over such vectors. (The “i.i.d.” here refers to cost vectors at different
times steps; the costs of different actions can be arbitrarily distributed and correlated with
each other.) In this case, the optimal algorithm is extremely simple. At a time step t, the
optimal algorithm sets

at = argmin
a∈A

Ect∼D
[
ct(a)

]
.

Since D doesn’t depend on t, neither does at. Thus,

if D is the set of all distributions on cost vectors, then the induced class CD of algorithms
consists of the |A| algorithms that always play a fixed action.

Having defined the set CD of algorithms that we seek to compete with, we now dispense with
any distributions and seek an input-by-input guarantee — instance optimality with respect
to CD.

4



3.3 Main Result

The main result of this lecture is an online decision-making algorithm that is “approximately
instance optimal” with respect to the algorithm class CD of fixed actions with constant α ≈ 1.
The exact statement differs from previous instance optimality results in that the algorithm’s
error will be additive, rather than relative.3 Precisely:

Theorem 3.2 There is a randomized online decision-making algorithm B such that, for
every time horizon T and cost vector sequence c1, c2, . . . , cT ,

E

[
1

T

T∑
t=1

ct(at)

]
≤ 1

T
min
a∈A

T∑
t=1

ct(a) + O

(√
log n

T

)
︸ ︷︷ ︸

“regret” of B on c1, . . . , cT

. (3)

On the left-hand side of (3), the expectation is over the choice of the actions a1, a2, . . . , aT

made by the algorithm B. On the right-hand side, the first term is simply the best perfor-
mance achieved on the input c1, c2, . . . , cT by an algorithm in our competitor class CD. Note
that Theorem 3.2 applies input-by-input — no distribution over inputs is assumed.

The guarantee in Theorem 3.2 implies that the expected regret of the algorithm — the
extent to which its average cost (over the time steps) exceeds that of the best fixed action
— is bounded above by a term that goes to 0 as the time horizon T goes to infinity. For
example, the expected regret is at most ε provided T = Ω( logn

ε2
). The loss in Theorem 3.2

is the smallest possible, as a function of both n and T , up to a constant factor; see also
Homework #10.

There are multiple online decision-making algorithms that achieve the optimal regret
bound of Theorem 3.2. Probably the most well-known one is the “Multiplicative Weights”
algorithm (a.k.a. “Hedge”) [3].4 This algorithm is based on two simple principles. First,
choose an action randomly but based on past performance, with actions incurring less cu-
mulative cost so far chosen with higher probabilities. Second, aggressively decrease the
probability of choosing an action once it starts performing badly. See, for example, the
instructor’s CS364A lecture notes on algorithmic game theory for details. Here, for variety
and to highlight connections to smoothed analysis, we instead analyze a different algorithm
that achieves the optimal bound of Theorem 3.2.

3.4 Follow the Perturbed Leader (FTPL)

The Follow the Leader (FTL) algorithm is the simplest implementation of decision-making
via past performances. Imagine that we maintain a “leaderboard” for all actions, where the
current score of an action is the cumulative cost it has incurred over all previous time steps.
(Thus lower scores are better.)

3This is clearly necessary: take T = 1 and, for any online algorithm, consider the worse of the two inputs
(0, 1) and (1, 0).

4This algorithm also works well against adaptive adversaries; recall Remark 3.1.

5



• For each t = 1, 2, . . . , T :

– Follow the leader: Set
at = argmin

a∈A

∑
s<t

cs(a),

breaking ties lexicographically (say).

There exists a cost vector sequence on which the FTL algorithm has regret Ω(1), so it is not
a no-regret algorithm in the sense of Theorem 3.2. (Nor is any other deterministic algorithm;
see Homework #10). The FTL algorithm does have vanishing expected regret on smoothed
(i.e., perturbed) instances, however; see Homework #10.

We thus need randomization to achieve a no-regret guarantee. The Follow the Perturbed
Leader (FTPL) algorithm injects randomness into the FTL algorithm in a very simple way:

• For each action a ∈ A, let Xa denote an independent random variable, distributed
geometrically with a parameter ε to be determined later.5

• For each t = 1, 2, . . . , T :

– Follow the (perturbed) leader: Set

at = argmin
a∈A

(
−Xa +

∑
s<t

cs(a)

)
,

breaking ties lexicographically (say).

In other words, the FTPL algorithm begins with a preprocessing step that awards each
action a random “bonus,” and then runs the FTL algorithm with respect to these fictitious
bonuses and the actual cost vectors.

3.5 Analysis of FTPL

We now show that the FTPL algorithm meets the guarantee in Theorem 3.2. Fix an arbitrary
sequence c1, c2, . . . , cT of cost vectors. The key idea is to define, for the analysis only, a
fictitious algorithm F that on day t chooses the action

f t = argmin
a∈A

(
−Xa +

∑
s≤t

cs(a)

)
,

where the Xa’s are the same random bonuses used by the FTPL algorithm. The only differ-
ence between F and the FTPL algorithm is that the former telepathically also uses the cost

5That is: flip a coin and count the number of flips until you get “heads,” where ε is the probability of a
“heads.” Note E[Xa] = 1

ε .
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vector ct of the current time step in its selection of at, while FTPL (as an online algorithm)
does not. While F is not an online algorithm, it is nevertheless a useful intermediary in the
analysis of FTPL.

We break the proof of Theorem 3.2 into three claims.

1. With probability 1 (over the Xa’s),

1

T

T∑
t=1

ct(f t)− 1

T
min
a∈A

T∑
t=1

ct(a)︸ ︷︷ ︸
regret of F

≤ 1

T
max
a∈A

Xa. (4)

2. The expected regret of the FTPL algorithm is at most ε more than that of F . (The
expectations are over the Xa’s.)

3. E[maxa∈AXa] = O( logn
ε

).

Observe that the three claims imply that the expected regret of the FTPL algorithm is at
most ε+O( logn

εT
). Judiciously choosing ε =

√
(log n)/T yields the expected regret bound of

O(
√

(log n)/T ) that is claimed in Theorem 3.2.
We now proceed to the three claims, and treat them in reverse order. The third claim is

a simple probability calculation, and we leave it to Homework #10. The other two claims
have clever proofs.

To prove the second claim, fix a time step t ∈ {1, 2, . . . , T}. We show that, if the same
random Xa’s are used in both the FTPL algorithm and in algorithm F , then the probability
(over the choice of Xa’s) that the two algorithms take different actions at time t is at most ε.
Integrating out over the Xa’s and using that ct(a) ∈ [0, 1] for every t and a ∈ A, this implies
that the difference between the expected cost of FTPL and that of F at time t is at most
ε. Averaging over the T time steps and using linearity of expectation then yields the second
claim.

So why are FTPL and F likely to take a common action at time t? First, for fixed Xa’s,
observe that the action taken by FTPL at time t is exactly the action that the fictitious
algorithm F already took at time t− 1 (namely, the action minimizing −Xa +

∑t−1
s=1 c

s(A)).
Thus, an equivalent assertion is that, for every fixed t > 1, the probability (over the Xa’s)
that algorithm F plays different actions at times t − 1 and t is at most ε. Second, an
even stronger assertion is that the probability (over the Xa’s) that the smallest value of
−Xa +

∑t−1
s=1 c

s(a) is within 1 of the second-smallest such value is at most ε — since all
costs are between 0 and 1, if the perturbed leader at time t− 1 has outdistanced the nearest
competitor by more than 1 so far, it cannot be dislodged from its perch at time t, no matter
what happens at time t−1. To see why this statement holds, we use the Principle of Deferred
Decisions, flipping coins lazily on a “need to know” basis.

In more detail, fix t > 1 and zoom in on time step t− 1. Which action will algorithm F
choose at this time step? It depends, of course, on the random Xa’s. Recall that each
random bonus Xa is an independent random variable distributed according to the number

7



Figure 1: The gap between the score of a∗ and the second lowest score (dashed line) is at
least 1 with probability 1− ε.

of coin flips needed to get “heads,” where the probability of “heads” is ε. We begin with
Xa = 1 for every a ∈ A and compute −Xa +

∑t−1
s=1 c

s(a) for each action. We then a flip
a coin for the currently worst action a (the one with the highest score).6 If it comes up
“heads” then the current value of Xa is also its final value. Since the other actions will only
have their scores decreased by future coin flips, there is no chance that F will play a and we
can discard it for the rest of the random experiment. If the coin comes up “tails,” then we
increment a’s random bonus by 1, thereby decreasing its score by 1. Action a might still be
the action with the worst (i.e., highest) score, or this score decrement may have moved it up
the leaderboard. In any case, at each iteration of this random experiment, we flip exactly
one coin, for the remaining action with the highest score, with the action discarded if the
coin comes up “heads.”

Here is the key point. Consider the iteration of the random experiment that eliminates
the second-to-last action, leaving only the action a∗. At this point, we know with certainty
that algorithm F will play the action a∗ at time t−1. But we haven’t yet finished determining
the precise value of the random bonus Xa∗ ! So we flip another coin for a∗. Since a∗ already
has the lowest score, if this coin comes up tails, then a∗’s score will be strictly more than one
less than its nearest competitor. See Figure 1. This happens with probability 1− ε, and the
proof of the second claim is complete.

To prove the first claim (4) and complete the proof of Theorem 3.2, fix values for the
Xa’s. Let a1, a2, . . . , aT be the actions chosen by algorithm F and a∗ be the best fixed action.
Multiply the desired inequality (4) through by T . As a warm up, we first assume that Xa = 0
for every a ∈ A. Inequality (4) asserts that, in this case, algorithm F is at least as good as

6We leave the issue of handling ties to the interested reader.
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the fixed action a∗. To see this, write

T∑
t=1

ct(a∗) ≥
T∑
t=1

ct(aT ) (5)

= cT (aT ) +
T−1∑
t=1

ct(aT )

≥ cT (aT ) +
T−1∑
t=1

ct(aT−1) (6)

= cT−1(aT−1) + cT (aT ) +
T−2∑
t=1

ct(aT−1)

≥ cT−1(aT−1) + cT (aT ) +
T−2∑
t=1

ct(aT−2) (7)

· · ·
≥ c1(a1) + · · ·+ cT−1(aT−1) + cT (aT )

where (5) follows from the definition aT = argmina∈A(−Xa +
∑

s≤T c
s(A)),7 inequality (6)

follows from the definition aT−1 = argmina∈A(−Xa +
∑

s≤T−1 c
s(a)), inequality (7) follows

from the definition aT−2 = argmina∈A(−Xa +
∑

s≤T−2 c
s(a)), and so on. This completes the

proof in the special case where Xa = 0 for every a ∈ A. More generally, the upper bound
above loses an additional term of (XaT −Xa∗) in (5), an additional term of (XaT−1 −XaT )
in (6), an additional term of (XaT−2 −XaT−1) in (7), and so on. In total, these extra terms
increase the upper bound by Xa1 − Xa∗ ≤ Xa1 ≤ maxa∈AXa. This completes the proof of
the first claim and of the theorem.
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