
CS264: Beyond Worst-Case Analysis

Lecture #3: Online Paging and Resource Augmentation∗

Tim Roughgarden†

September 29, 2014

1 Preamble

This course covers many different methods of analyzing and comparing algorithms. Periodi-
cally, as in Section 2, we pause to review the “big picture” and suggest methods for keeping
tracking of the course’s main ideas, their goals, and the problems for which they are most
likely to be useful. Section 3 begins our study of the online paging problem — introduced
briefly in Lecture #1 — we’ll also study this problem in the next lecture. We’ll see that
traditional “competitive analysis” fails to illuminate the problem in several respects: it does
not give accurate performance predictions, it does not give good guidance on how to pick a
cache size, and it gives only weak information about which caching policy to use. Section 6
covers “resource augmentation,” an alternative (but still worst-case) method of analyzing
online algorithms that gives more meaningful performance guarantees. The next lecture
presents an analysis that more sharply differentiates between different paging algorithms by
modeling structure in data.

2 The Big Picture

There is a strong analogy between the organization of this course and that of most under-
graduate algorithms courses. In an undergrad course like CS161, the primary goal is to
develop a toolbox for algorithm design.1 You learn that there is no “silver bullet” — no
single algorithmic idea will solve every computational problem that you’ll ever encounter.
There are, however, a handful of powerful design techniques that enjoy wide applicability:
divide and conquer, greedy algorithms, dynamic programming, proper use of data structures,

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.
1Some of the topics covered are for analysis purposes, like the vocabulary of asymptotic analysis, but

these are the exceptions.

1

etc. It’s a bit of an art to figure out which techniques are best suited for which problems,
but through practice you can hone this skill. Finally, these algorithm design techniques are
taught largely through representative — and typically famous and fundamental — problems
and algorithms. This kills two birds with one stone: students both sharpen their ability
to apply a given technique through repeated examples, and the examples are problems or
algorithms that every card-carrying computer scientist would want to know, anyways. For
example, divide-and-conquer is taught using the fundamental problem of sorting, and stu-
dents learn famous algorithms like MergeSort and QuickSort. Similarly, greedy algorithms
are taught using the minimum spanning tree problem, and the algorithms of Kruskal and
Prim. Dynamic programming via shortest-path problems, and the algorithms of Bellman-
Ford and Floyd-Warshall. And so on.

The goals and organization of CS264 are comparable in many respects; the primary dif-
ference is the high-level goal of supplying you with a toolbox for algorithm analysis, and
specifically ways to rigorously compare different algorithms. We’ve already seen a few anal-
ysis approaches — traditional worst-case analysis, instance optimality, and parameterized
analysis — and will see many more.Once again, no single way of analyzing algorithms is
the “right way” for all computational problems, and it’s not always clear which analysis
framework is best suited for which problem. But the lectures and homework will introduce
you to many such frameworks, each applied in several examples. And to maximize the value
of these lectures, whenever possible we choose as examples problems and algorithms that are
interesting in their own right, such as online paging, linear programming, and clustering.

3 Online Paging

Recall the online paging (a.k.a. online caching) problem from Lecture #1. This is a real-
world problem, but also simple enough to showcase many different alternatives to worst-case
analysis. This section introduces a formal model for analyzing online paging algorithms due
to Sleator and Tarjan [5].2

• There is a slow memory with N pages.

• There is a fast memory (a cache) that can only hold k < N of the pages at a time.

• Page requests arrive “online,” one request per time step.3

• If the page request pt at time t is already in the cache, zero cost is incurred.

• If pt is not in the cache, it needs to be brought in; if the cache is full, one of its k pages
must be evicted (without knowing what the future requests will be). One unit of cost

2A good general reference for this section and the next is [2, Chapter 3].
3This use of the word “online” grows more anachronistic with each year. When the field of “online

algorithms” was invented in the 1980s [5], the word “online” did not have the connotations it does today —
that was 10 years before the World Wide Web existed, for example.

2

is incurred in this case.4

In our running notation, we define cost(A, z) as the number of “page faults” (a.k.a. “cache
misses”) that A incurs on the page request sequence z.

Recall that if we had clairvoyance and knew all future page requests, then we have a solid
understanding of OPT , the caching policy that minimizes the number of page faults.

Theorem 3.1 (Belady’s Theorem [1]) The Furthest-in-the-Future algorithm, which al-
ways evicts (on a cache miss) the page that will be requested furthest in the future, always
minimizes the number of page faults.

The proof is a slightly tricky greedy exchange argument; see e.g. [2, Theorem 3.1].
Recall also that when future requests are unknown, the “gold standard” in practice is

the Least Recently Used (LRU) policy, which on a cache miss evicts the page whose most
recent request is as far back in the past as possible. Many empirical studies show that
LRU performs very well on “typical” request sequences — not much worse than the offline
optimal algorithm, and better than other obvious online algorithms like first-in first-out
(FIFO) (e.g. [6, §2.4]). The usual explanation one learns is: “real data exhibits locality —
with recent requests likely to be requested again soon — and LRU automatically adapts to
and exploits this locality.”

Thus in some sense we already know the “correct” algorithm — or at least a near-optimal
one — in the form of LRU. But if LRU is the answer, what is the question?

4 Competitive Analysis

This section explains the dominant paradigm for comparing online algorithms: competitive
analysis. The following definition is key.

Definition 4.1 (Competitive Ratio [5]) The competitive ratio of an online algorithm A
is its worst-case performance relative to an optimal offline algorithm OPT , which has full
knowledge of the page sequence z up front:

max
z

cost(A, z)

cost(OPT, z)
.

The competitive ratio is always at least one; the closer to one the better.5 In competitive
analysis, we interpret online algorithm A as “better than” another one B if and only if it has
a smaller competitive ratio. Similarly, in competitive analysis, “optimal” online algorithms
are those with the smallest-possible competitive ratio.

4A more general model allows arbitrary changes to the cache at every time step, whether or not there is
a hit or miss, with the cost incurred equal to the number of changes. We will focus on the stated model,
which corresponds to “demand paging” algorithms.

5A detail: usually (but not always) one ignores additive terms in the competitive ratio. Equivalently, we
think about infinite sequences of inputs z such that cost(OPT, z) → ∞.

3

We can interpret the competitive ratio as a form of instance optimality (Lectures #1 and
#2): if an online algorithm A has a competitive ratio of α, then it is instance optimal with
optimality ratio α — that is, it has cost at most α times that of every (online or offline)
algorithm on every input. Thus it is no surprise that small competitive ratios are relatively
rare: this translates to instance optimality with the additional severe restriction that the
designed algorithm A is online.

5 Some Basic Worst-Case Upper and Lower Bounds

So what happens if we apply competitive analysis to the online paging problem? What does
it say about the LRU policy versus other online policies?

5.1 Goals of Algorithmic Analysis

Before answering these questions, let’s briefly recall from Lecture #1 our three goals of
defining a formal performance measure and analyzing algorithms mathematically. At the
end of the section, we’ll give competitive analysis a report card according to how well it
achieves these goals.

1. Explanation (or Prediction) Goal. Explain or predict the empirical performance
of algorithms.

2. Comparison Goal. Rank different algorithms according to their performance. Ide-
ally, identify “optimal” algorithms.

3. Design Goal. Guide the development of new algorithms.

5.2 A Lower Bound for all Deterministic Algorithms

Since an upper bound on the competitive ratio is an even stronger assertion than instance
optimality, we expect there to be non-trivial lower bounds. Thus, before analyzing any
specific algorithm, let’s figure out what’s the best we could hope for. The following lower
bound draws a “line in the sand” that applies to all deterministic paging algorithms.

Theorem 5.1 (Lower Bound for All Paging Algorithms [5]) Every deterministic pag-
ing algorithm has competitive ratio at least k.

Proof: Take N = k + 1 and fix a deterministic online algorithm A. Since there is always
some page missing from A’s cache, one can define inductively a sequence σ so that A faults
on every single page request. The furthest-in-the-future (FIF) algorithm, whenever it incurs
a page fault on the sequence σ, has k candidates for eviction, and one of these will not be
among the next k − 1 requests. Thus the FIF algorithm follows every cache miss with at
least k−1 cache hits. The competitive ratio of A is therefore at least |σ|/(|σ|/k) = k, which
proves the theorem. �

4

Remark 5.2 (Randomized Paging Algorithms) Theorem 5.1 is stated only for deter-
ministic paging algorithms, so you’re probably wondering about randomized ones. There are
some pretty cool randomized online paging algorithms, and the competitive ratios are much
better: O(log k) is achievable and also the best possible. See [2, Chapter 4] for a survey.
We won’t discuss these randomized algorithms, as most of them are rather different from
the standard ones used in practice, and because the online paging problem seems solvable
empirically (e.g., by LRU) without resorting to randomization.6

5.3 An Upper Bound for LRU

The bad news is that the lower bound in Theorem 5.1 is laughably huge — k is pretty big in
most systems — far worse than the small percentage error one observes for reasonable paging
algorithms (LRU, FIFO, etc.) on “real data”. This rules out taking competitive ratios
literally as performance predictions. Equally disturbingly, the competitive ratio of every
paging algorithm increases linearly with the cache size. Looking at the proof of Theorem 5.1,
we see a particularly transparent example of the “Murphy’s Law” data model — no matter
what the cache size k is, the input can be chosen so that the online paging algorithm faults at
every time step (meanwhile the offline optimal algorithm’s page fault rate is decreasing with
k). This suggests that devoting resources (e.g., transistors on a microchip) to bigger caches
is pointless and that they would be better spent anywhere else — this advice is obviously
misleading and inconsistent with practice.

But if we recall how stringent the definition of a competitive ratio is — again, even more
so than instance optimality — we shouldn’t be surprised to see such high competitive ratios.
And this does not necessarily mean that the theoretical results are meaningless or useless.
Hope remains that competitive analysis can achieve the Comparison Goal — accurate ordinal
information about which online paging algorithms are the best. The following theorem is
good news along these lines.

Theorem 5.3 (Upper Bound for LRU [5]) The competitive ratio of the LRU algorithm
for online paging is at most k, the size of the cache.

Proof: Consider an arbitrary request sequence σ. We need to prove both an upper bound on
the number of faults that LRU incurs, and a lower bound on the number of faults incurred
by the optimal offline algorithm. A useful idea for accomplishing both goals is to break σ
into blocks σ1, σ2, . . . , σb. Here σ1 is the maximal prefix of σ in which only k distinct pages

6A caveat: worst-case analysis of randomized algorithms sometimes helps explain why deterministic
algorithms perform well on “real-world instances” of a problem. For example, the proof that randomized
Quicksort is fast (with high probability) on every input also shows that deterministic Quicksort is fast on
almost every input. Thus the worst-case analysis of randomized QuickSort provides an excellent theoretical
explanation of the speed of deterministic QuickSort on “real data”, for essentially any reasonable definition
of “real data” (modulo the usual “already sorted” exception). It is not clear that the randomized online
paging algorithms with good competitive ratios are similar enough to algorithms like LRU to warrant a
similar interpretation.

5

σ1 σ2 σ3 σ4 σb

...etc.maximal subject to
≤ k distinct requests

maximal subject to
≤ k distinct requests

(a) Blocks of a Request Sequence

σ1 σ2
σ3 σ4 σb

...etc.≥ 1 fault ≥ 1 fault

(b) Page Fault Lower Bound

Figure 1: Proof of Theorem 5.3. In (a), the blocks of a page request sequence; the LRU
algorithm incurs at most k page faults in each. In (b), the optimal offline algorithm incurs
at least one page fault in each “shifted block”.

are requested; the block σ2 starts immediately after and is maximal subject to only k distinct
pages being requested (ignoring what was requested in σ1); and so on.

The first important point is that LRU faults at most k times within a single block — at
most once per page requested in the block. The reason is that once a page is brought into
the cache, it won’t be evicted until k other distinct pages get referenced, which can’t happen
until the following block. Thus LRU incurs at most bk page faults, where b is the number of
blocks. See Figure 1(a).

Second, we claim that an optimal offline algorithm must incur at least b− 1 page faults.
To see this, consider the first block plus the first request of the second block. Since σ1 is
maximal, this represents requests for k + 1 distinct pages, and no algorithm can serve them
all without a page fault. Similarly, suppose the first request of σ2 is the page p. After an
algorithm serves the request for p, the cache contains only k − 1 pages other than p. But
by maximality of σ2, the rest of σ2 and the first request of σ3 contain requests for k distinct
pages other than p; these cannot all be served without incurring another page fault. And so
on, resulting in at least b − 1 cache misses. See Figure 1(b). This upper bound bk/(b − 1)
on the competitive ratio approaches k as b → ∞, so this completes the theorem. �

5.4 An Upper Bound for Flush-When-Full

Theorems 5.1 and 5.3 show that LRU has the smallest-possible competitive ratio among
the class of all deterministic online paging algorithms. (While a silly algorithm like LIFO
— “last-in, first out” — does not, as can be seen via a sequence that alternates requests
between two different pages.) This is definitely a point in favor of competitive analysis.

But the plot thickens if we consider the Flush-When-Full (FWF) algorithm.

Example 5.4 (Flush-When-Full (FWF)) The Flush-When-Full algorithm works as fol-
lows. When the cache is full and a page fault is incurred, the FWF algorithm evicts its entire
cache.7 Note that, in the notation of the proof of Theorem 5.3, the cache flushes correspond
precisely to the ends of the blocks σ1, σ2, . . . , σb−1, with the FWF algorithm suffering exactly
k faults (the mass eviction) per block.

7Strictly speaking this is outside our demand paging model, but you get the idea.

6

The FWF algorithm is “obviously” worse than LRU, in the sense that it never suffers
fewer page faults, and suffers strictly more faults on most inputs. Nonetheless, the competitive
ratio of the FWF algorithm is also k. The reason is that, since the FWF algorithm faults
exactly k times per block, the proof of Theorem 5.3 still applies verbatim. Indeed, this
algorithm could only have been discovered by worst-case analysts asking the question: what
are the minimal properties required for the proof of Theorem 5.3 to work?

5.5 The Report Card

Recall the three goals described at the beginning of the section. For paging problems,
competitive analysis does not fare particularly well. For the Explanation Goal, we already
discussed at length how the overly pessimistic guarantees inevitable in competitive analysis
cannot be taken literally. Competitive analysis earns a middling grade on the Comparison
Goal — it successfully identifies LRU as an optimal online algorithm, but it also identifies
as optimal inferior algorithms like FWF. We’re not exploring the Design Goal here — for
the online paging problem, we already have a good idea about the “right” way to solve the
problem — but in general the clean framework of competitive analysis has been extremely
successful in spurring new ideas for online algorithms for lots of different problems.

In the rest of this and next lecture, we explore a number of alternative approaches to
analyzing online paging algorithms, with the aim of better achieving the Explanation and
Comparison Goals.

6 Resource Augmentation and Interpretations

This section introduces resource augmentation, where the idea is to compare a protagonist
(like LRU) endowed with “extra resources” to an all-powerful opponent that is handicapped
by “less resources.” Other than this twist, we use the standard (worst-case) competitive
analysis framework. Naturally, weakening the abilities of the offline optimal algorithm can
only lead to better competitive ratios. We can draw an analogy with our relaxed definition
of instance optimality in Lectures #1 and #2, where we compared the performance of
our algorithm to that of a subset of algorithms (on each input), rather than to all other
algorithms. There, we restricted attention to “natural” algorithms; here, to algorithms
required to make use of a smaller cache. While this is probably not the first restriction you
would think of, it’s a useful one.

Resource augmentation was perhaps first used by Sleator and Tarjan [5] for the online
paging problem,8 and its benefits are immediately apparent from the arguments we developed
in the previous section. Recall the main steps in the proof of Theorem 5.3: after breaking
the input σ into blocks σ1, . . . , σb, we argued that:

(1) LRU incurs at most k faults per block (at most once per distinct requested page, since
LRU won’t evict a requested page until the next block).

8The actual phrase “resource augmentation” is from [4]; see also [3].

7

(2) OPT has at least one fault per “shifted block”: if p is the first request of a block σi,
then afterward the cache of OPT has p and k − 1 pages other than p, while the rest of
the block σi together with the first request of block σi+1 include k requests for distinct
pages other than p.

Looking at the argument for (2), we see that a more general statement holds:

(2’) If OPT is restricted to a cache of size h ≤ k, then it incurs at least

k
︸︷︷︸

requests other than p

− (h − 1)
︸ ︷︷ ︸

pages in cache other than p

page faults per shifted block. We conclude the following.

Theorem 6.1 (Resource Augmentation Bound for LRU [5]) The competitive ratio of
the LRU algorithm with cache size k is at most

k

k − h + 1

with respect to the optimal offline algorithm with a cache of size h ≤ k.

For example, if LRU has roughly double the cache size of OPT, then it is 2-competitive.
This guarantee is much more interesting from the perspective of our Prediction Goal than
the competitive ratio of k proved in Theorems 5.1 and 5.3.9

7 Interpretations

Some obvious questions are: what does the guarantee in Theorem 6.1 mean? Should you
be impressed by a resource augmentation guarantee like this? The concern is that the
comparisons is “apples vs. oranges” — sure the optimal offline algorithm is powerful in that
it knows all of the future requests, but it’s artificially hobbled by a small cache.

7.1 A Two-Step Approach to System Design

The first justification is not mathematical but nevertheless interesting and useful. If we
adopt the philosophy that the point of rigorous guarantees for algorithms is to give good
advice about how to solve problems and build systems, then resource augmentation bounds
offer a compelling two-step approach.

9We’re still not getting sharp predictions of performance, of course, but at least we’re now in the right
ballpark. One can’t expect sharp predictions without modeling “real-world” inputs in some way.

8

1. The first step is to estimate the amount of resources (e.g., cache size) that guaran-
tees acceptable performance (e.g., page fault rate below a given target) assuming an
optimal algorithm.10 It is presumably simpler to solve this problem than to reason
simultaneously about the cache size and paging algorithm design decisions.

2. The second step is to scale up the resources to realize the resource augmentation
bound — for example, to double the cache size and invoke Theorem 6.1 to guarantee
acceptable performance under (say) the LRU algorithm.

7.2 Loosely Competitive Online Algorithms

The second interpretation of Theorem 6.1 is mathematical. Young [7] proved (a general-
ization of) the following guarantee, which we state informally now and make precise in due
time.

Informal Theorem [7]: For every request sequence σ, the LRU algorithm is “provably
excellent” on σ for most cache sizes k.

In effect, Young’s result shows that a resource augmentation guarantee like Theorem 6.1
— an apples vs. oranges comparison between an online algorithm with a big cache and an
offline algorithm with a small cache — has interesting implications for online algorithms even
compared with offline algorithms with the same cache size. Now, in light of Theorem 5.1,
you should be asking, “what’s the catch?” Young’s result dodges the lower bound in that
theorem by permitting two quite reasonable relaxations. The first is obvious from the infor-
mal theorem statement above: the guarantee holds only for “most” cache sizes, and LRU
might perform poorly for a few cache sizes. This is a reasonable relaxation because only
die-hard disciples of the “Murphy’s Law” principle would expect “real data” to be adver-
sarially tailored to the cache size.11 The second relaxation is to allow “provably excellent
performance” to mean one of two things — either good performance relative to the optimal
offline algorithm (as usual), or good performance in the absolute sense of a small page fault
rate. This result is another way to phrase an performance guarantee for the LRU algorithm
that is much more meaningful for our Prediction Goal than the competitive ratio of k proved
in Theorems 5.1 and 5.3.

There is simple and accurate intuition behind Young’s result. Consider a request se-
quence σ and a cache size k. One case is that the number of page faults of LRU is roughly
the same (within a factor of 2, say) with the cache sizes k and 2k. In that case, Theorem 6.1
immediately implies that LRU has a good competitive ratio (in the traditional sense) when
the cache size is k. In the second case, LRU’s performance is improving rapidly as one sup-
plements the cache with extra pages. But since there is a bound on the maximum fluctuation

10Remember: approximating the “optimal algorithm” is only meaningful when the performance of the
optimal algorithm is good in some absolute sense!

11Typically it will be independent of the cache size. In highly optimized applications the request sequence
might depend on the cache size, but in a helpful, rather than harmful, way.

9

of LRU’s performance (between no page faults and faulting every time step), its performance
can only change rapidly for a bounded number of different cache sizes.

More precisely, fix a request sequence σ and let b be a parameter. Let cost(A, k, σ) denote
the number of page faults incurred by the paging algorithm A with a cache size of k on the
page sequence σ. Theorem 6.1 and the previous paragraph imply that, for every cache size k,
either:

cost(LRU, k + b, σ) <
1

2
· cost(LRU, k, σ) (1)

or

cost(LRU, k, σ) ≤ 2 ·
k + b

b + 1
· cost(OPT, k, σ), (2)

where we are invoking Theorem 6.1 with k+b and k playing the roles of k and h, respectively.
Call a cache size k bad if (1) holds. Consider the set of bad cache sizes; for every such

size, adding b extra pages to the cache decreases the cost of LRU on σ by at least a factor
of 2. If there are at least ℓ bad cache sizes between 1 and k − b for some k, then we can find
at least ℓ/b bad cache sizes in this interval that are each at least b apart (just take every bth
bad cache size). In this case, we have

cost(LRU, k, σ) < 2−ℓ/b · cost(LRU, 1, σ). (3)

(We are also using the fact that cost(LRU, t, σ) is nonincreasing in t — see Homework #2.)
Thus, once

ℓ ≥ b · log2
1
ǫ
, (4)

we have
cost(LRU, k, σ) ≤ ǫ · |σ|,

where |σ| is the length of the request sequence σ. Young [7] makes the compelling argument
that if ǫ is sufficiently small (less than the access time to fast memory, say), then LRU’s
performance is superb in an absolute sense and we could care less about its competitive
ratio.12

Here is the precise statement of Young’s result.

Theorem 7.1 (LRU is Loosely Competitive [7]) For every ǫ, δ > 0 and positive inte-
ger n, for every request sequence σ, for all but a δ fraction of the cache sizes k in {1, 2, . . . , n},
the LRU algorithm satisfies either:

(1) cost(LRU, k, σ) = O(1
δ
log 1

ǫ
) · cost(OPT, k, σ); or

(2) cost(LRU, k, σ) ≤ ǫ · |σ|.

12While this may seem like an obvious point, such appeals to good absolute performance are underutilized
in theoretical research on algorithms.

10

Theorem 7.1 says that, for every request sequence σ, every cache size k falls into one of
three cases. In the first case, LRU with cache size k is competitive with OPT in the usual
(non-resource augmentation) sense. In the second case, LRU has excellent performance in
an absolute sense. In the third case neither of these two goods events occurs, but fortunately
this happens for only a δ fraction of the possible cache sizes.

We have essentially already proved Theorem 7.1. We want δn bad cache sizes between 1
and some number t to force the condition that cost(LRU, k, σ) ≤ ǫ|σ| for all cache sizes
k ≥ t, so we take ℓ = δn; using (4), this forces b = δn/ log2 ǫ−1. Then, for all but ℓ = δn
cache sizes k, either cost(LRU, k, σ) ≤ ǫ · |σ| or (by (2)) the LRU algorithm has competitive
ratio

2(k + b)

b + 1
≤

2(n + b)

b + 1
= Θ

(
1

δ
log

1

ǫ

)

.

In [7] this guarantee is phrased as: LRU is (ǫ, δ)-loosely O(1
δ
log 1

ǫ
)-competitive.

Note that the parameters δ, ǫ, and n of Theorem 7.1 are for the analysis only — no
“tuning” of the LRU algorithm is needed — and Theorem 7.1 holds simultaneously for all
choices of these parameters. The larger the fraction δ of bad cache sizes or the absolute
performance bound ǫ that can be tolerated, the better the relative performance guarantee
in case (1).

8 Key Take-Aways

Resource augmentation is a useful analysis tool for problems where it makes sense — prob-
lems parameterized by a resource like space, capacity, processor speed, and so on. For the
online paging problem, it yields interpretable performance guarantees, such as the LRU
algorithm with double the cache size having at most twice as many faults as the offline
optimal algorithm (with the original cache size). Unlike traditional competitive analysis,
this approach illuminates the benefit of larger cache sizes and offers a clean two-step ap-
proach to system design (first size a system for the optimal offline solution, then double the
size). Since [5], the idea has been applied successfully in a range of contexts, especially in
scheduling problems (see e.g. [3]).

Loose competitiveness (Theorem 7.1) translates the “apples vs. oranges” guarantee of-
fered by resource augmentation (Theorem 6.1) into a guarantee for LRU vs. the offline
optimal algorithm with the same cache size, at the expense of two relaxations: allowing a
constant fraction of the cache sizes k to yield bad performance, and for the other cache sizes
accepting either good relative performance or good absolute performance as an acceptable
outcome.

Both our resource augmentation and loose competitiveness guarantees are for worst-case
inputs. This input-by-input guarantee can clearly be viewed as a feature. It can also be
viewed as a bug, however: LRU is the paging algorithm of choice in practice because of
properties of “real” data — if we work in a model that cannot articulate such properties,
then we cannot expect to separate LRU from other reasonable paging algorithms like FIFO
(see Homework #2). Thus, neither of these two guarantees offer progress over traditional

11

competitive analysis on our Comparison Goal. We tackle this issue head-on in the next
lecture, where we parameterize inputs according to the “degree of locality,” and use this
parameter to show rigorous senses in which the LRU algorithm is strictly better than other
algorithms, including FIFO.

References

[1] L. A. Belady. A study of replacement algorithms for a virtual storage computer. IBM
Systems Journal, 5(2):78–101, 1967.

[2] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

[3] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of the
ACM, 47(4):617–643, 2000. Preliminary version in FOCS ’95.

[4] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32(2):163–200, 2002. Preliminary version in STOC
’97.

[5] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.
Commincations of the ACM, 28(2):202–208, 1985. Preliminary version in STOC ’84.

[6] N. E. Young. Competitive Paging and Dual-Guided Algorithms for Weighted Caching and
Matching. PhD thesis, Princeton University, Department of Computer Science, 1991.

[7] N. E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, 1994.

12

