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1 Exact Recovery

This lecture makes explicit a theme introduced surreptitiously last lecture: exact recovery.
The genre of question in this sequence of lectures is: for an algorithm A of interest, for which
inputs does A solve the problem exactly? For example, last lecture, we proved that the single-
link++ algorithm recovers the optimal solution in every 3-stable k-median instance. (See
Homework #4 for an improvement.)1

We generally think of the algorithm A above as either: (i) an already-implemented algo-
rithm that is available to us, such as a linear programming solver; or (ii) a relatively simple
algorithm that we have a good understanding of and could code up easily. The reason is
that, in practice, designing a new algorithm from scratch is often a last resort. It is usually
far preferable if something in the current algorithmic toolbox is good enough, at least for the
problem instances relevant to the application. The exact recovery results in this sequence of
lectures develop theoretical guarantees that correspond well to this style of thinking.2

This lecture covers another case study on exact recovery, for a graph cut problem. We’ll
retain from last lecture the definition of γ-stable instances and the flavor of the problems
studied, as cut problems are a type of clustering problem. What will be different is the
algorithms studied — linear programming instead of more elementary algorithms.

The broader theme, to be elaborated on in future lectures, is to explain when NP -hard
problems can be solved exactly via linear programming. (Since linear programs can be solved
in polynomial time, we do not expect this to be true for worst-case instances.) Thus, even
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1Approximate notions of recovery are also interesting, such as the guarantees we covered in Lecture #6.

For simplicity we’ll stick with exact recovery for these lectures.
2This contrasts with a majority (but certainly not all) theoretical computer science research on algorithms,

where the primary goal is usually to come up with new algorithms that are in some sense “better” than the
state-of-the-art.
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Figure 1: The minimum s-t cut of a graph.

more so than in the last lecture, we’ll use the stability assumption only in the analysis of
an algorithm (linear programming), and not as a guide for designing new algorithms. This
lecture serves as a segue into other exact recovery results, like those in compressive sensing,
where linear programming relaxations play a starring role.

2 The Minimum s-t Cut Problem

We begin with a warm-up, the minimum s-t cut problem. Everything in this section has
been known for a half-century, but we’ll phrase it in a way that generalizes surprisingly
effortlessly to NP -hard generalizations of the problem (under stronger assumptions).

Recall the input to the problem is an undirected graph G = (V,E) with a source vertex
s ∈ V and a sink vertex t ∈ V . Every edge e ∈ E has a positive cost ce > 0. The desired
output is an s-t cut — a partition of the vertex set V into A and B with s ∈ A and t ∈ B —
that minimizes the sum of the costs of the cut edges. (An edge is cut if it has one endpoint
in each of A and B.) See Figure 1.

As you may know, the minimum s-t cut problem can be solved in polynomial time,
for example using a maximum flow algorithm. The point of this section is to show that,
alternatively, one can just solve solve a suitable linear program and the minimum s-t cut
pops out as the optimal solution. For simplicity, we assume throughout this section that
the optimal solution is unique. When we study harder problems later, we’ll upgrade this
uniqueness assumption to a suitable γ-stability assumption.

Recall that a linear program has a set of real-valued decision variables, and the goal is to
optimize an objective function that is linear in the decision variables, subject to constraints
that are also linear. Geometrically, the constraints are an intersection of halfspaces, the
objective function gives a direction, and the goal is to find the feasible point that is furthest
in the desired direction (Figure 2).

How do we encode the minimum s-t cut problem as a linear program? There are two
sets of decision variables. First, a nonnegative variable xe ≥ 0 for each edge e ∈ E, with the
semantics that xe = 1 if e gets cut and xe = 0 otherwise. Second, there is a nonnegative
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Figure 2: Cartoon representation of a linear program.

decision variable dv ≥ 0 for each vertex v ∈ V ; the intention is that dv = 0 if v is in the
source-side A of the cut, and dv = 1 if v ∈ B. Given these semantics, two obvious constraints
are ds = 0 and dt = 1. The more interesting constraints are meant to enforce the property
that, whenever the endpoints u, v of an edge e are on different sides of the s-t cut, edge e is
cut. Precisely, these constraints are:

xe ≥ du − dv

xe ≥ dv − du

for every edge e = (u, v) ∈ E. These constraints are equivalent to the single constraint
xe ≥ |du − dv|; we have written them so that it is obvious that they are linear constraints.
Given the intended semantics for the x-variables, it is clear that the (linear) objective function
is

min
∑
e∈E

cexe.

We denote this linear program by (LP1).
It is clear that every s-t cut (A,B) induces a feasible 0-1 solution to (LP1): set dv = 0

for v ∈ A, dv = 1 for v ∈ T , and xe = 1 for the cut edges and xe = 0 for the rest. There are,
however, feasible solutions to the linear program that do not correspond to s-t cuts. This
is intuitively obvious from a glance at Figure 2 — the s-t cuts correspond to a discrete and
finite set of points, whereas the feasible region of a linear program is a convex set. More
concretely, in the graph of Figure 1, one fractional solution is to set xe = 1

5
for every edge,

with dv-values of vertices increasing by 1
5

with each hop away from s and toward t.
An important fact, that you should definitely know, is that linear programs can be solved

efficiently, both in theory and in practice.

Fact 2.1 There is a polynomial-time algorithm for linear programming.

Whether proving theorems or solving real-world problems, most users of linear programming
algorithms treat them as “black boxes” and don’t understand how or why they work. We
will do the same in the course. If you want to see what’s “under the hood,” check out e.g. [5].

In this section, we prove the following.
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Proposition 2.2 For every minimum s-t cut problem with a unique optimal solution, the
optimal solution to the linear program (LP1) is the (straightforward encoding of) the mini-
mum s-t cut.

The point of Proposition 2.2 is that, while the feasible region of the linear program includes
plenty of points that don’t correspond to s-t cuts, we don’t need to worry about them —
as long as we solve the linear program to optimality, we’ll get back an integer solution that
corresponds to the minimum cut.3

To prove the proposition, let C∗ denote the minimum s-t cut, and let F ∗ denote the edges
cut by it. For another s-t cut C, cutting the edges F , we let ∆(C) denote the extent to
which the total cost of C exceeds that of C∗:

∆(C) =
∑

e∈F\F ∗

ce −
∑

e∈F ∗\F

ce.

Since C∗ is the unique minimum s-t cut,

∆(C) ≥ 0, (1)

for every s-t cut C, with equality holding if and only if C = C∗.
Similarly, for the optimal solution (x̂, d̂) to (LP1), we denote by ∆(x̂) the extent to which

the objective function value of the integer solution corresponding to C∗ exceeds that of x̂:

∆(x̂) =
∑
e/∈F ∗

cex̂e −
∑
e∈F ∗

ce(1− x̂e).

Since C∗ corresponds to a feasible solution to (LP1), and x̂ corresponds to the optimal
solution,

∆(x̂) ≤ 0. (2)

The key to proving Proposition 2.2 is the following lemma.

Lemma 2.3 There is a randomized algorithm that outputs a (random) s-t cut C such that,
for every edge e ∈ E,

Pr[e cut by C] = x̂e (3)

and hence
Pr[e not cut by C] = 1− x̂e. (4)

Before proving the lemma, we explain why it implies Proposition 2.2. The intuition is
that since (i) the optimal fractional solution x̂ can only be better than the optimal integral
solution C∗; and (ii) Lemma 2.3 gives a distribution over s-t cuts that is as good, on average,
as C∗; the distribution must be a point mass on the cut C∗, which implies that x̂ is a 0-1
solution.

3This is true even when there is not a unique minimum s-t cut. The reasons, which we won’t prove here,
are: (i) all of the extreme points (a.k.a. vertices) of the feasible region are integral and correspond to s-t
cuts; and (ii) linear programming algorithms always return an extreme point of the feasible region.
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Formally, let C denote the random s-t cut generated by the randomized algorithm in
Lemma 2.3, and consider the expected extent to which its cost exceeds that of C∗:

E[∆(C)] =
∑
e6∈F ∗

ce ·Pr[C cuts e]−
∑
e∈F ∗

ce ·Pr[C doesn’t cut e] (5)

=
∑
e6∈F ∗

cex̂e −
∑
e∈F ∗

ce(1− x̂e) (6)

= ∆(x̂)

≤ 0, (7)

where equation (5) follows from linearity of expectation, equation (6) from (3) and (4) in
Lemma 2.3, and (7) follows from (2). Since ∆(C) is always nonnegative and is strictly positive
unless C = C∗ (recall (1)), the derivation (5)–(7) implies that the randomized algorithm of
Lemma 2.3 outputs the cut C∗ with probability 1. Inspection of (3) and (4) shows that this
occurs only if x̂e ∈ {0, 1} for every e ∈ E. This completes the proof of Proposition 2.2.

Proof of Lemma 2.3: Let (x̂, d̂) be the optimal solution to (LP1). Intuitively, the randomized
algorithm blows up a balloon around the source s up to a random size, with everything inside
the balloon comprising the source-side of the cut. Formally:

1. Pick a “radius” r ∈ (0, 1) uniformly at random.

2. Define A = {v ∈ V : d̂v ≤ r}, and B = V \ A.

Since d̂s = 0 and d̂t = 1, the algorithm’s output is an s-t cut with probability 1. We leave
the verification that it satisfies (3) and (4) to Homework #4. �

3 Stable Instances of the Minimum Multiway Cut Prob-

lem

Proposition 2.2 shows that in every minimum s-t cut problem with a unique optimal solu-
tion, the optimal solution can be recovered exactly in polynomial time by solving a linear
programming relaxation. This section takes this result to the next level, by considering an
NP -hard generalization of the minimum s-t cut problem, replacing the uniqueness assump-
tion with a stronger stability assumption, and again showing how to recover the optimal
(integral) solution using linear programming.

In the minimum multiway cut problem, the input is an undirected graph G = (V,E) with
positive edge costs ce, and a set t1, t2, . . . , tk ∈ V of terminals. A multiway cut is a partition
of the vertex set V into k groups S1, . . . , Sk, with ti ∈ Si for i = 1, 2, . . . , k. In addition
to being a natural generalization of the fundamental s-t minimum cut problem (which is
equivalent to the k = 2 case), the problem also shows up in applications, such as image
segmentation.4 The problem is NP -hard for every k ≥ 3 [2]. See Figure 3.

4In the most straightforward formulation, vertices correspond to pixels, edges correspond to neighboring
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Figure 3: A multiway cut of a graph (with k = 3).

Since the problem is NP -hard, we do not expect to recover an optimal solution using
linear programming in worst-case instances. But we can do this under a stability assumption,
analogous to the one introduced last lecture for k-median instances.

Definition 3.1 For a parameter γ ≥ 1, an instance of multiway cut is γ-stable if the optimal
solution remains the same for every γ-perturbation, where each original edge cost ce is
replaced by σece for some σe ∈ [1, γ].

The main result of this lecture is the following recent result; we’ll define the linear pro-
gramming relaxation (LP2) shortly.

Theorem 3.2 ([4]) For every γ-stable multiway cut instance with γ > 4, the optimal solu-
tion to the linear program (LP2) is the (straightforward encoding of) the optimal multiway
cut.

This linear program (LP2) is a nice extension of (LP1), which can be viewed as the k = 2
special case. We again have a set of decision variables xe ≥ 0 for each e ∈ E, meant to
indicate which edges get cut. We now have multiple variables d1

v, . . . , d
k
v ≥ 0 per vertex, with

the idea that if v is assigned to the ith group, then di
v = 1 and dj

v = 0 for every j 6= i. The
first set of constraints just asserts that each terminal is fully assigned to its own group:

di
ti

= 1

for each i = 1, 2, . . . , k. For other vertices, we insist that they are fully assigned, perhaps
fractionally, to the groups:

k∑
i=1

di
v = 1

pixels, edge costs correspond to a prior guess about how likely two neighboring pixels are to be in the same
region (e.g., based on how similar their colors are), and groups of the multiway cut correspond to the different
regions of the image [1].
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Figure 4: Pictorial representation of (LP2): the simplex when k = 3, drawn in two dimen-
sions.

for every v ∈ V . Next, we give constraints stating that edges with endpoints in different
groups must be cut. First, we have

yi
e ≥ di

u − di
v

yi
e ≥ di

v − di
u

for every edge e = (u, v) ∈ E and i = 1, 2, . . . , k, where the yi
v’s are auxiliary variables.

These constraints assert that the difference in the extent to which the edge’s endpoints are
assigned to group i should contribute to the extent to which e is cut. Finally, for every
e ∈ E, we have the constraint

xe =
1

2

k∑
i=1

yi
e, (8)

which aggregates the group assignment differences across the coordinates. Note that if
the endpoints of an edge e are assigned integrally to different groups (i and j, say), then
yi

e = yj
e = 1; this motivates the “1

2
” in (8).5 Also note that every multiway cut naturally

induces a feasible 0-1 solution to (LP2), according to the intended semantics of the decision
variables. As another example, if k = 3, and the d-values of u and v are (1

2
, 1

2
, 0) and (0, 1

2
, 1

2
),

then the x-value of edge e = (u, v) must be at least 1
2
. Pictorially, we can think of (LP2)

as assigning each vertex v a point (d1
v, . . . , d

k
v) in the k-simplex (Figure 4), with corners of

the simplex corresponding to the groups. Constraint (8) states that edge e = (u, v) is cut at
least in proportion to the “distance” between the points of the simplex to which u and v are
assigned.

We now turn to Theorem 3.2. The proof follows the same template as that of Proposi-
tion 2.2. Let C∗ be the unique (and γ-stable for γ > 4) multiway cut, cutting the edges F ∗.

5If we were only concerned with integral solutions, the constraint xe = maxk
i=1 yi

e would already force edge
e to be cut whenever its endpoints are assigned to different groups. When the variables can be fractional,
however, the constraint (8) rules out many more fractional solutions, thereby increasing the utility of (LP2)
as an approximation to the problem that we actually care about, the minimum multiway cut problem.
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For another multiway cut C, cutting edges F , define

∆4(C) =
∑

e∈F\F ∗

ce − 4
∑

e∈F ∗\F

ce. (9)

Clearly ∆4(C
∗) = 0. If C 6= C∗ then, by γ-stability, ∆4(C) > 0. (This follows by considering

the perturbation that blows up costs of edges in F ∗ as much as possible, and leaving other
edges the same; see Homework #4.) For the optimal solution (x̂, ŷ, d̂) to (LP2), as before
we define

∆(x̂) =
∑
e6∈F ∗

cex̂e −
∑
e∈F ∗

ce(1− x̂e).

As before, since C∗ induces a feasible solution to (LP2) and x̂ is optimal,

∆(x̂) ≤ 0. (10)

We next give the analog of Lemma 2.3. We can’t expect an equally strong lemma for
multiway cuts with k ≥ 3, since this would give a polynomial-time exact algorithm for an
NP -hard problem. Instead, we content ourselves with a version in which the identities (3)
and (4) hold approximately.

Lemma 3.3 There is a randomized algorithm that outputs a (random) multiway cut C such
that, for every edge e ∈ E,

Pr[e cut by C] ≤ 2x̂e (11)

and

Pr[e not cut by C] ≥ 1− x̂e

2
. (12)

Note that (12) does not follow from (11); the implied lower bound of 1 − 2x̂e is not good
enough for our purposes.

The proof that Lemma 3.3 implies Theorem 3.2 follows the proof of Proposition 2.2.
We lose two factors of 2 in the argument from (11) and (12), but these get absorbed by
the assumption of γ-stability for γ > 4. Formally, let C denote the random multiway cut
generated by the randomized algorithm in Lemma 3.3. We have

E[∆4(C)] =
∑
e6∈F ∗

ce ·Pr[C cuts e]− 4
∑
e∈F ∗

ce ·Pr[C doesn’t cut e] (13)

≤
∑
e6∈F ∗

ce(2x̂e)− 4
∑
e∈F ∗

ce
1
2
(1− x̂e) (14)

= 2∆(x̂)

≤ 0, (15)

where equation (13) follows from linearity of expectation, inequality (14) from (11) and (12)
in Lemma 3.3, and (15) follows from (10). Since ∆4(C) is always nonnegative and is strictly
positive unless C = C∗, the derivation (13)–(15) implies that the randomized algorithm
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of Lemma 3.3 outputs the cut C∗ with probability 1. As we’ll see when we describe the
randomized algorithm of Lemma 3.3 below, this occurs only if x̂e ∈ {0, 1} for every e ∈ E.
Modulo this point, this completes the proof of Theorem 3.2.

Proof of Lemma 3.3: Let (x̂, ŷ, d̂) be the optimal solution to (LP2). The randomized algo-
rithm (originally from [3]) is simple, though unlike the one in the proof of Lemma 2.3, it’s
probably not the first one you’d think of:

1. Initially, all vertices are unassigned.

2. While there is at least one unassigned vertex:

(a) Pick a threshold r ∈ (0, 1) uniformly at random.

(b) Pick a group i ∈ {1, 2, . . . , k} uniformly at random.

(c) For every unassigned vertex v, if d̂i
v ≥ t, assign vertex v to group i.

The algorithm eventually terminates with a multiway cut — each vertex is assigned to exactly
one group, and since d̂i

ti
= 1 and d̂j

ti = 0 for j 6= i for every i, every terminal is assigned to
the correct group. We leave the verification of inequalities (11) and (12) to Homework #4.6

�

Observe that, if dj
v is strictly between 0 and 1 for any vertex v and coordinate j, then d`

v ∈
(0, 1) for some other coordinate ` as well (since

∑k
i=1 d

i
v = 1). In this case, the randomized

algorithm of Lemma 3.3 will sometimes assign v to group j, and sometimes to group `. We
conclude that the randomized algorithm always returns the same multiway cut only if the
optimal fractional solution (d̂, x̂, ŷ) is integral. This completes the proof of Theorem 3.2, that
in γ-stable multiway cut instances with γ > 4, a natural linear programming relaxation (LP2)
is guaranteed to be exact.

An interesting open research question is to prove better upper bounds, or any lower
bounds, on the minimum value of γ such that the optimal solution of γ-stable multiway cut
instances can be recovered in polynomial time (by solving (LP2) or by other means).
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[5] J. Matousek and B. Gärtner. Understanding and Using Linear Programming. Springer,
2006.

10


