
CS264: Beyond Worst-Case Analysis
Lecture #9: A Taste Of Compressive Sensing∗

Tim Roughgarden†

October 22, 2014

1 Preamble

The last several lectures proved that polynomial-time exact recovery is possible for instances
of several NP -hard problems that satisfy some type of stability condition. Lecture #7 showed
that the single-link++ algorithm, which searches over a restricted set of feasible solutions,
and thus can return a suboptimal solution in worst-case instances, recovers the optimal
clustering in stable k-median instances. Last lecture we showed that a linear programming
relaxation, whose optimal solution is generally not an integral solution, recovers the optimal
multiway cut in stable instances. Today’s lecture continues this theme of exact recovery via
linear programming, but in a different problem domain: systems of linear equations.

2 Sparse Solutions to Underdetermined Linear Sys-

tems

2.1 The Problem

Consider a linear system Ax = b, where the number m of rows of A is less than the number n
of columns (Figure 1). Such a system is underdetermined: if it has any solutions, then it has
an entire (n−m)-dimensional subspace of solutions. One useful way to think about this is
that the unknown vector x has n “degrees of freedom”: each (linearly independent) constraint
of A pins down one of these degrees, and n constraints are necessary to determine x uniquely.
The goal of this lecture is recover the “most meaningful” solution to an underdetermined
linear system.

Call a vector x ∈ Rn k-sparse if it has at most k non-zero entries — if |supp(x)| ≤ k,
where supp(x) denotes the support of x. For this lecture, you might want to think of k as

√
n

∗ c©2014, Tim Roughgarden.
†Department of Computer Science, Stanford University, 474 Gates Building, 353 Serra Mall, Stanford,

CA 94305. Email: tim@cs.stanford.edu.

1

Figure 1: An underdetermined system of linear equations. The m×n matrix A and vector b
are known, while x is unknown.

or log n. We adopt the bias that sparser solutions are “more meaningful.” This is a useful
bias in several problem domains, at least if we allow two extensions. The first extension is
to also favor vectors that are “approximately” k-sparse; for example, vectors x for which
most of the `1 norm

∑n
i=1 |xi| is concentrated on k coordinates. The second extension is to

allow vectors to be sparse in some known basis other than the standard one — the Fourier
and wavelet bases being common examples. For example, real-world images and signals are
typically approximately sparse in a suitable basis. For simplicity, this lecture considers only
exact recovery of vectors that are exactly sparse in the standard basis. The results and
techniques developed extend to the approximate recovery of vectors that are approximately
sparse in some other basis; see also Homework #5.

We study the computational problem of recovering in polynomial time a “ground truth”
k-sparse solution z to a linear system Ax = b. This is a fundamental problem in the field of
“compressive sensing,” which has been studied intensely over the past decade. The typical
viewpoint in compressive sensing is to think of the solution z as a “signal” that one is trying
to recover through “linear measurements.” If z is a solution to the system Ax = b, then we
can think of each row i of the constraint system as telling us something (a “measurement”)
about z, namely the value (bi) of its inner product with a vector (Ai). The more linearly
independent rows of the system, the more we know about the unknown signal z. We’ve
already noted that with no assumptions about z, n rows/measurements are necessary and
sufficient to reconstruct z. What if we assume that z is not a worst-case signal — that it
has additional structure, such as sparsity? Perhaps then we get away with many fewer than
n rows without losing the ability to uniquely reconstruct z.

This perspective is rather different from the usual one in the study of algorithms. Rather
than treating the input A and b to the computational problem as being handed down from
the sky, we are essentially asking: how can we design the constraint matrix A so that we
get the properties that we want, namely a small linear system and the ability to efficiently
reconstruct the unknown signal z (from A and b = Az), whatever it may be. There’s a useful
analogy with error-correcting codes, where the usual goal is to design a code (equivalently for

2

linear codes, a matrix A) with desirable properties, such as large distance and fast encoding
and decoding algorithms.

2.2 Applications

The compressive sensing approach, where the matrix A is designed a priori, is a good match
for some applications. One buzzword you can look up and read more about is the “single-
pixel camera.” The standard approach to taking pictures is to first take a high-resolution
picture in the “standard basis” — e.g., a light intensity for each pixel — and then to compress
the picture later (via software). Because real-world images are typically sparse in a suitable
basis, they can be compressed a lot. The compressive sensing approach asks, then why
not just capture the image directly in a compressed form — in a representation where its
sparsity shines through? For example, one can store random linear combinations of light
intensities (implemented via suitable mirrors) rather than the light intensities themselves.
This idea leads to a reduction in the number of pixels needed to capture an image at a
given resolution. Another application of compressive sensing is in MRI. Here, decreasing the
number of measurements decreases the time necessary for a scan. Since a patient needs to
stay motionless during a scan — in some cases, not even breathing — shorter scan times can
be a pretty big deal.

2.3 Lines in the Sand

Recovering a target k-sparse solution z to an underdetermined linear system Ax = b is
possible only with assumptions on the system. For example, if the system has only one row
— pinning down only one dimension of a solution — then it’s hopeless to figure out what
z is. Since z is k-sparse, one’s first hope might be that roughly k rows might be enough
to reconstruct z. It turns out, however, that some dependence on the dimension n is also
necessary. Intuitively, we need to at least differentiate between the

(
n
k

)
supports that z could

have. Assuming that each row of the linear system gives us only a “constant number of bits”
about the unknown sparse solution z, we would expect that at least log

(
n
k

)
≈ k log n linearly

independent rows are necessary.1 When k is sublinear in n, this is still a big improvement
over the n rows necessary to reconstruct an arbitrary unknown solution.

The matrix A also shouldn’t be too sparse. For example, if k = n1/4 and A consists of
m ≈ k log n (linearly independent) rows each with one “1” and the rest zeroes, then Ax will
be a vector of mostly zeroes for most k-sparse vectors x. In this case, there is no way to
distinguish between the large set of sparse solutions to the linear system. Thus, in addition
to requiring that m be sufficiently large, we need that A is sufficiently dense.

1This back-of-the-envelope calculation is roughly correct, with m = Θ(k log n
k) rows necessary and suffi-

cient for the guaranteed recovery of approximately k-sparse solutions. The proof is non-trivial; see [1].

3

3 `1-Minimization via Linear Programming

Consider a constraint matrix A that is sufficiently big and dense, so that a target k-sparse
solution can be reconstructed exactly in principle. There remains the question of how to
perform this reconstruction efficiently. Indeed, computing the sparsest solution to a linear
system is an NP -hard problem [2]. Following last lecture, our goal is to understand when a
natural linear programming relaxation for this problem hands us back the correct solution
on a silver platter.

Minimizing the support size of a solution — the “`0 norm” — to a linear system is
sometimes called “`0-minimization.” The linear programming relaxation simply replaces the
`0 norm with the `1 norm, where ‖x‖1 =

∑n
i=1 |xi|. Formally, our constraints are

Ax = b

together with
yi ≥ xi and yi ≥ −xi (1)

for i = 1, 2, . . . , n. That is, constraint (1) forces yi ≥ |xi|, and equality will hold for every
optimal solution under the objective function

n∑
i=1

yi.

This linear program (LP) computes the solution to Ax = b with the smallest `1 norm.
There is no reason to think that the heuristic of solving (LP) would ever be useful for

recovering a sparse solution. Why wouldn’t the optimal solution to (LP) be a vector that is
non-zero but very small in every single coordinate? It was first observed empirically that `1-
minimization was unreasonably effective at recovering exact solutions, and this motivated the
theory of compressive sensing. The goal of this lecture is to prove the following representative
result in the area.

Theorem 3.1 Let m = Ω(k log n) and A a “random” m× n matrix. Then with high prob-
ability, for every k-sparse vector x̂ with b = Ax̂, x̂ is the unique optimal solution of (LP).

Theorem 3.1 holds for several different notions of a “random matrix” — for example,
entries can be i.i.d. ±1 or i.i.d. standard Gaussians. The theorem guarantees that, for almost
all such random matrices, an arbitrary “ground truth” k-sparse vector can be recovered in
polynomial time via linear programming.

4 Proof of Theorem 3.1

The proof of Theorem 3.1, like most of our exact recovery results, has two conceptual parts.
First, we develop sufficient conditions under which the outcomes of `0-minimization and `1-
minimization are the same. Second, we need to show that a random constraint matrix A
satisfies these sufficient conditions with high probability. We’ll give complete proofs for the
first part, and make some comments about the second part.

4

Figure 2: The `1 and `2 balls in two dimensions.

4.1 Preliminaries: `1 vs. `2 Norms

Before discussing the proof of Theorem 3.1, we need to recall some basics about the geometry
of Rn under different norms. Recall that for x ∈ Rn,

‖x‖1 =
n∑

i=1

|xi|

and

‖x‖2 =

(∑
i=1

x2
i

)1/2

.

Geometrically, the `2 ball is a sphere while the `1 ball is a (high-dimensional analog of a)
diamond. See Figure 2. Recall that for every x ∈ Rn, we have

1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1; (2)

that is, the `1 norm can only be larger than the `2 norm, but by at most a
√

n factor. The
two norms are the same when there is at most one non-zero component (e.g., for the standard
basis vectors). The ratio between the two norms is the largest when all of the components
of x are equal.

Ultimately, we’re going to want to claim that “most” vectors are more like an all-1s
vector than a standard basis vector — i.e., the ratio between the `1 and `2 norm of a vector
is “typically” close to

√
n. The following definition helps us make this precise.

5

Definition 4.1 A vector x ∈ Rn is c-spread out if

‖x‖2 ≤
c√
n
‖x‖1.

Note that c is somewhere between 1 (if all components are equal) and
√

n (for a standard
basis vector). For a set of c-spread out vectors with c small, the `1 and `2 norms are basically
the same, up to a scaling factor of

√
n. We’ll be interested in the case where c ≈

√
n/k,

with ‖x‖2 ≤ ‖x‖1/
√

k.
Intuitively, if x is c-spread out for reasonably small c, then the `1 weight of x cannot be

concentrated on just a few coordinates. The following lemma makes this intuition precise.

Lemma 4.2 Let x ∈ Rn be c-spread out and I ⊆ {1, 2, . . . , n}. Then

‖xI‖1 ≤ c

√
|I|
n
· ‖x‖1, (3)

where xI denotes x with all components outside I zeroed out.

Proof: Project to the coordinates in I, apply (2) and then the definition of c-spread out to
derive

‖xI‖1 ≤
√
|I| · ‖xI‖2 ≤

√
|I| · ‖x‖2 ≤ c

√
|I|
n
· ‖x‖1.

�

For example, if |I| = o(n) and c = O(1), then Lemma 4.2 states that a sublinear number
of coordinates cannot capture a constant fraction of the `1 weight of x. For us, the relevant
parameters are |I| = k and c ≈ 1

4

√
n/k, where Lemma 4.2 states that no k coordinates

capture a large fraction of the `1 weight.

4.2 The Sufficient Condition

We next state the key property of constraint matrices that is sufficient for the conclusion of
Theorem 3.1.

Definition 4.3 An m× n matrix A is c-good if every non-zero vector of the kernel ker A =
{y : Ay = 0} is c-spread out.

Alternative terminology for Definition 4.3 is that ker A should be an “almost Euclidean
subspace.” Geometrically, Definition 4.3 requires that ker A is not too close to any basis
vector, or any linear combination of a small number of basis vectors.

If you’re familiar with error-correcting codes (see also Lectures #11 and #12), then the
following analogy should be helpful. Recall that linear codes can be defined as the kernel
of a matrix (e.g., for binary codes, over the field F2). A good code has large Hamming
distance between every pair of code words, and for linear codes this is equivalent to the

6

property that every non-zero codeword has large (i.e., “spread out”) Hamming weight. Thus
the “almost Euclidean subspace property” can be viewed as a strengthening of the “large
distance property” — every non-zero vector in ker A should not only have its `0 weight spread
out over a large number of coordinates, but also its `1 weight.

We state without proof the following fact.

Fact 4.4 For m = Ω(k log n), a random matrix A is 1
4

√
n
k
-good with high probability.

The matrix A is “random” in the same sense as in Theorem 3.1 — for example, with i.i.d.
±1 or standard Gaussian entries. Homework #5 asks you to prove a much easier but still
illuminating version of Fact 4.4, in the context of error-correcting codes. Fact 4.4 can be
proved without resorting to overly heavy machinery — see the blog posts [4, 3] for an
accessible proof — but doing so is outside the scope of these notes.

4.3 Completing the Proof

Given Fact 4.4, we only need to prove that the 1
4

√
n
k
-good property is a sufficient condition

for the linear programming relaxation (LP) to recover a k-sparse vector. This is equivalent
to showing that, if x̂ is k-sparse with Ax̂ = b, and also Aw = b, then ‖w‖1 > ‖x̂‖1. In this
event, x̂ minimizes the `1 norm over all solutions to Ax = b, as desired.

The derivation below formalizes the following intuition. Every solution w to Ax = b
differs from x̂ by an element (w − x̂) in the kernel of A. Since A is good, all such vectors
are spread out. Since x̂ is k-sparse, not much of the `1 weight of x̂ and (w − x̂) can cancel
out. This leaves w with a lot of `1 weight, completing the proof.

Formally, write w = x̂ + y, with y ∈ ker A and hence 1
4

√
n
k
-spread out. (This is where

we use that A is 1
4

√
n
k
-good.) Let I denote the support of x̂ (so |I| ≤ k) and J the other

components. As before, zI is the vector obtained from z be zeroing out all coordinates other
than those in I. We can write

‖w‖1 = ‖(x̂ + y)I‖1 + ‖(x̂ + y)J‖1︸ ︷︷ ︸
=‖yJ‖1

.

By the Triangle Inequality of the `1 norm (i.e., ‖a + b‖1 ≤ ‖a‖1 + ‖b‖1), we have

‖(x̂ + y)I‖1 ≥ ‖x̂I‖1︸ ︷︷ ︸
=‖x̂‖1

− ‖yI‖1︸ ︷︷ ︸
small since y spread out

,

with equality holding when x̂, y have opposite signs in I and x̂I cancels out all of the `1

weight of yI . (The lower bound ‖yI‖1 − ‖x̂I‖1 also holds, but we won’t need it.) Thus,

‖w‖1 ≥ ‖x̂I‖1 − ‖yI‖1 + ‖yJ‖1︸ ︷︷ ︸
=‖y‖1−‖yI‖1

= ‖x̂‖1 − 2‖yI‖1 + ‖y‖1.

By Lemma 4.2,

‖yI‖1 ≤
1

4

√
n

k
·
√

frac|I|n · ‖y‖1 ≤
1

4
‖y‖1,

and hence ‖w‖1 > ‖x̂‖1, as desired. This completes the proof of Theorem 3.1.

7

References

[1] K. Do Ba, P. Indyk, E. Price, and D. P. Woodruff. Lower bounds for sparse recovery. In
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1190–1197, 2010.

[2] L. Khachiyan. On the complexity of approximating extremal determinants in matrices.
Journal of Complexity, 11(1):138–153, 1995.

[3] J. R. Lee. Kernels of random sign matrices. TCS Math Blog. May 8, 2008.

[4] J. R. Lee. The pseudorandom subspace problem. TCS Math Blog. May 4, 2008.

8

