CS2691: Exercise Set #3

Due by 11:59 PM on Wednesday, October 19, 2016

Instructions:

(1)

(2)

(8)

You can work individually or in a pair. If you work in a pair, the two of you should submit a single
write-up.

Submission instructions: We are using Gradescope for the homework submissions. Go to www.gradescope.com
to either login or create a new account. Use the course code 9P8K49 to register for CS2691. Only one
person needs to submit the assignment. When submitting, please remember to add your partner’s
name (if any) in Gradescope.

Please type your solutions if possible. We encourage you to use the LaTeX template provided on the
course home page.

Write convincingly but not excessively. You should be able to fit all of your solutions into two pages,
if not less.

Except where otherwise noted, you may refer to the course lecture notes and the specific supplementary
readings listed on the course Web page only.

You can discuss the exercises verbally at a high level with other groups. And of course, you are
encouraged to contact the course staff (via Piazza or office hours) for additional help.

If you discuss solution approaches with anyone outside of your group, you must list their names on the
front page of your write-up.

No late assignments will be accepted, but we will drop your lowest exercise set score.

Lecture 5 Exercises

Exercise 16

Consider a two-player game in which Alice chooses either action A or action B, and Bob chooses either action
C or action D. Recall that an outcome (X, Y") of the game is a Nash equilibrium if each player is playing a best
response to the other. Equivalently, neither player can increase his or her payoff by unilaterally switching

strategies.

L Give an example of a game (with two players with two actions each) that does not have any

Nash equilibria.?

Exercise 17

Now suppose that a game (with two players with two actions each) is played N > 2 times (where both players
know N). The final payoff to a player is defined as the sum of the payoffs earned in the N “stage games.”
A strategy is now a (deterministic) function that takes as input the history-so-far (i.e., the actions taken by
both players in the first ¢ stages) and returns an action to play in the next stage. A Nash equilibrium is now
defined as a strategy pair (one for Alice, one for Bob) such that each player’s strategy is a best response to

1For simplicity, we're disallowing randomized strategies. What we’re calling a Nash equilibrium is usually called a pure-
strategy Nash equilibrium, to emphasize that each player deterministically chooses an action.

2If randomized strategies are allowed, then every game (with any finite number of players and strategies) has at least one
Nash equilibrium. (This is what Nash proved, back in 1950.)



that of the other (i.e., no other strategy nets larger total payoff against the other’s strategy). Prove that
if (X,Y) is a Nash equilibrium in the stage game, then the following is a Nash equilibrium in the repeated
game: Alice always plays X, and Bob always plays Y.

Exercise 18

Show by example that a repeated game can have a Nash equilibrium in which the actions chosen by the
players in the first stage do not constitute a Nash equilibrium of the stage game. (Two players, two actions
each, and N = 2 suffices.)

Exercise 19

Recall the payoff matrix from lecture for the Prisoner’s Dilemma:

Cooperate Defect
Cooperate 2,2 -1,3
Defect 3,—1 0,0

Recall the Tit-for-Tat strategy: at stage 1, cooperate; at stage ¢, do whatever the other player did in
stage i — 1. Prove that the Tit-for-Tat strategy never wins a head-to-head match: no matter what strategy
Bob uses, if Alice uses Tit-for-Tat, then Alice’s total payoff is at most that of Bob’s.

Lecture 6 Exercises

Exercise 20

Consider the following extension of the model of badges discussed in lecture. Rather than one badge, there is
a sequence of k badges. The ith badge is acquired after T; successes (with Ty < Ty < --- < Tj).> We extend
the model from lecture by letting v; > 0 denote the additional value that the user gets from the ith badge,
above and beyond that already conferred by the (i —1)th badge. (So if the user has earned the first ¢ badges,
her total value from them is 23':1 v;.) All other aspects of the model remain the same (the preferred action
p, the cost h(p,q) of playing an action ¢ other than p, the discount factor v, and the discounted expected
utility.) Explain how to modify the approach from lecture to solve for the optimal strategy of the user (i.e.,
the optimal activity level ¢, for each s € {0,1,2,...,}). Be sure to explicitly state the recurrence that you're
solving and the order in which you solve the different subproblems.

Exercise 21

Apply the method of the previous exercise to solve for the optimal user behavior with 2 badges and the

following parameter values: v; = 2, vo = 1, Ty = 3, Ty = 6, v = .75, h(p,q) = (p — ¢)?, and p = % For
s€40,1,2,...,6}, report the discounted future expected utility Us starting from state s (assuming optimal

play) and the optimal activity level ¢ .*

Exercise 22

Now assume that there are two different types of activities possible (e.g., answering questions and upvoting),
with a different badge for each. There is one badge for having at least T} successes at the first activity, and
a second for having at least T, successes at the second activity. Assume that the user has value vy for the
first badge, vy for the second badge, and v1 + vo for both badges.

The preferred action of the user is now a pair p = (p1, p2), indicating the preferred level of each activity.
(Assume that p1,pe > 0 and p; + po < 1.) Similarly, at each stage the user now chooses a pair q = (¢1, g2)
of activity levels, with ¢1,¢2 > 0 and ¢; + g2 < 1. There is again a cost function h(p, q) (e.g., the Euclidean

3E.g., think of frequent flyer programs.
4You might find the fmincon function in Matlab useful for this.



distance between p and q) and a discount rate v, and we again assume that the user maximizes discounted
expected utility.

Explain how to modify the approach from lecture to solve for the optimal strategy of the user (i.e., the
optimal activity level qs for every possible state s = (s1, s2), where s; and ss denote the number of successes
in each of the two activities). Be sure to explicitly state the recurrence that you're solving and the order in
which you solve the different subproblems.



