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Abstract

Motivated by the problem of querying and communi-
cating bidders’ valuations in combinatorial auctions, we
study how well different classes of set functions can be
sketched. More formally, let f be a function mapping
subsets of some ground set [n] to the non-negative real
numbers. We say that f’ is an a-sketch of f if for every
set S, the value f'(S) lies between f(S)/a and f(S5),
and f’ can be specified by poly(n) bits.

We show that for every subadditive function f there
exists an o-sketch where o 1/2 . O(polylog(n)).
Furthermore, we provide an algorithm that finds these
sketches with a polynomial number of demand queries.
This is essentially the best we can hope for since:

=N

1. We show that there exist subadditive functions (in
fact, XOS functions) that do not admit an o(n'/?)
sketch. (Balcan and Harvey [3] previously showed
that there exist functions belonging to the class of
substitutes valuations that do not admit an O(n'/?)
sketch.)

2. We prove that every deterministic algorithm that
accesses the function via value queries only cannot
guarantee a sketching ratio better than n'—¢.

We also show that coverage functions, an interesting
subclass of submodular functions, admit arbitrarily
good sketches.
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Finally, we show an interesting connection between
sketching and learning. We show that for every class
of valuations, if the class admits an a-sketch, then it
can be a-approximately learned in the PMAC model
of Balcan and Harvey. The bounds we prove are only
information-theoretic and do not imply the existence of
computationally efficient learning algorithms in general.

1 Introduction

On a finite set N, where |[N| = n, a set function
f 2N — R, is said to be subadditive if f(S)+ f(T) >
f(SUT) for all sets S,T. In this paper we consider
functions that are monotone, i.e., f(T) > f(S) for all
S C T, and normalized, f(0) = 0.

Subadditive functions arise naturally in economics
as they capture the notion of complement freeness in a
fairly general sense. For example, a buyer facing multi-
ple items has a subadditive valuation function if having
two sets of items simultaneously does not generate ex-
tra value for him. Combinatorial auctions with this type
of valuation functions have been extensively studied; see
[5, 9, 12] for example. In [16], a hierarchy of complement
free functions was defined, with subadditive functions
being the most general class. In particular, it strictly
contains submodular functions.

Submodular functions correspond to the economic
concept of “diminishing returns”. Formally, a set
function f is submodular if f(S U {j}) — f(S) >
f(TuU{j}) — f(T), for all S C T and j € N\
T. Such functions arise extensively in combinatorial
optimization [17], economics [21], social networks [18],
and recently machine learning [14, 15].

It is often of interest to communicate such set
functions among different parties; however, set functions
in general need 2" values to describe — a value for
each possible bundle. Since the property of complement
freeness entails restrictions among the function values,
one may naturally ask if a reasonable estimation of such
a function can be obtained with much less information
from the function, at the loss of some exactitude. We
call such an estimation a sketch.



More formally, we say that g : 2V — R, is an a-
approzimation of f : 2N — R if for every set S we have
that, @ < g(S) < f(S). We say that g is an «a-sketch
if in addition it can be represented by poly(n) bits'. Of
course, we are not interested only in proving existence of
sketches that provide a good approximation ratio, but
would also like to construct these sketches efficiently.

Goemans et al. [13] showed that, when f is submod-
ular, an O(\/ﬁ)—sketch of f can be obtained by querying
f’s value at polynomially many subsets of S (i.e., using
poly(n) value queries). Their construction is essentially
tight: they showed an almost matching lower bound
for sketching submodular functions with polynomially
many value queries. Another lower bound is implied by
the work of Balcan and Harvey [3]. They showed that
there are certain matroid rank functions, a subclass of
submodular valuations, for which every sketch fails to
provide an approximation ratio better than n3. Notice
that this bound is unconditional in the sense that it
holds even if we have unlimited computational power.

Can we obtain good sketches for the more general
class of subadditive functions? Subadditive functions
are significantly “harder to handle” than submodular
functions. For example, Dobzinski et al. [9] showed
that there is no polynomial time O(1)-approximation
for the problem of maximizing subadditive functions
subject to a cardinality constraint by value queries,
whereas the classical greedy algorithm [20] gives a —%5-
approximation for submodular functions. As another
example, in Appendix 6 we show that there are simple
subadditive functions for which no submodular function
provides a better than n'/2-approximation. Given sub-
additive functions’ looser structures, and the fact that
[13] used substantial techniques specific to submodular
functions, it is unclear whether one can obtain good
sketches for subadditive functions.

Our first main result shows that for every subaddi-
tive function there exists a O(y/n)-sketch that can be
found with only polynomially many queries, albeit with
a form of queries called demand queries, which are more
powerful than value queries. Demand queries are moti-
vated in economic settings where an agent with a cer-
tain valuation function facing a set of items, each with
a price tag, is required to report a subset of items that
maximizes his utility. In mathematical terms, given a
function f : 2V — R, a demand query on f presents
a price vector p € Rf and gets as an answer a bundle
S € argmaxrcN{f(T) — > ;erpj}. Demand queries
have been broadly used and studied in the literature of

TFor simplicity we assume that for each set S, f(S) €
{0,1,2,...,poly(n)}. All results can be generalized to the case

where f takes arbitrary real values.

algorithmic game theory (see, for example, [7]), and are
known to be strictly more powerful than value queries in
the sense that one can simulate a value query by poly-
nomially many demand queries, but the converse is not
true [8].

We prove that the last result is essentially the
best one can hope for. First, we show that the ap-
proximation ratio is essentially tight in the sense that
there are XOS functions (a subclass of subadditive func-
tions) that do not admit an o(v/n)-sketch. Second, we
prove that value queries are not powerful enough to ob-
tain good sketches: a deterministic algorithm that al-
ways finds O(n!~¢)-sketches must use superpolynomi-
ally many value queries, for any € > 0. This shows that
one must use stronger queries in order to obtain good
sketches.

Whereas for subadditive functions we show that
there are efficient algorithms using demand queries that
always produce sketches whose size matches the infor-
mation theoretic bound, we show that this is not always
the case for other valuation classes. We consider the
class of OXS functions, a subclass of submodular func-
tions that admits a 1-sketch [6] (i.e., the function can
be fully described in polynomial space). However, we
show that obtaining an nz¢-sketch requires exponen-
tially many value queries. Moreover, since OXS func-
tions belong to the class of gross substitutes valuations
for which a demand query can be simulated by poly-
nomially many value queries, we have that obtaining
an n2~¢ sketch requires exponentially many demand
queries.

We then consider another well-studied subclass of
submodular functions, coverage functions. We show
that coverage valuations admit short sketches of arbi-
trary precision. A coverage function f is defined on a
set N, each element of which corresponds to a subset
of some universe {2 of points with non-negative weights,
and the value of f on S C N is the weight of the points
in Q covered by the sets corresponding to elements of S.
We show that by appropriately sampling and reweight-
ing points from the universe one can obtain a (1 + ¢)-
sketch which can be described in poly(n, %) space. It is
an open question to obtain this sketch with either value
queries or demand queries.

Finally we show an interesting connection between
sketching and learning. Balcan and Harvey [3] introduce
the problem of learning submodular functions: given
bundles S, ..., Spoly(n) sampled i.i.d. from some distri-
bution D and their values f(S1), ..., f(Spoly(n)) accord-
ing to some unknown function f, can we find an al-
most correct sketch of f for subsequent samples drawn
from D? They coin the term PMAC learning (probably
mostly approximately correct) to refer to this type of



approximation guarantee, in which the sketch may fail
to be an a-approximation for certain bundles, but with
high probability a subsequent sample from D will not
belong to this exceptional set of bundles. We show that
PMAC learning can be done for every class of valua-
tions: if a class of valuations admits an a-sketch, then
it can be learned. Using the results in the paper this
implies that a O(y/n)-sketch of subadditive functions
can be learned, as well as arbitrarily good sketches for
coverage and OXS valuations. However, the bounds we
prove are only information theoretic ones and we do not
show the existence of a computationally efficient learn-
ing algorithm for this problem.

Independently of our work, Balcan et al. [2] ob-
tained related, but largely complementary, results on
learning valuation functions. They give computation-
ally efficient algorithms for PMAC learning a O(y/n)-
sketch of a subadditive function using polynomially
many value queries. In comparison, our sketching al-
gorithm satisfies a stronger (i.e. pointwise) approxima-
tion guarantee but uses demand queries, and therefore
is not computationally efficient in general. Balcan et
al. [2] also present improved PMAC guarantees for cer-
tain classes of functions, such as XOS functions rep-
resented by a polynomial number of clauses, and they
prove hardness results for learning XOS and OXS valu-
ations that are analogous to the sketching lower bounds
we present here.

1.1 Sketching Subadditive Valuations: a Brief
Overview Let us sketch why every submodular func-
tion has an O(y/n)-sketch [13]. Every submodular func-
tion f defines a polymatroid Py : {z € Rfl | 2(T) <
f(1),vT € S}, where z(T) = > ,crxj. The basic
idea is to show the existence of an ellipsoid F such

that ﬁPf C EF C P;. If we have such ellipsoid

FE we can use it as our sketch, since for every S we
have that f(S) = max{(ls)Tx|z € P;}. Towards
this end, we consider the symmetrized version of P,

Py 2 {r € R* | |z| € Ps}. The renowned John’s
theorem states that for any centrally symmetric con-
vex body P in R™, there exists an ellipsoid F such that
ﬁP C F C P. We get our sketch by applying John’s
theorem to Py. Notice that this proves the existence of
an O(y/n)-sketch, but not how to efficiently find it.

We now want to show that every subadditive func-
tion has an O(y/n)-sketch. As a first step, we show
that every XOS function (a.k.a. as fractionally sub-
additive) has an O(y/n)-sketch. A function is XOS if

there exists additive valuations® a,...,a; such that
ZA valuation v is additive if for every set S we have that

v(S) = Zjesv({i})-

v(S) = max; a;(S). It is known that XOS functions
are a proper superclass of submodular functions and a
proper subclass of subadditive functions. The key obser-
vation here is that the class of XOS functions is exactly
the class for which f(S) = max{(1s)Tz|z € Py}, for
every S, by taking z; to be a;- ({j}) for all j € S, where
i* = arg max; a;(.5). Hence every XOS function admits
an O(/n)-sketch.

Now we extend this result to subadditive functions.
We use a result in [10] that shows that for every sub-
additive function there exists an XOS function that
O(logn)-approximates it. This shows that every subad-
ditive function has an O(log n/n)-sketch: take the XOS
function that O(logn) approximates it, and provide the
O(y/n)-sketch that was obtained using the ellipsoidal
approach. We are left with showing that such a sketch
can indeed obtained algorithmically.

A crucial insight of [13] is that the problem can be
reduced to the problem of finding a point in Py that is
“far” from a given ellipsoid, which in turn is equivalent
to the following optimization problem for any c € R} :

maxz cfxf
i
st. x € Py

where ¢;’s are coefficients specifying an ellipsoid
Zc?a:f < 1. A p-approximation for this problem

will give a +/Bn-approximation for Pf, and hence a

O(+/Bnlog n)-approximation for a subadditive f.

For submodular functions, Goemans et al. showed
that: (1) under certain conditions, a “scaled” polyma-
troid (corresponding to heterogeneous ¢;’s) can be ap-
proximated by an “unscaled” polymatroid (correspond-
ing to the same ¢;’s) within an O(logn) factor, and (2)
the classical greedy algorithm for maximizing submod-
ular functions subject to a cardinality constraint [20]
provides a (1— %)2 approximation for the unscaled case.
Notably, (2) requires only value queries. Unfortunately,
the approach of [13] fails in the case of subadditive func-
tions.

Therefore we develop new machinery to handle sub-
additive functions. En route, we significantly simplify
the first step for more general polytopes while avoid-
ing proving a structural theorem a la [13]. We start
by observing that for any elements 4,5 in S, if f({i})
is significantly larger than f({;}), then for any 7' C S
that contains both ¢ and j, the value of f(T") will not
change much if we ignore the contribution of j, a con-
sequence of subadditivity. Our goal now is to provide
a set of ellipsoids that will approximate f in different
magnitudes of values. This enables us to reduce the
problem to the still-challenging problem of approximat-
ing the quadratic program where all ¢;’s are equal. In



addressing this, we discover an interesting substructure
for subadditive functions, which we call universal se-
quences.

DEFINITION 1.1. Let f : 2V — Ry be a function. A
sequence ) =Ty CTh € -+ C T, = N is called a -
universal sequence of f if, for any set S we have that

f(S) <~v-f(Tg)-

Note that each T;4; has one more element than 7;.
In plain words, a universal sequence is an ordering of
the elements in N such that for any & < n, the first
k elements in this ordering provide a y-approximation
for the maximization problem subject to cardinality
constraint of k. The greedy algorithm for submodular
functions, for example, shows that there is a =5
universal sequence for any submodular function.

We
show that any subadditive function admits a 4-universal
sequence. Then we construct a vector in P; using such
a sequence and show that the vector is an O(log? n)-
approximation for the quadratic program by exploiting
the symmetry and convexity of the objective function.

2 Approximating Subadditive Functions using
Demand Queries

In this section we describe an algorithm that outputs
an O(y/n) approximation to any subadditive function
f:2") - R, using polynomially many demand queries.

We follow the approach of ellipsoidal approximation
introduced in [13]. An ellipsoid E4 C R™ defines a
function L by mapping each S C [n] to max,ecp, 15z,
where 1g is the indicator vector for S. In the following
we often use the term ellipsoid to also refer to the
function it defines. Recall that a function f : 20" — R
defines a polytope Py = {z(S) < f(5),¥S C [n] |
z € R} }, where 2(S) = >, cg2;. In [13] the following
lemma is proven:

LEMMA 2.1. ([13]) Let f be a function and Py be the
polytope it defines. If we have an algorithm A that
provides a B-approximation for the quadratic program

2,2
maXE c;x;
i

s.t. x € Pf

for every i, 1 < c¢;f({i}) < +/n—+ 1, then we can find an
ellipsoid that provides a O(v/nf3)-approzimation in time
polynomial in the running time of A.

Unlike [13] we do not show how to solve this
quadratic program for all ¢;’s. Nevertheless, we show
that to obtain an O(y/n)-sketch for subadditive func-
tions it suffices to be able to solve the case when all ¢;’s
are 1.

LEMMA 2.2. Let f be a subadditive function and P be
the polytope it defines. If we have an algorithm A that
provides a B-approximation for the quadratic program

maxZazl2
i
s.t.x € Py

then we can find an O(v/nBlogn)-sketch for [ in time
polynomial in the running time of A.

Proof. We will reduce the problem in Lemma 2.1 to
the current problem with a loss of a logn factor in
the solution. Without loss of generality, we assume the
items in N are ordered such that f({1}) > f({2}) >

o> f({n}).

DEFINITION 2.1. For each element i € [n], define its
vicinity to be V; = {j | i < j < n,nf(j) > f(i)}.

For a subset S C [n], let f|s be f|s(T) = f(T'N
S) for any T C [n]. It is easy to see that fly,
is still a subadditive function. The algorithm will
compute n ellipsoids such that each ellipsoid is an
O(y/n) approximation for f|y,, respectively. For a
subset S = {i1,49,...,0m | i1 < i2 < ... < im}, we
use the ellipsoid corresponding to f[v; to approximate
f(S). If the corresponding ellipsoid is an O(y/n)
approximation for f |Vi1, then since

S <7

Vi, (8) +n-n7 (i) < 2f

vi, (9),

we will have obtained an O(y/n) approximation for
f(S) itself. From this point on we will assume that

FELD = £{2) = .. = f({n}) = 00,

Recall that 1 < ¢ f({i}) < v/n+1. By the
assumption that f({1}) > ... > f({n}) > @, the
ratio TS5 s polynomially bounded. We reduce the
problem i)y] first rounding each ¢; down to the largest
power of 2, and thereby grouping them into O(logn)

bins By, ..., By; then we solve the optimization problem
max Y 7
i€B;
s.t. x € Pf

for each B;. It is easy to see that the best solution

x € Py obtained will be an O(log2 n) approximation for
the problem with different ¢;’s.

Hence, it is left to show that one can approximate
the optimization problem



within an O(log* n) factor using polynomially demand
queries. We first introduce the notion of wuniversal
sequences both for the ease of presentation and for its
own interest:

DEFINITION 2.2. Let f : 2V — R, be a function. A
sequence ) =Ty CTh € ... C T, = N is called a -
universal sequence of f if, for any set S we have that
f(8) < v f(Tis).

In particular, for submodular functions the greedy
algorithm produces a _“5-universal sequence. For
subadditive functions we show that there exists a 4-
universal sequences. This will be a by product of the
following algorithm that finds a poly logarithmic ap-
proximation to the quadratic program. The algorithm

makes use of the following notion:

DEFINITION 2.3. ([11, 10]) Let f : 2V — R, and
S C N. For each j € S, let p; be a non-negative real
number. We say that the p;’s are a-supporting prices

for S if Eip; > af(S) and VT C S, Sjerp; < f(T).

In the algorithm we assume without loss of gener-
ality that n is a power of 2 — we can always add more
items with zero value):

1. Let TO = (Z)
2. Foreach k. k=1,2,...,logyn:

(a)

Find a set S, |S| = 2¥ such that for every T,
|T| = 2% we have that a - f(S) > f(T).
Partition S to S; and Sa, |S1| = |Sa|. Let
S) = argmaxgegs,, 5,1 (f(5))-

(C) Let Ty =Th_1 U Sk.

(b)

(d) Let  zyp_y141,-- - 2|1y be  O(logn)-
supporting prices of the set Ty \ Tk_1.
3. Let 2 = thgn.

Step (2a) is the problem of optimizing a subad-
ditive function subject to a cardinality constraint. A
2-approximation for this problem that uses only poly-
nomially many demand queries was provided in [1]
(a = 2). Step (2d) can be implemented using the al-
gorithm of [10] that finds O(logn) supporting prices
using polynomially many demand queries®. Hence we
have that the algorithm can be implemented using only
polynomially many demand queries.

3Tt is known that for general subadditive functions, O(logn)-

supporting prices are the best that one can hope for; however,
with XOS functions, for which 1-supporting prices exist, it
remains open whether one can use polynomially many demand
queries to get better than O(logn)-supporting prices.

We first show that the algorithm finds a 4-universal
sequence. This will later be used to show that x is an
approximate solution to the quadratic problem.

PROPOSITION 2.1. Let f be a subadditive function. The
algorithm finds a 4a-universal sequence.

Proof. The proof relies on the following claim:

CLAM 2.1. For every k, k < logyn, and every T,
|T| = 2%, we have that 2 - f(Ty) > f(T).

Proof. Let S be the bundle we obtained in the k’th
iteration of Step 2a. Let T be some bundle of size 2¥. By
subadditivity and the guaranteed approximation ratio «
we have that a(f(S1) + f(S2)) > f(T). We took S to
be the larger of the two, and hence f(Sy) > 5= f(T).
Now by construction Ty O S, and by monotonicity we
have proved the claim.

By ordering the elements in each Sy arbitrarily and
then add them one by one to a sequence of sets, we
obtain a full sequence ) =Uy C Uy S Us... S U, = N.
Note that every T} occurs in this sequence. We can
now prove the proposition: For any set S C N, we
consider T}, where k is [log, |S]]. From Claim 2.1 we
have f(Ty) > 5= maxycy pj=or f(T) > 4= f(S), where
the last inequality comes from subadditivity.

LEMMA 2.3. & produced by the algorithm is
O(log4 n) approzimation for the quadratic program.

an

The proof consists of the following claims.
CLAIM 2.2. % is in Py.

Proof. By definition of Py, it suffices to show that
VS C N, #(S) < f(S). We note that

29) = 233183
< max z(SN(T;\ Ti—1))
< max FSN(Ti\Ti-1))
< f(9)

The first inequality is valid because there are only
(|logy n] + 1) different S;’s, and the second inequality
follows from the fact that z is defined as a supporting
price of f(T; \ T;-1).

f(T)
O(logn) "

Cram 2.3. Vk <logyn, (1)) >

Proof. We prove this by induction. For k = 1, we have

x(Ty) = ’El(g;;lzt) by definition of supporting prices. Now




suppose the claim is true for k, then by subadditivity

f(Tes1) < [T \Tie) + f(Tk)
O(logn)(x(Tis1 \ Tk) + x(Tk))
= O(logn)z(Ty+1)

The equality follows from the definition of supporting
prices and the induction hypothesis.

Now using &, we define a symmetric? submodular
function g : 2V — R. For S C N, we let g(S) =
maxyc y,|7=|s| £(S). It is easy to verify that g is indeed
a submodular function. Let P, be the polymatroid it
defines, then we have

P
Cramv 2.4. P, D O(Tgf?n)' 5

Proof. 1t suffices to show that for any y € Py and

S CN, O(‘ql’é;)n) < ¢(S). Let k be [log,|S||, then
by Claim 2.1 and Claim 2.3, we have
f(8) < 4f(Th)
— Ollogn)a(Ti)
— O(log?n)i(T)
< O(log” n)g(T)
< O(log®n)g(S)

Since the vertices of P, are permutations of the
coordinates of z, we know that & is an optimal solution
to the optimization problem

By Claim 2.4 and Claim 2.2, we have that & is a feasible
solution and gives an O(log4 n) approximation for the
optimization problem

3 Lower bounds

We have seen that there is a deterministic algorithm
to compute a O(y/n)-sketch of any subadditive function
using demand queries. In this section, we show that this
result is essentially the best possible, in two respects.
First, for any fixed ¢ > 0, it is not the case that
every subadditive function admits a O(n'/?~¢)-sketch

By symmetric we mean a function depending only on the

cardinality.
5We note that we do not prove that Py C Py, and this is not
generally true.

of polynomial size. In fact our bound even holds for
XOS valuations. Previously, Balcan and Harvey [3]
showed that every polynomial-size sketch of submodular
functions cannot have an approximation ratio better
than ns. Second, for deterministic algorithms that are
limited to walue queries, it is impossible to obtain a
O(n'~#)-sketch in polynomial query complexity.

We also consider the class of OXS functions. This
class was defined in [16] and is equivalent to the to the
class of weighted rank function of a transversal matroid
(and hence is a subclass of the class of submodular val-
uations). This class can be represented in O(n?) space
[6]. In contrast, we show that algorithmically obtaining
such a sketch via queries is hard: an O(n'/?=¢)-sketch
requires an exponential number of value queries. More-
over, for this class a demand query can be implemented
via a polynomial number of demand queries [4]. Hence
we have that an O(n'/?~¢)-sketch requires an exponen-
tial number of demand queries.

3.1 A Tight Lower Bound for Sketching XOS
Valuations We show that XOS functions do not admit
nz—¢-sketches. This slightly improves over the result
of [3] that showed there are no n@ ¢-sketches if the
valuation function is submodular (in fact, even gross
substitutes).

DEFINITION 3.1. A family C of subsets of {1,...,n} is
(h, £)-good if

1. For each S € C, |S| > h.
2. For each S,T € C and S#T, |SNT| < ¢.

LEMMA 3.1. If some C is (h,{)-good then approximat-
ing XOS valuations to within a factor of better than h/{¢
requires representation length of at least |C|.

Proof. For every subset D C C we define an XOS
valuation: vp(S) = maxrep [T N S|. Now we claim
that for every D # D’ C C there exists a subset .S such
that vp(S)/vp/(S) > h/ or vp/(S)/vp(S) > h/L. This
will be true exactly for S € (D — D')U (D' — D). The
bound on sketching length is implied since any sketching
scheme with approximation ratio better than h/¢ cannot
give any two D’s the same sketch.

LEMMA 3.2. For h = %\/ﬁ, for every ¢, there exists a
family that is (h,{)-good of size n*(*).

Proof. Choose any prime p such that n/4 < p? < n, and
identify a subset of N with the set F2, where FF,, denotes
the field of integers modulo p. For each univariate
polynomial P of degree at most ¢ over F,, add the set
Sp = {(z,P(x)) | x € F,} to the collection C. Each



set in C has cardinality p > % n, and the intersection
of any two sets Sp,Sg € C has cardinality at most ¢
because the equation P(x) = Q(x) is satisfied by at
most £ values of x. Finally, a polynomial of degree at
most £ is uniquely determined by a sequence of ¢ + 1
coefficients in F,, so the cardinality of C'is pttl = pfO),

THEOREM 3.1. Polynomial-size sketches cannot ap-
proxzimate XOS to within a factor of o(y/n). Sub-
exponential-size sketches cannot approrimate XOS to
within a factor better than O(n'/?~¢).

3.2 Inapproximability of Subadditive Functions
using Deterministic Value Queries The following
theorem is a lower bound for deterministic sketching of
subadditive functions using value queries. The proof
shows that polynomially many value queries cannot
possibly provide enough evidence to distinguish the
subadditive function f(S) = |S|'=° from a different
subadditive function that takes the value n° on at least
one set of size n'=9.

THEOREM 3.2. If a deterministic algorithm can com-
pute an «-sketch of every subadditive function using
O(poly(n)) value queries, then o = Q(n'=¢) for every
fized € > 0.

To prove the theorem, we begin with the following
characterization of subadditive set functions.

LEMMA 3.3. Let (A1,c1),...,(Ag,cx) € 2N xR, be a
sequence of pairs consisting of a subset of N and a non-
negative cost for that subset. Suppose that N = Ule A;.
The set function

g(U) = min ch UAJ-QU ,

jed |jeJ

called the min-cost-cover function of {(A;,c;)}r_,, is a
non-negative, monotone, subadditive set function. Fur-
thermore, every non-negative, monotone, subadditive
set function can be represented as the min-cost-cover
function of a suitably defined sequence {(A;,c;)}i_;.

Proof. Non-negativity and monotonicity of g are clear
from the definition. Subadditivity follows from the
observation that if UjeJAj D U and UjeJ’ A, DU
then ;¢ s, Aj 2 UUU while e(JUJ') < e(J)+c(J").
(Here we are using the notation ¢(.J) to denote 3, ; ¢;.)

Conversely, if f is non-negative, monotone, and
subadditive, then f is equal to the min-cost-cover
function of the set of ordered pairs (A4, f(A)) where A
ranges over all subsets of N. The min-cost-cover of U is
less than or equal to f(U) because the set U covers itself,
and it is not strictly less because f satisfies monotonicity
and subadditivity.

We will also make use of the following form of the
Chernoff bound.

LEMMA 3.4. LetT be a random subset of an n-element
set N, obtained by selecting every element independently
with probability p, and let U be any other, fixed, subset
of N. For any 1 < /{ <n,

Pr (/T NU| > max{¢,2p|U|}) < e=/12.

We are ready now to proceed with the proof of
Theorem 3.2.

Proof. [Theorem 3.2] Let § = ¢/3, and assume without
loss of generality that ¢ < 1/2. Consider the sequence
of queries and responses that take place when we run
the algorithm using the subadditive function f(S) =
|S|1=°. Denote this sequence by (S1,v1), ..., (S vq),
where v; = [9;|'7° for 1 < i < q. We will construct
a subadditive function g such that ¢(S;) = v; for
all i € {1,...,q}, but g(T) < n? for some other
set T of cardinality at least k& = [n'™°]. When
the algorithm observes the sequence of queries and
responses (S1,v1),...,(Sq,vq), its output f’ must be
an a-sketch of both f and g, hence f(T)/a < f/(T) <
g(T). This implies that o > f(T)/g(T) > n(1=9°=5 >
n'=e.

To construct the function g we use the probabilistic
method. Let T be a random subset of IV obtained by
sampling each element independently with probability
p = 2k/n, and let g be the min-cost-cover function of the
sequence (S1,v1), (S2,2), ..., (S, vq), (T,n?). Cheby-
shev’s inequality implies that with probability at least
%, |T| > 2k — /n > k. We will complete the proof
by showing that Pr(3i s.t. g(S;) # f(S;)) is less than
% for large enough n. In fact, we will show that the
event {3i s.t. g(S;) # f(S:)} is contained in the union
of the events {|T'N (S \ S')| > max{n® p|S\ 5}},
where S,S’ range over all pairs of sets in the col-
lection {0, S1,S52,...,5,}. By the union bound and
Lemma 3.4, the probability that there exists 7 such that
g(S:) # £(S;) is at most O(g?) exp(—n?/12) and this is
less than % for sufficiently large n.

To finish the proof, we must show that the assump-
tion that g(S;) # f(S;) = |S;|'~? implies the existence

of two sets S, S’ in the collection {0, S1, Ss, ..., S,} such
that
(3.1) TN (S\S)| > max{n’, 2p|S\ S'|}.

Clearly, by construction, g(S;) < [S:|'%, so assume
that the inequality is strict. It means that there is an



index set J C [q] such that either

C(J) < |Si|1_5 and U Sj D) SZ‘,
JjeJ
or

n+e(J) <|S|"° and TU | JS; ] 28
jeJ
The first alternative is not possible, since the set func-
tion f(S) = |S|'~¢ is subadditive. So assume the second
alternative holds. Letting V = (T'NS;)\ (UjeJ Sj), we
have S; C V U (UjeJ Sj>, and by the subadditivity of
f(S) =|S|*~? this implies that

VI > 18170 = Y 185170 >
JjeJ

(3.2)

The set S; \ V is contained in (J;c;S;. Partition
S; \ 'V arbitrarily into disjoint subsets {W;};c; such
that W; C S; for all j € J. For each z € S; define
|W;|=% if 2 € W, for some j € J
w(z) = :
0 ifeeV.
Note that the cases are mutually exclusive and exhaus-

tive, so w(x) is well-defined for all z € S;. We have
(3.3)

the average value of w(x) over z € S; is strictly less
than |S;|~° by (3.4). Consequently the average value of
w(z) over x € S; \ W; must be strictly less than |S;[~°.
Whenever z € S; \ W; and w(z) > 0, then x belongs
to some W;, such that [W;/| < £]9;|, and consequently
w(x) > 29|8;|7%. Arguing as in case 1, this implies that
] ]

(B6) V> IS\ Wl > 218\ 8.
Combining (3.6) with (3.2), we obtain |V| >
max{n®,2p|S; \ S;|}, which confirms (3.1) with S =
S;, 8" =8;,since TN (S;\S;) D V.

3.3 A Lower Bound for OXS Functions

THEOREM 3.3. Let f be an OXS valuation and let A be
an algorithm that that provides an n%_e-sketch, using
value queries and demand queries. A does not make a
polynomial number of such queries.

Proof. Since demand queries for OXS valuations can be
simulated using a polynomial number of value queries,
we assume henceforth that A makes only value queries.

Start with the complete bipartite graph K, , where
k = én. Pick a random subset B of dn nodes on the
RHS, and an arbitrary subset A of edn nodes on the
LHS. (We will fix €, § later to be ©(y/(logn/n).) Delete
all edges between B and A° (where A€ is the intersection
of the complement of A and the vertices in the LHS).
For a subset S of nodes on the RHS, let v(S) denote the

Z w(z) = Z W] W] 8 < Z 1S;'7% = ¢(J) < |S;|* fhaximal matching size that only matches RHS nodes in

TES; JjeJ JjeJ
SO
1
(3.4) S > w(x) < |80
| il T€S;

The argument now splits into two cases. If [W;| < 3|5,
for all j € J then we have w(z) > 2°|5;|7% for all
x € S; \ 'V, hence, by (3.3),

2218570 - 1S \ V| < |Si|' 0
1S: \ V| < 27°|5;

(35) V1> (1-27)18i] > 5lsi)
using the fact that 1 — 277 > /2 for all 0 < = < 1.
For sufficiently large n, the right side is greater than
2p|Si|, so combining (3.5) with (3.2), we obtain |V| >
max{n’, 2p|S;|}, which confirms (3.1) with S = S;, 8" =
0, since TNS; DV.

The remaining case is that [W;| > 1|S;| for some
j € J. In that case, the average value of w(zx) over
x € W, is [W;|~°, which is greater than |S;| =%, whereas

S. Observe that we can write
v(S) = min{dn,|S N B¢| + min{edn, |S N B|}}

(Since nodes in B can only contribute edn, and because
there are only on LHS nodes.) Notice that v is a rank
function of a matching matroid, hence it is indeed an
OXS valuation.

It is enough to prove that, for every S, with high
probability over the choice of B, v(S) = min{|S], én}.
(Then you learn nothing about B from any of your value
queries.) This will show that we cannot distinguish with
polynomially many value queries between v(B) = dn
and v(B) = edn, and an approximation lower bound of
1/e will therefore follow.

Assume we choose €,§ so that edn = Q(logn). If
|S| = O(edn) then v(S) = |S|. Otherwise, by Chernoff
we have [SN B| and |S N B¢| concentrated around their
expectations of §|S| and (1—4)|S|, respectively. If |S| =
O(en) then |S N B| = O(edn) and v(S) = min{|S|, dn}.
If |S| = Q(en) then |S N B¢ = Q((1 — d)en), which is
Q(on) provided € > §/(1 — 4). In this case, v(S) = dn.

Finally, we choose € = 2§ = ©(4/logn/n) and get a
lower bound of Q(1/n/logn).



4 Coverage Functions Admit (1+¢)-Sketches

A set function f : 2¥ — R, is called a coverage
function if there exists a finite set €2, a weight function
w: Q — Ry, and a function g : N — 2% such that
f(S) =w (Ujes 9(i)) for all S C N.

We will present a sampling algorithm which pro-
duces a coverage function f on a set of points ' with
|| < 21;’2, such that f is a (1+¢)-sketch of f with high
probability. We will assume without loss of generality
that 0 < e <1 and that Q = J,cy 9(7).

Algorithm: TLet ¢ = 2252. Define q¢(z) =
max{%‘ieN,xeg(i)} for z € Q. Let p(z) =

%. The algorithm draws ¢ independent random

samples x1,...,x; from the distribution on € specified
by p. It defines Q' = {x1,...,2:} and sets ¢'(i) =
Q' Ngi) for all i € N. To define the weight of an ele-

ment x € €, we let m(z) denote the number of times
w(x)

N t-p(z)
Finally, define f to be the coverage function specified
by Q',w’, and ¢’. The algorithm outputs the function

(1+2)'f

x occurs in the sequence and set w'(z) = m(z) -

4.1 Proof of (1+ ¢)-approximation We will prove
that this algorithm outputs a (1 + ¢)-sketch of f. We
need the following simple form of the Chernoff bound,
which is well known [19] in the special case m = u, and
whose general case follows from that special case by a
trivial scaling argument.

LEMMA 4.1. Suppose Yi,...,Y; are mutually indepen-

dent random wvariables satisfying E [Zzzl Yi] = u, and
suppose that each of the variables Y; is supported in the

interval [0, pn/m) for some m > 0. Then for 0 < < 1,
we have

t
Pr <(1 — 6)M < ZY; < (1 + 6)M> > 71— 26_(62/3)7”_
i=1

Remark. The multiplicative form of the Chernoff
bound is usually stated as two separate bounds, one
for Pr((1 — d)p > >°Y;) and another for Pr(>_Y; >
(1496)p). The version stated above follows by summing
these two bounds and subtracting from 1, then using
the fact that 5~ (1) In(1+8) 5 0=5"/3 for 0 < § < 1.
Fix an arbitrary set S C N, let U = [ J,.g g(i), and

define random variables Y7,...,Y; by
w(@i) e
y, = J Fpe) ifo, €U
0 otherwise.

Note that f(S) = >.'_, Vi, and that the random
variables Y7, ..., Y; are mutually independent. To apply

the Chernoff bound, we will need the following pair of
claims.

CLAIM 4.1. For every S C N, E[f(S)] = f(S).

Proof. For each i we have

Ep] =

= Sw()

1

= )

The claim follows by summing over ¢ =1,...,t.

CLAIM 4.2. For every x € Q and every S C N, if
. w(x 2
r € U;cq9(i) then t'p((m)) < 5o f(9).

Proof. The key observation is that }: coq(y) < n.
To prove this, define for each i € N a set h(i) =

{y €g(i)] qly) = f“()g}))} Note that every y €

belongs to at least one of the sets h(i). Therefore

daly) < DD aw)

yeN i€N yeh(i)

<2

B Zyeh(i)w(y)
= f{{i})
Zyeh(i)w(y)

ieN ZyEg(i) w(y)
< n

ieN

Now, for any = € {J;c5 9(i), we have

w(x) _ e2w(x) . Eyeﬂ q(y)

t-p(x) ZZnQ q(x)
<
= o min{f() i € N € o(9)
< ;—an(s)

Combining Claims 4.1 and 4.2 with Lemma 4.1 and

using & = £/3, m = 2 in that lemma, we obtain the

result that
Pr (|f(5) BEACHES %f(s)) > 1 -2 (/21)@Tn/<)
= 1-—-2e"



Taking the union bound over all sets S C N, we
now see that with probability at least 1 — 2ntle=n,
the function (1+ %)_1 f is an a-sketch of f where
a= (1 + %)/ (1 — %) < 1+¢, where the last inequality
follows from our assumption that ¢ < 1.

5 Learning via Sketching

Balcan and Harvey [3] introduce the problem of learning
submodular functions. We are given poly(n) bundles
that are drawn i.i.d. from some distribution and their
values according to some unknown submodular function
f- The goal is to output a “sketch” of the functions, i.e.,
its “learned” valuation.

We will show that if a class of valuations admits
an a-sketch®, then there exists a learning algorithm for
this class. The caveat is that we only focus at the num-
ber of allowed queries and the information that can be
learned from this. In particular we completely ignore
the actual algorithmic challenges and assume a compu-
tationally unbounded learner whose only constraints are
the access to the valuation function. This is in complete
contrast to most work in learning theory that focuses on
the algorithmic issues and for which the informational
questions are trivial.

We stress while sketching may require arbitrarily
complicated and numerous queries, we show that learn-
ing can always be done by value queries — as long as
we allow some probability of error.

DEFINITION 5.1. (BALCAN AND HARVEY [3]) 4
learning algorithm sees a sequence of labeled examples
(S;,v(S;)) where S; is drawn according to distribution
D on subsets of N, and then is asked a query S
drawn according to the same D and needs to output an
approzimation v(S). We say it is an a-approximating
PMAC learning (with parameters €,6) for C if for every
distribution D and every valuation v € C we have that
with probability of at least 1 —§ (over the choice of {S;}
from D), Prglv(S) <wv(S) <av(S)] >1—e.

LEMMA 5.1. If a class of wvaluations V' can be «-
approximately sketched with length l(n) then it can be
a-PMAC-learned from O((I(n) +logé~1)/€) samples.

Proof. We use the usual principle in learning theory
stating that compression implies prediction. Let s :
V' — {0,1}* be the sketching function that takes a
valuation as input and outputs an a-sketch of it (of
size I(n) = poly(n)). For each possible value ¢ of length
I(n,t) let us define vy(S) = miny|s)—=q v(S), and thus

SWe assume only existence of a sketch and do not care how it

can be obtained nor with what type of queries.

for all v and all S we have that v,,)(S) < v(S) <
QAUs(v) (S)

Let us use r = O((I(n,t) + logd~')/e) samples
(Si,v(S;)) and find some g such that v,(S;) < v(S;) <
awvg(S;) for all samples S;. Such ¢ must exist simply
since ¢ = s(v) for the real v is such. (Notice that this
may be algorithmically hard, but since we only count
queries, it can be done in terms of information available
to the mechanism after seeing the r samples.) We will
use v, as our learned valuation, i.e., on input S reply
with v, (S).

Now let us calculate the probability that this v, is
not a proper approximation for v, i.e. that on at least
e-fraction of S’s (weighted as in D) we do not get an
a-approximation. Fix a single ¢ for which we do not
have the required approximation and let us calculate the
probability that all for all S;’s we did get the required
approximation: it is at most (1 — €)". Now we use
the union bound over all possible ¢’s of length I(n) to
conclude that the probability that we output some bad
q is at most 2“”)(1 — ¢€)", which is bounded by § using
the choice of parameters we gave.

Using the upper bounds in this paper we have that:
COROLLARY 5.1. The following statements are true:

e The class of subadditive valuations can be O(y/n)-
PMAC-learned.

e The class of coverage valuations can be (1 + €)-
PMAC-learned.

o The class of OXS valuations can be (1+¢€)-PMAC-
learned.

6 A gap between XOS and Submodular
Functions

In this section we give an example of XOS function for
which no submodular function is an O(y/n) approxima-
tion.

We define an XOS function f : 25 — Ry, |S| =
n, as follows. Partition S evenly into \/n subsets,
Ty,---,T jm, each of size \/n. Let f; be an additive
function on T;: f;(T) = |T'NS;|, VT C S. Then let f be
the maximum of these functions, i.e., f = max; f;. By
definition, f is XOS.

THEOREM 6.1. If g is a submodular function such that
@ <g(T) < f(T) for all T C S, then o > 4

Proof. We construct a sequence of elements
r1,...,¢ 5 € S inductively using g. For z € 5,
let ¢(z) be the ¢ such that x € T;. Define



x1 = argmax {g({z}) | x € S}
Let Mi = U;;lquﬁ(xJ) and Gz = {Il, .o 71‘7;_1}. Define

r; = argmax {g(z | G;) | x € S\M;}, i=2,3,--- ,v/n

where g(z | T) is g({z} UT) — g(T'), the marginal value
of x given T. In words, z1,...,z s are a sequence
produced by a greedy algorithm that maximizes the
marginal utility at each step, subject to the constraint
that each element chosen is from a different subset in
the partition.

By considering the value of f on these elements, we
have

1 = f({z,...,zm)
> g({xl,...,x\/ﬁ)
N
= gz} + ) g@il{zr,... .z}
1=2

By submodularity and the procedure we selected
the sequence, the terms on the right hand side are

in a nonincreasing order, and therefore b = g(z NG |
{w1,.. ;2 mq) < ﬁ On the other hand,

Vn

f({ml,...,xﬁ_l}UT\/ﬁ)
ag({z1, - x mog fUT 5)
a(l+ (vn—1)b) < 2«

[VARVAN

The theorem immediately follows.
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