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Abstract

We present the first constant-factor approximation algo-
rithm for network design with multiple commodities and
economies of scale. We consider the rent-or-buy problem,
a type of multicommodity buy-at-bulk network design in
which there are two ways to install capacity on any given
edge. Capacity can be rented, with cost incurred on a per-
unit of capacity basis, or bought, which allows unlimited
use after payment of a large fixed cost. Given a graph and
a set of source-sink pairs, we seek a minimum-cost way of
installing sufficient capacity on edges so that a prescribed
amount of flow can be sent simultaneously from each source
to the corresponding sink.

Recent work on buy-at-bulk network design has concen-
trated on the special case where all sinks are identical;
existing constant-factor approximation algorithms for this
special case make crucial use of the assumption that all
commodities ship flow to the same sink vertex and do not
obviously extend to the multicommodity rent-or-buy prob-
lem. Prior to our work, the best heuristics for the multi-
commodity rent-or-buy problem achieved only logarithmic
performance guarantees and relied on the machinery of re-
laxed metrical task systems or of metric embeddings. By
contrast, we solve the network design problem directly via
a novel primal-dual algorithm.

1 Introduction

We consider the problem of network design with multi-
ple commodities and economies of scale. More precisely,
given an undirected graph G = (V, E) and a set D =
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{(s1, t1), . . . , (sp, tp)} of vertex pairs called demands, we
seek a minimum-cost way of installing sufficient capacity
on the edges E so that a prescribed amount of flow can be
sent simultaneously from each source sk to the correspond-
ing sink tk. We are interested in the scenario where the
cost of installing capacity exhibits economies of scale, in
the sense that buying a large amount of capacity on a sin-
gle edge results in a high capacity-to-cost ratio (i.e., good
“bang for your buck”). Put differently, the cost of capacity
is a concave function of the capacity bought.

The general problem described above goes by the name
buy-at-bulk network design, and was introduced by Salman
et al. [23]. The problem is NP-hard [23], and researchers
have therefore sought out good approximation algorithms
for the problem. The best algorithm currently known for
the general problem is due to Awerbuch and Azar [3], who
give an O(log n log log n)-approximation based on Bartal’s
method for probabilistically embedding general metrics into
tree metrics [5], where n is the number of nodes in the net-
work. Improvements on the algorithm of [3] have been elu-
sive, leading researchers to consider special cases of the
problem. The single-sink version of buy-at-bulk network
design, where all sinks tk are identical, has recently re-
ceived much attention. Andrews and Zhang [2] designed an
O(K2)-approximation algorithm for the single-sink prob-
lem when the cost of installing capacity is a restricted type
of concave piecewise linear function with K breakpoints.
This problem is called access network design in [2]. A
constant-factor approximation algorithm for the access net-
work design problem was later given by Guha et al. [12].
Subsequently and independently, Garg et al. [7] gave an
O(K)-approximation algorithm and Guha et al. [13] de-
signed a constant-factor approximation algorithm for the
general single-sink buy-at-bulk network design problem
(with an arbitrary concave, piecewise linear function de-
scribing the cost of installing a given amount of capacity).
The constant of [13] has recently been improved upon by
Talwar [25].

Despite these recent successes for the single-sink prob-
lem, there have been few improvements over the algorithm
of Awerbuch and Azar [3] for any nontrivial version of mul-
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ticommodity buy-at-bulk network design. In this paper, we
present the first constant-factor approximation algorithm for
such a problem. As all of the techniques employed in recent
papers [2, 7, 12, 13, 17, 25] make crucial use of the assump-
tion that all commodities ship flow to the same sink vertex
and do not obviously extend to the multicommodity setting,
our algorithm and analysis require several new ideas. We
also avoid reliance on metric embedding techniques (un-
like [3]), instead attacking the network design problem di-
rectly via a novel primal-dual algorithm.

The Rent-or-Buy Problem. In this paper, we consider
the rent-or-buy problem, a type of multicommodity buy-at-
bulk network design with a simple function describing the
cost of installing capacity. In the rent-or-buy problem, there
are two ways to install capacity on any given edge. Capacity
can be rented, with cost incurred on a per-unit of capacity
basis, or bought, which allows unlimited use after payment
of a large fixed cost. We model this scenario with posi-
tive parameters µ and M , with the cost of renting capacity
equal to µ times the capacity required (per unit length), and
the cost of buying capacity equal to M (per unit length).
There is no loss of generality in assuming that µ = 1. The
multicommodity rent-or-buy problem was previously stud-
ied in an online setting by Awerbuch et al. [4] (where it was
called the network connectivity leasing problem) and Bar-
tal et al. [6], who used the framework of relaxed metrical
task systems to give O(log2 n)- and O(log n)-competitive
algorithms for the problem, respectively.

Buy-at-bulk network design was originally defined in
terms of installing cables on edges, with different cable
types offering different amounts of capacity and carrying
different costs [3, 23]. Andrews and Zhang [2] showed that
this problem can be rephrased (with a loss of a small con-
stant factor in the approximation ratio) with each cable type
carrying a fixed cost (which must be paid irrespective of the
capacity needed) and an incremental cost (which is paid for
each unit of capacity required). The rent-or-buy problem
therefore corresponds to the special case of one cable type
with an incremental cost but no fixed cost, and one cable
type with a fixed cost but no incremental cost.

We believe the rent-or-buy problem captures much of the
essence of buy-at-bulk network design. Most of the diffi-
culty of network design problems in which capacities obey
economies of scale stems from the following tension: on the
one hand, we would like to route flow between a source and
sink on an (approximately) shortest path; on the other, we
would like to gather flow from many different commodities
together in order to purchase large quantities of capacity and
take advantage of economies of scale. This issue of “route
vs. gather” is clearly present in the rent-or-buy problem,
and we believe that overcoming the difficulties caused by
multiple commodities in this simple setting will lead to fur-
ther progress on the general multicommodity buy-at-bulk

network design problem.

Application to Maybecast. In addition to being a non-
trivial special case of buy-at-bulk network design, the rent-
or-buy problem arises in important applications. For exam-
ple, Karger and Minkoff [17] introduced the so-called may-
becast problem, defined as follows. There is an underlying
undirected network G, with a source vertex s from which a
multicast transmission will emanate, and a set D of demand
vertices that wish to receive the transmission. The problem
of building the min-cost network that connects the source
to all of the demands is the classical min-cost Steiner tree
problem. Karger and Minkoff [17] proposed a probabilis-
tic version of this problem: each demand vertex i contacts
the source s independently with probability p i. Relative to
a fixed Steiner tree on {s} ∪ D, when a demand contacts
the source s, all edges on the path joining it to s are said to
become active. The goal is then to build the Steiner tree that
minimizes the expected cost of the active edges.

Our solution to the rent-or-buy problem provides a con-
stant factor approximation for the following multicommod-
ity version of the maybecast problem. Instead of a single
source s, we are given a set of sources S. Each demand
wants to receive data from one source in S, and it contacts
that source with some probability. As in the previous prob-
lem, we seek paths between the demands and the sources
they wish to contact so that the expected number of active
edges is minimized. This problem reduces, modulo a small
constant factor in the approximation ratio, to rent-or-buy
network design (see [17]).

Application to Connected Facility Location. Our results
also give a constant-factor approximation algorithm for a
multicommodity version of connected facility location, a
problem that has recently received attention in both the op-
erations research literature [19, 20, 21] and the computer
science community [14, 17, 18]. In the previously studied
version of the connected facility location problem, the in-
put is a set F of facilities, a set D of demands, a graph
G = (V, E) with V = F ∪ D and costs ce on edges e,
and a parameter M > 1. A solution consists of an assign-
ment of demands to facilities and a subgraph of G span-
ning the open facilities (a Steiner tree). If demand j is as-
signed to facility i(j) and the length of the shortest path
between them in G (w.r.t. c) is d(j, i(j)), then the cost of a
solution is

∑
j∈D d(j, i(j)) + M

∑
e∈T ce (where T is the

Steiner tree spanning the open facilities). The first constant-
factor approximation algorithm for this problem was given
by Karger and Minkoff [17], and Gupta et al. [14] sub-
sequently gave an algorithm with improved performance
guarantee. Very recently, Swamy and Kumar [24] obtained
a 5-approximation algorithm for this problem.

In the multicommodity version of connected facility lo-
cation, we are in addition given several commodities. Each
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demand belongs to one of these commodities. We again
open facilities and assign demands to them, but now require
only a subgraph T such that, for any commodity k, the set of
facilities serving demands of commodity k are connected.
In solving the rent-or-buy problem, we develop techniques
that also give a constant-factor performance guarantee for
the multicommodity connected facility location problem.

New Techniques for Primal-Dual Approximation Al-
gorithms. Our algorithm is based on the primal-dual
method. The high-level idea of this method is to consider
an integer programming formulation of our network design
problem and the dual of its linear programming relaxation,
and to iteratively construct both an integral primal solution
(i.e., a feasible network) and a feasible dual solution prov-
ing that the network has near-optimal cost.

The first systematic application of the primal-dual
method was to a large class of network design problems;
see [11, 26] for a survey of this and earlier work. More re-
cently, Jain and Vazirani [16] gave primal-dual approxima-
tion algorithms for several facility location problems that
could not be solved using earlier techniques. Our algorithm
is at times reminiscent to the facility location algorithms
of [16] (reflecting our need to cluster demands together to
leverage economies of scale) and to the network design al-
gorithms described in [11] (as clustered demands must then
be connected cheaply, as in canonical network design prob-
lems). However, these two implementations of the primal-
dual method are not easily combined, and we require fur-
ther ideas to obtain a good approximation algorithm for the
rent-or-buy problem. In particular, we contribute two new
techniques to existing primal-dual technology that we be-
lieve may find other applications.

First, we introduce geometric scaling in a primal-dual
context. We use scaling to break up the execution of our
algorithm into successive stages in a way that ensures that
the “mistakes” made in any given stage have little signif-
icance for future stages. While other primal-dual algo-
rithms have been used as a black-box within a scaling pro-
cedure [1, 8, 9, 27], we use scaling inside our primal-dual
algorithm to control the rate of increase of dual variables.

Second, unlike most previous primal-dual approximation
algorithms, we do not explicitly maintain feasibility of our
dual solution. Rather, we maintain feasibility with respect
to a strict subset of the dual constraints, and prove that we
are always approximately feasible for the full LP. This idea
is similar in spirit to recent “dual fitting” approaches to fa-
cility location problems [15, 22]. Freed from the need to
maintain dual feasibility, we can make use of an unusually
aggressive dual increase step; this in turn allows us to more
easily argue that the cost of our solution is close to the ob-
jective function value of our (approximately feasible) dual
solution.

2 Preliminaries

An instance of multicommodity rent-or-buy network de-
sign (MROB) is specified by an undirected graph G =
(V, E), a nonnegative cost ce for each edge e, a set D =
{(s1, t1), . . . , (sp, tp)} of pairs of demands, and a parame-
ter M > 1. We will abuse notation and write j ∈ D for a
generic demand j of the form sk or tk. We assume for sim-
plicity that the source sk wishes to send one unit of flow to
the sink tk, but our algorithm and analysis extend without
difficulty to non-uniform flow requirements (details omitted
from this abstract). By d(u, v) we mean the length of the
shortest path1 in G between vertices u and v, with respect
to edge lengths c.

A solution to an MROB instance is specified by an as-
signment of each demand pair (sk, tk) ∈ D to an sk-tk path
of G. If ae paths use edge e, then the cost of this solution
is defined by

∑
e∈E ce min{ae, M}. The term ceae cor-

responds to renting capacity on edge e, and the term c eM
corresponds to buying capacity on e. We seek a solution of
minimum cost.

2.1 Reformulation as Connected Facility Location

We begin with a reduction from MROB to multicom-
modity connected facility location (MCFL). We will see
shortly that the latter problem admits a relatively simple in-
teger programming formulation, thereby allowing us to use
the primal-dual method.

The precise problem that we reduce to is the following.
The input is an undirected graph G = (V, E) with edge e
possessing cost ce, a set D = {(s1, t1), . . . , (sp, tp)} of
vertex pairs, and a parameter M > 1. A solution con-
sists of a set F ⊆ V of facilities to open, an assignment of
sources and sinks to open facilities, and a subgraph (V, H)
of G with the following property: if for some k, sk is
assigned to facility i1 and tk to i2, then there is a path
in (V, H) between i1 and i2. The cost of a solution is∑

j∈D d(j, i(j)) + M
∑

e∈H ce, where i(j) is the facility
to which the demand j is assigned and d is again shortest-
path distance in G (with respect to c). (The seemingly more
general statement of MCFL in Section 1 can also be reduced
to the one above.) We then have the following reduction.

Lemma 2.1 A β-approximation algorithm for MCFL gives
a 2β-approximation algorithm for MROB.

Proof: An instance of MROB naturally defines an instance
of MCFL with the same parameters (G, c, D, and M ). We
will map every solution of the latter problem to one of the
former with equal cost, and an optimal solution to the for-
mer problem to one of the latter with at most twice the cost.

1Throughout this paper, we assume some arbitrary but fixed tie-
breaking mechanism that ensures uniqueness of shortest paths.
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Given a solution to the induced MCFL instance, define
an MROB solution as follows. The sk-tk path is defined to
be the shortest path from sk to i(sk) and from i(tk) to tk,
connected by a path from i(sk) to i(tk) in H , the subgraph
of edges chosen in the facility location solution (which ex-
ists by feasibility for MCFL). This solution to the MROB
instance has cost bounded above by the MCFL solution.

Consider an optimal solution P ∗
1 , . . . , P ∗

p to an MROB
instance. Let H∗ denote the edges used by M or more
paths. We cannot simply reverse the mapping of the pre-
vious paragraph, since there is no guarantee that the sub-
paths of P ∗

k from sk to H∗ and from tk to H∗ terminate in a
common component of H ∗. Instead, initialize H (the con-
necting edges in our facility location solution) to be H ∗ and
F (the open facilities) to be the vertices spanned by H ∗; we
will supplement these sets with further edges and vertices
shortly. Define {Hi} to be the components of (V, H) with
isolated vertices discarded; this set is initially just the non-
trivial components of (V, H ∗), but will change as we add
further edges to H .

Call a demand pair (sk, tk) good if path P ∗
k is edge-

disjoint from all but at most one Hi, and bad otherwise.
If P ∗

k is edge-disjoint from all Hi’s, then add vertex sk to
F and assign both sk and tk to it. If P ∗

k intersects only Hi,
then assign each of sk and tk to their nearest neighbors in
Hi. As long as there is a bad pair, we execute the following
procedure.

Let Hi be the component of minimum index that inter-
sects some bad demand demand pair, say (sk, tk). Call Hi

the current component. Let P 1
k denote the edges of P ∗

k \H ,
and P 2

k the edges of P ∗
k ∩H that lie outside of Hi (in com-

ponents with larger index). Our analysis breaks into two
cases. Let c(P ) denote

∑
e∈P ce for a subgraph P .

Case 1: Suppose c(P 1
k ) ≥ c(P 2

k ). In this case we assign
each of sk and tk their nearest neighbors in Hi, and redefine
the demand pair (sk, tk) to be good.
Case 2: Suppose c(P 1

k ) < c(P 2
k ). In this case we add all

edges of P 1
k to H , and add all endpoints of these edges to F .

Since (sk, tk) is bad, this addition causes two or more com-
ponents (Hi and components of higher index) to merge into
a single component; the new component retains the index i.
Any demand pair (sq, tq) whose path is now edge-disjoint
from all non-trivial components of (V, H) except H i (such
as (sk, tk)) is redefined to be good, and sq and tq are as-
signed to their nearest neighbors in Hi.

Each iteration of the above procedure strictly increases
the number of good demand pairs and maintains the invari-
ant that all good demand pairs have been assigned to open
facilities in a common component of (V, H). The procedure
therefore terminates with a feasible solution to the MCFL
instance; it remains to show that this solution has small cost.

We first claim that assignment costs of our solution are
at most 2

∑
e/∈H∗ aece, where ae < M paths of the net-

work design solution use edge e. It suffices to show that,
for each demand pair (sk, tk), our assignment costs for sk

and tk are upper bounded by twice the cost of the edges in
P ∗

k \ H∗. This is clear for a demand pair (sk, tk) whose
path P ∗

k is edge-disjoint from H ∗, since its assignment cost
is d(sk, tk) ≤ c(P ∗

k ) = c(P ∗
k \ H∗). Suppose now that at

some point in the procedure, the demand pair (sk, tk) got
assigned because its path P ∗

k intersected the current graph
(V, H) in exactly one component, say Hi. Since sk and
tk are assigned to their nearest neighbors in Hi, it is then
easy to see that d(sk, i(sk)) + d(tk, i(tk)) ≤ c(P ∗

k \Hi) ≤
c(P ∗

k \ H∗). Finally, suppose demand pair (sk, tk) is as-
signed in case 1 of some iteration of the procedure, with H i

the current component. Since sk and tk are assigned to near-
est neighbors in Hi, we have d(sk, i(sk)) + d(tk, i(tk)) ≤
c(P ∗

k \ Hi) = c(P 1
k ) + c(P 2

k ) ≤ 2c(P 1
k ) ≤ 2c(P ∗

k \ H∗).
To conclude we prove that

∑
e∈H ce ≤ 2

∑
e∈H∗ ce.

Edges are only added to H during case 2 of the above proce-
dure. Suppose this occurs with current component H i1 , and
with path P ∗

k intersecting components Hi1 , . . . , Hiq with
i1 < · · · < iq. By eligibility for case 2, the edges added to
H at this point have cost at most

∑q
s=2

∑
e∈His

ce. The key
observations are these: only components with index larger
than that of the current component appear in this expres-
sion (is > i1 for s > 1); once a component appears in this
expression, its edges are absorbed into the current compo-
nent (which retains its index); edges of any such compo-
nent lie in H∗; and the index of the current component can
only increase. Because of these four facts, every edge of
H∗ participates in the expression

∑q
s=2

∑
e∈His

ce at most
once. Summing over all additions of edges to H , we get∑

e∈H ce =
∑

e∈H∗ ce +
∑

e∈H\H∗ ce ≤ 2
∑

e∈H∗ ce.

2.2 An LP formulation
We now give an integer programming formulation for

MCFL. The decision variables are of the form xij (1 if de-
mand j is assigned to facility i and 0 otherwise) and ze (1
if e is selected as a connecting edge and 0 otherwise). The
integer program is as follows:

min
∑

j∈D

∑

i∈V

xijd(i, j) + M
∑

e∈E

ceze s.t. (IP)

∑

i∈V

xij = 1 ∀j ∈ D
∑

e∈δ(S)

ze ≥
∑

i∈S

xisk
−

∑

i∈S

xitk
∀S ⊆ V, sk ∈ D

∑

e∈δ(S)

ze ≥
∑

i∈S

xitk
−

∑

i∈S

xisk
∀S ⊆ V, tk ∈ D

xij , ze ∈ {0, 1},
where δ(S) is the set of edges having precisely one endpoint
in S. We replace the integrality constraint by xij , ze ≥ 0
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for all e, i, j to obtain a linear program. The dual to this
relaxation is

max
∑

j∈D
αj s.t. (DP)

αsk
−

∑

S:i∈S

yS,sk
+

∑

S:i∈S

yS,tk
≤ d(i, sk) (1)

αtk
−

∑

S:i∈S

yS,tk
+

∑

S:i∈S

yS,sk
≤ d(i, tk) (2)

∑

j∈D

∑

S:e∈δ(S)

yS,j ≤ Mce ∀e ∈ E (3)

yS,sk
, yS,tk

≥ 0 (4)

where constraints (1) and (2) range over all (sk, tk) ∈ D
and i ∈ V . By weak duality, any feasible solution to this
dual LP is a lower bound on the cost of an optimal solution
to the connected facility location problem.

The dual LP should be interpreted as follows. The value
αj is the amount that demand j ∈ D is “willing to pay” to-
wards a solution. If demand j is assigned to facility i, a por-
tion of αj pays for the distance d(i, j); the rest contributes
to the connecting edges. At the highest level, the goal of
our algorithm (and of any primal-dual algorithm) is to raise
the dual variables αj as much as possible (“generating rev-
enue”) while maintaining dual feasibility, thereby ensuring
that

∑
j∈D αj is a valid lower bound on the optimum.

3 The Algorithm

3.1 Difficulties

Before presenting our algorithm, we try to indicate some
of the main difficulties that arise in solving MCFL. We first
propose a simple primal-dual algorithm for the problem.
Call a demand j tight with facility i if the constraint (1)
for j is satisfied with equality (with respect to the current
dual solution), and edge e tight if the constraint (3) for e is
satisfied with equality. Call a facility i reachable from j if
there is a facility k with the following property: j is tight
with k and there is a path of tight edges between k and i.
The algorithm is as follows, and is similar to that of Jain
and Vazirani [16] for classical facility location. We begin
with all dual variables set to zero, and begin raising the α j’s
at a uniform rate. We also raise the dual variable ySj ,j in
conjunction with j, where Sj is set of facilities reachable
from j. This procedure ensures dual feasibility with the
constraints (1) and (2) replaced by

αsk
− ∑

S:i∈S yS,sk
≤ d(i, sk) ∀ sk ∈ D, i ∈ V (5)

αtk
− ∑

S:i∈S yS,tk
≤ d(i, tk) ∀ tk ∈ D, i ∈ V . (6)

We ignore further issues of dual feasibility for the moment
(though our algorithm must handle this difficulty).

When M unassigned demands become tight with a com-
mon facility, we open the facility and call this group of de-
mands a cluster. Assume we succeed in clustering all of the
demands into groups of size M . Intuitively, these are groups
large enough to justify building edges to connect the open
facilities (since the cost of building an edge is M times the
cost of assigning demands across an edge). These clusters
induce an instance of the well-solved generalized Steiner
problem [1, 10] with clusters as terminals and connectiv-
ity requirements induced in a natural way. This suggests
running a primal-dual algorithm for the generalized Steiner
problem (as in [1, 10]).2 Unfortunately, a problem arises.
The algorithms of [1, 10] build edges one-by-one, until all
connectivity requirements are satisfied. When an edge is
built, two components of edges merge into one; in our ap-
plication, this may connect many of the demand pairs in the
original connected facility location instance, dropping the
number of unsatisfied demands in the new component to a
nonzero number much less than M . We may thus encounter
a partial solution that fails to satisfy all connectivity require-
ments and also fails to cluster unsatisfied demands into large
enough groups to justify building further edges.

To handle this problem, we are forced to interleave clus-
tering and building phases. This in turn causes several tech-
nical problems that must be dealt with. For example, in any
given phase, the dual variables of previous phases will con-
tribute to the constraints of type (3), thereby creating many
tight edges and forcing the reachable sets Sj to grow large
quickly. We deal with this problem in two ways.

First, we break our algorithm into stages, with the dual
increase of each variable in one stage being a constant factor
larger than the increase in the previous stage; this ensures
that dual increases in one stage cannot affect future stages
too much. Second, we introduce a method for bounding the
proliferation of tight edges via a distance-preserving prop-
erty. Roughly speaking, this property asserts that we can
pay for “most” of the tight edges with the current dual solu-
tion, in the following sense: if T is the set of tight edges and
B ⊆ T are the edges that we can pay for with the current
dual solution, then the distances between any pair of ver-
tices in the graphs GB and GT obtained by contracting the
edges of B and T , respectively, differ only by a small factor.
We then show that all demand pairs with source and sink
“not too far apart” can be assigned to facilities in the graph
GT with a cost that can be accounted for with our current
dual solution; the smallest distance qualifying as “far apart”
will increase exponentially with the number of stages. By
the distance-preserving property, it follows that assignments
in GB of such demands can be (approximately) paid for.
The cost of assignments in GB approximately reflect the
cost of assignments in G (since the contracted edges in GB

2Indeed, this approach leads to a constant-factor approximation for the
special case when all sinks are identical.
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are the edges of B, which are already paid for and can there-
fore be used freely), so such demands can be assigned to
open facilities without incurring too much cost. At the end
of the algorithm, all demands are “not too far apart”, and
we obtain a feasible solution with small cost.

3.2 Some Preliminaries

Auxiliary Graphs. Our algorithm maintains two graphs,
G′ and GB . Both of these graphs will change throughout
the execution of our algorithm. Let dG′ and dGB denote
shortest-path distance in these two graphs. Let B denote
the set of edges already built by our algorithm. As in the
previous section, the graph GB is obtained from G by con-
tracting all edges in B. The distance dGB (sk, tk) should be
interpreted as the cost of assigning sk and tk to open facili-
ties that are already connected to each other (this is not quite
true, but motivates why GB is a useful network to consider).
Since the edges in B are in some sense “already paid for”,
GB can be thought of as a “residual network”. Also, each
connected subgraph H of GB corresponds to a connected
subgraph of G in a natural way; we denote this subgraph by
G[H ].

The graph G′ intuitively corresponds to the graph GT of
the previous section, but has a more complicated definition.
We will call G′ the auxiliary graph. At every point in our
algorithm, the graph G′ is obtained from GB by a sequence
of the following two operations: (1) contract an edge of
GB; (2) decrease the length, �(e), of an edge e from ce to
zero. (While setting an edge length to zero is intuitively
the same as contracting it, it will be technically convenient
to distinguish between these two operations.) The distance
dG′ in G′ will be with respect to the length �(e) of edges in
G′, which for each edge e will be either ce or zero.

A vertex v′ ∈ G′ corresponds to a connected subgraph
in both GB and in G—we denote these subgraphs GB [v′]
and G[v′], respectively (see Figure 1). We define GB[H ′]
and G[H ′] for a connected subgraph H ′ of G′ in a similar
manner. We intuitively think of G′ as a “coarser version” of
GB , with each vertex v ′ in G′ representing a small “region”
in GB . We associate with v′ a vertex of GB[v′] that we call
a core (denoted core(v ′)). As a vertex in GB , core(v′) is
a connected component of built edges that we think of as
being “nearby” all vertices of GB[v′]; thus if demands in v ′

need to be assigned to an open facility, core(v ′) represents
some that are close by. Similarly, building edges between u ′

and v′ in G′ should translate in a distance-preserving man-
ner to building edges between core(u) and core(v) in GB .

Each vertex v of G or GB is contained in some vertex of
G′; we will denote this vertex by v(G′). When we speak of
demand j in GB (or G′), we mean the vertex of GB (or G′)
that contains j.

Some Assumptions. We next make two easily-imposed
assumptions about the problem input, which will simplify

v’

core(v’)

core(v’)G [v’]
B

G[v’]

In G:In G  :
B

In G’:

Figure 1. Mappings between vertices of vari-
ous graphs. Bold edges have been built.

the description of our algorithm: (1) we assume that every
edge with non-zero cost has cost precisely ε, where ε is a
sufficiently small constant; (2) we assume that the distance
between any two demands that are not co-located is at least
20C2, where C is a sufficiently large constant.

Assumption (2) can be enforced by scaling up all dis-
tances of the input graph. Assumption (1) is enforced by
rounding edge costs to a multiple of ε and then subdivid-
ing edges until all edges have length precisely ε. This per-
mits the dual increases in our algorithm to occur in discrete
steps, and affects the approximation ratio by a negligible
factor. These subdivisions allow for facilities to be located
at these new subdividing points, but simple postprocessing
relocates facilities at the original vertices at the expense of a
small constant factor increase in the solution cost. There is
also a concern that these subdivisions may result in a pseu-
dopolynomial time algorithm, but in fact the algorithm we
give below for subdivided networks is easily converted into
a strongly polynomial time algorithm. Details are given in
the full version.

Defining Tight. We now give our revised definition of
what it means for a demand j to be tight with a facility i.
The definition will be similar but not identical to the notion
of “reachable” in Subsection 3.1, and will make use of the
auxiliary graph G′.

Initially, a demand j is tight with all facilities that are co-
located with it (including j itself). A demand j can become
tight with additional facilities when its dual variable αj is
increased or when the auxiliary graph G ′ is modified. First,
if αj is raised by ε units (by assumption (1) above, all dual
increases are of this form), then by definition j becomes
tight with any facility i satisfying the following: there is a
facility k of G and vertices i′ and k′ of G′ containing i and
k such that j is tight with k and dG′(k′, i′) = ε.

Finally, the facilities with which j is tight will satisfy the
following closure property, by definition: If j is tight with
a facility contained in vertex v ′ of G′ and dG′(v′, w′) = 0,
then j is tight with all facilities of G contained in w ′. This
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invariant implies that modifications of G′ (contracting an
edge or decreasing the length of an edge to zero) can implic-
itly increase the number of facilities with which a demand
is tight. Note also that by taking v ′ = w′ in this invariant, it
makes sense to say that a demand j is tight with a facility i ′

in G′; this simply means that j is tight with all facilities of
G in G[i′].

3.3 Algorithm Description

Disclaimer: Our algorithm will not output a feasible so-
lution to MCFL, but will instead output a partial solution
that is easily transformed into a feasible solution with at
most twice the cost. Our output consists of a set B of edges
and for each demand pair (sk, tk), an sk-tk path Pk. Our al-
gorithm will guarantee that M

∑
e∈B ce +

∑p
k=1 c(Pk \B)

is at most a constant factor larger than the cost of the opti-
mal solution to the original connected facility location prob-
lem. We will say that edges in B are bought or built and
that edges in Pk \ B are rented. If we began with an in-
stance of MROB, then it is straightforward to check that
P1, . . . , Pp can be reinterpreted as a solution for this in-
stance with the same (or smaller) cost; it follows from the
proof of Lemma 2.1 that this solution has cost within a con-
stant factor of optimal for the rent-or-buy problem. If we de-
sire a solution to the MCFL instance, then the reduction of
Lemma 2.1 can be used to extract one from P1, . . . , Pp, B
that is within a constant factor of optimal.

First, we describe some initial conditions for our algo-
rithm. We start with the empty primal solution (no edges
built, no assignments made) and the all-zero dual solution.
The auxiliary graph G′ is initially G. Each vertex v ′ of G′

will maintain a budget (intuitively, the amount of “revenue”
it has raised to pay for building edges and making assign-
ments); initially, all budgets are zero. Every demand will
be in one of three states: (1) alive and unfrozen, which in-
dicates an unassigned demand that is allowed to raise its
dual variable; (2) alive and frozen, which indicates an unas-
signed demand that is not allowed to raise its dual variable;
(3) dead, which indicates an assigned demand. Initially,
every demand is alive and unfrozen; frozen demands may
subsequently be unfrozen, but dead demands will never be
resurrected. Every facility will be either frozen (if it par-
ticipates in a cluster of M demands) or unfrozen (other-
wise). Initially, every facility is unfrozen; frozen facilities
may later become unfrozen.

Whenever we increase a dual variable αj , we simultane-
ously increase the dual variable ySj,j , where Sj is the set of
facilities with which j is tight (with the definition of tight
given in the previous subsection); we will see that this en-
sures that the relaxed dual constraints (5) and (6) are always
satisfied. We will henceforth only describe how to raise the
αj’s, which we refer to as “the dual variables”, with the un-
derstanding that the ySj ,j’s are raised in this way.

We now describe stage r of our algorithm (r ≥ 0). Let
Gr be the auxiliary graph at the beginning of stage r; G ′

will always denote the auxiliary graph at the current point
of time (so G′ = Gr at the beginning of stage r). The end
of the previous stage defines a set Fr of frozen facilities of
Gr (in stage 0, F0 = ∅); all other facilities, as well as all
alive demands, are unfrozen. The previous stage will en-
sure that facilities of Fr are far from each other in Gr, that
each facility i′ ∈ Fr possesses a set P (i′) of M primary
demands that are tight with i′, and that no demand is a pri-
mary demand for two different frozen facilities. A stage of
the algorithm consists of three phases.

Phase 1: The purpose of this phase is to form clusters. We
implement this as follows. Dual variables corresponding to
alive, unfrozen demands are raised uniformly, until one of
the following events happen.

1. There is a frozen facility i′ and an alive unfrozen de-
mand j such that either dG′(i′, j) ≤ 8 ·Cr+1 or j gets
tight with i′. (Recall from the previous subsection that
C is a sufficiently large constant.) Freeze the demand j
and stop raising αj .

2. There are M alive demand nodes tight with a facility
i′, and not all of them are frozen. Freeze the facility i ′,
add it to Fr, and set the M demand nodes to be P (i ′),
the primary demands of i ′.

3. There is a demand j such that αj is at least Cr+1.
Freeze the demand j and stop raising αj .

Note that freezing of demands or facilities may occur be-
fore any dual variables have been raised. Phase 1 terminates
when all alive demands are frozen. If more than one of these
three events happen simultaneously, we give precedence to
event (1).

Phase 2: This phase increases dual variables further (while
still ignoring the issue of dual feasibility) to pay for assign-
ing demands and building edges later in this stage. Pre-
cisely, we increase αj of every demand j in ∪i′∈FrP (i′)
by Cr+1. The budget of each node in Fr is updated to be
Cr+1.

Phase 3: The final phase of our algorithm is the most com-
plicated and breaks down into several procedures. We main-
tain a set of nodes X which is initially set to Fr. Let Zr

be the set of edges in Gr ( = G′) such that the constraint
(3) corresponding to these edges in the dual LP is violated,
and set �(e) to 0 for all these edges. (Of course, �(e) may
already be 0 in Gr for some edges). Let G′ be this new
auxiliary graph. Note that Gr and G′ have the same set of
vertices, but the distance functions in the two graphs are
different.

Setting lengths of some edges to be 0 can contract dis-
tances in G′ by a lot, compared to distances in GB . In

7



the procedure CreateNodes, we identify places where dis-
tances have contracted substantially. Since our aim is to
maintain the fact that two points are nearly at the same dis-
tance in GB as in G′, we build edges in GB at some of
these places so that the corresponding distances go down
in GB as well. To this end, we add more vertices to the
set X . To each vertex v ′ ∈ X , we associate a subgraph
B(v′) of G′, which is the set of all nodes within distance at
most 11 · Cr+1 of v′ in Gr. Note the subtlety here that the
distance is measured in Gr and not in the current auxiliary
graph G′.
Procedure CreateNodes: Suppose there are two vertices
u′, v′ ∈ G′ and P ′ is a shortest path between them in G′

(according to �, the length function on G ′). Let γ 	 C be
a sufficiently large constant. Further suppose that u ′, v′, P ′

satisfy the following properties: (1) none of the points in P ′

belong to any of the balls B(w ′) for any w′ ∈ X ; and (2)
dGB (core(u′), core(v′)) is between γCr+1 and 2γCr+1,
whereas dG′(u′, v′) ≤ γCr+1/4.

We choose a set of γ points u′
0, u

′
1, . . . , u′

γ from
the path P ′ as follows: u′

0 = u′, u′
1 is the right-

most point on P ′ such that (1 − 1/4) · Cr+1 ≤
dGB (core(u′), core(u′

1)) ≤ Cr+1, u′
2 is the right-most

point in P ′ such that dGB (core(u′), core(u′
2)) is between

(2 − 1/4) · Cr+1 and 2 · Cr+1 and so on. We stop when
we find γ such points. Existence of these points and the fact
that they lie on P ′ in this order are proved in the full ver-
sion. Let D(u′, v′) denote the set of these points, and add
these |D(u′, v′)| = γ points to X . We shall say that this
procedure creates the pair (u′, v′).

As before, we also construct the balls B(u′
l) around all

u′
l ∈ D(u′, v′). Note that the union of these balls may not

cover all of P ′. Indeed, since shortest paths in G′ do not
map to shortest paths in GB , there may be a point between
u′ and u′

1 whose distance from core(u′) in GB is much
more than Cr+1.

We keep doing this operation above as long as it is pos-
sible. At the end, for each v ′ ∈ X , we want to contract the
sets B(v′) into single nodes. The first problem with this is
more of a technical issue. For w ′ ∈ B(v′), look at the short-
est path in GB joining core(w′) and core(v′); all the edges
in this path may not lie in the set B(v ′). To handle this, we
complete the set B(v′) to B′(v′) thus: initially B′(v′) con-
tains just B(v′). Now if there is a vertex w′ ∈ B(v′) such
that the shortest path between core(v ′) and core(w′) in GB

uses a vertex x, where x(G′) is not in B(v′), then we add
x(G′) to B′(v′).

We now want to contract B′(v′) into a single node. An-
other problem presents itself: If B′(v′) and B′(u′) for
u′ 
= v′ ∈ X share some vertices, then both sets will get
contracted to the same node. To decide what the core of
this new node will be, we run the following procedure :
Procedure ContractTree(X): Let us construct a graph

GX on the vertex set X thus: u′, v′ ∈ X are joined by an
edge if B′(u′)∩B′(v′) 
= ∅. Now let TX be a spanning for-
est in GX ; i.e., TX restricted to any connected component
of GX is a spanning tree. For each edge e = (u ′, v′) ∈ TX ,
let w′ ∈ B′(u′) ∩ B′(v′). Find the shortest path be-
tween core(u′) and core(w′) in GB that lies entirely in-
side GB [B′(u′)]. Similarly, find a path from core(w ′) to
core(v′) in GB . Build edges on these paths (hence adding
these edges to the set B as well, and contracting all these
edges in GB).

Contract all the vertices in B′(v′) to a single node for
each v′ ∈ X in the auxiliary graph. If x′ is such a node,
then x′ may have been obtained by contraction of several of
the sets B′(v′1), . . . ,B′(v′s), where v′

1, . . . , v′s form a con-
nected component of GX in the procedure above. However,
note that these contractions are accompanied by the build-
ing of edges, and hence core(v ′

1), . . . , core(v′s) contract to
a single node in GB as well. This is defined as core(x′) in
GB , and we set the budget of x′ to be Cr+1.
Procedure Contract: As the last round of building edges
in a stage, we perform the following operation as long as
possible. Let u′, v′ be two nodes with budget C r+1 such
that the shortest path P ′ between them in G′ has no inter-
nal vertex of budget C r+1. Furthermore, suppose that these
nodes are “somewhat close”; i.e., dG′(u′, v′) ≤ 9 · Cr+2.
Let u = core(u′), v = core(v′), find a shortest path P in
GB between u and v, and build edges on this path. Further-
more, if P contains a vertex w such that w(G ′) is a vertex of
budget Cr+1 in G′, then find a shortest path in GB [w′] be-
tween w and core(w′), and build edges on this path as well.
Contract the edges we just built in GB . Note that core(u′)
and core(v′) will contract to a single vertex in GB , call this
x. P corresponds to a path P ′′ joining u′ and v′ in G′, and
contracting all the edges in P ′′ creates the new vertex x′ in
G′. We define core(x′) = x, and allot x′ a budget of Cr+1.

Procedure Prune Demands: Our next step in this phase
is to satisfy demands that are sufficiently close to each other
in G′. Formally, let sk, tk be a pair of alive demands with
dG′(sk, tk) ≤ 5 · Cr+2; define path Pk connecting them
to be the shortest sk-tk path in GB , lifted to an sk-tk path
of G in the obvious way. Edges of Pk \ B are rented, and
demands sk and tk are marked dead (we will never consider
them again in the algorithm).

Procedure Regrow: The final procedure of Phase 3 raises
the duals αj of some demand nodes. For a vertex v ′ with
a budget of Cr+1, define D(v′) to be the set of those de-
mands j that are only tight with G[v ′]. In particular, such a
demand j must lie in G[v ′], because every demand is tight
with itself.

If there is a vertex v ′ of budget Cr+1 such that |D(v′)| <
M , then we start raising the αj value of all demands in
D(v′) simultaneously, stopping an αj from rising further
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if it reaches Cr+1. Define Fr+1 to be the set of all nodes v ′

that have a budget of C r+1, and that also satisfy |D(v′)| ≥
M . This is the set of frozen facilities for the next stage. Fur-
thermore, for v ′ ∈ Fr+1, define the primary demands P (v ′)
of v′ to be any M of the demands in D(v ′).

4 Overview of Analysis

We now give a high-level overview of the analysis; the
precise arguments are given in the full version.

Approximate Dual Feasibility. Unlike a traditional
primal-dual algorithm, our algorithm does not explicitly
maintain feasibility of the dual solution. We explicitly obey
the relaxed constraints (5) and (6) and do not obey the dual
constraint (3) for edges at all. On the other hand, we prove
that our algorithm always maintains a dual solution that is
approximately optimal.

Theorem 4.1 If (α, y) is the dual solution produced by the
algorithm, then ( 1

5α, 1
5y) is feasible for the LP (DP).

Theorem 4.1 is proved in two steps. First, we use the
fact that αsk

and αtk
are only raised when sk and tk are far

apart (because of the Prune Demands procedure) in con-
junction with feasibility for constraints (5) and (6) to show
that constraints (1) and (2) are satisfied. Second, we show
that no dual constraint of the form (3) is violated by more
than a factor 5. Since we give edges with violated dual con-
straint length 0 at the beginning of Phase 3 (after which the
left-hand side of the constraint will never increase again, by
definition of tight), it suffices to prove that the contribution
to the left-hand side of the dual constraint corresponding to
edge e in a single stage is at most 4Mce. It is easy to show
that a single demand can contribute only ce to the left-hand
side, so the problem reduces to showing that only O(M)
demands contribute to the left-hand side. Our algorithm en-
sures this property by only allowing M different demands
to become tight with a vertex (this limits the contribution in
Phase 1), and by forcing any two frozen facilities to be far
apart; primary demands are relatively close to their frozen
facilities, and therefore primary demands belonging to dif-
ferent facilities cannot contribute to a single dual constraint
(this limits the contribution in Phase 2).

The Distance-Preserving Property. We next argue that
distances in GB and G′ are close to each other during the
entire run of the algorithm. Let β and λ be constants such
that β 	 γ 	 λ 	 C.

Theorem 4.2 Let v′ be a node with budget C s, and let v be
its core in GB . Then dGB (u, v) ≤ βCs for any u ∈ GB[v′],
with such a path lying inside the subgraph GB[v′].

Furthermore, let u′, v′ ∈ Gs, with cores u, v ∈ GB re-
spectively. Then dGB (u, v) ≤ 5 · dGs(u′, v′) + λCs.

We prove Theorem 4.2 by induction on s. Assume the
theorem holds for all stages before r. In stage r, we con-
struct the balls B(v′) for each v′ ∈ X of radius about Cr+1

in Gr, which by induction correspond to radius O(C r+1)
balls in GB , as well. Since we construct nodes of budget
Cr+1 by collapsing such balls, the first part of the inductive
step essentially follows from the fact that these balls have
radii O(Cr+1) in GB .

Now we show how to prove the second part of the theo-
rem above. Suppose we have finished the procedure Con-
tractTree in Stage r. Let u′, v′ ∈ G′ have a shortest
path P ′ between them in G′ that does not contain any ver-
tex of weight Cr+1, and dGB (core(u′), core(v′)) lies be-
tween γCr+1 and 2γCr+1. We claim that dG′(u′, v′) ≥
γCr+1/4; indeed, otherwise we would have consid-
ered this path in the procedure CreateNode and col-
lapsed it. If u′, v′, P ′ satisfy the above properties but
dGB (core(u′), core(v′)) is much bigger than γC r+1, then
we can break the path P ′ into smaller segments of length
about γCr+1 and argue independently on each segment.
Thus the distance between u′ and v′ is nearly the same in
GB and G′; though this is only up to an additive factor of
about γCr+1.

But what if P ′ contains nodes of budget C r+1? These
nodes can be a problem: since they correspond to subgraphs
of radii about Cr+1 in GB , we may be contracting distances
substantially in G′ by collapsing such subgraphs. Consider
two consecutive nodes of budget C r+1 in P ′ — the proce-
dure Contract ensures that the distance between them is so
large that the contraction of these nodes will not have much
effect on the distance between u′ and v′. This allows us to
prove the theorem.

The Performance Guarantee. The cost of the primal so-
lution is the sum of the cost of renting some edges and the
cost of building others. Let us first account for the rental
costs: if we rent edges between sk and tk in the Prune De-
mands procedure of stage r, the distance between sk and tk

is about Cr+1 in G′, and about the same in GB as well (us-
ing the distance preserving property). So if αsk

or αtk
is at

least Cr+1 then these demands can pay for the cost of rent-
ing by their dual variables. If both αsk

and αtk
are small, we

can show that both these demands are close enough to some
frozen facility such that we can pay for renting of edges to
this facility.

Accounting for the edges we build is more involved.
Here we use the budgets of nodes, which is roughly the
amount it can pay for building edges (scaled down by M ).
This explains why we assign a budget of C r+1 in Phase 2,
since we can account for this by the raising of M of the
αj values. In Contract, since we build edges between two
nodes of budget C r+1, one of these high-budget nodes can
pay for cost of building, which is O(MC r+1). In procedure
ContractTree also, each edge of the tree TX basically cor-
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responds to building edges on O(C r+1) length paths, and
so each node of TX has to account for about C r+1 length
edges. If a node of TX comes from Phase 2, we know it has
a budget of Cr+1, and so it can pay for building the edges.
If not, then this node in TX comes from the procedure Cre-
ateNode, and exists because of a pair (u ′, v′) created by
this procedure. But then the distance between u ′ and v′ in
G′ was much less than that in GB , and so many of the duals
must have been raised for this shrinking of distances. We
then show how to borrow C r+1 units of budget from these
dual variables, which completes the proof of the following
theorem.

Theorem 4.3 The cost of the primal solution constructed
by our algorithm is within a constant of

∑
j αj .
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