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1 IntrodutionDesigning truthful mehanisms with non-trivial worst-ase revenue guarantees is an importantbut hallenging problem. Suh guarantees are espeially ruial in ost-sharing problems, wherethe mehanism inurs outome-dependent osts, suh as prodution osts. (Approximate) budget-balane is the natural onstraint that the revenue olleted by the mehanism (approximately)equals the ost inurred.General mehanism design tehniques are highly oveted but equally rare. The most power-ful tehnique is, of ourse, the VCG mehanism, whih is truthful and eonomially eÆient (i.e.,welfare-maximizing). However, the VCG mehanism typially o�ers no non-trivial revenue guar-antees (see e.g. [35℄). More broadly, many important ost funtions are omplex, and an evenbe NP-hard to evaluate; for these, no \reasonable" truthful mehanism an ahieve exat budget-balane [15, 21, 23℄.The only known general tehnique for designing truthful, approximately budget-balaned ost-sharing mehanisms that have reasonable eonomi eÆieny or omputational omplexity is dueto Moulin [34℄. Roughly, a Moulin mehanism simulates an asending iterative aution. In eahiteration, pries are simultaneously o�ered to the remaining players. Players that aept remainin ontention; the others are removed. The mehanism halts when all remaining players aeptthe pries o�ered to them. To ahieve approximate budget-balane, the mehanism o�ers pries ateah iteration that approximately over the ost that would be inurred if the iteration is the last.To obtain truthfulness, a Moulin mehanism o�ers eah player a non-dereasing sequene of pries.Thus, Moulin mehanisms are exible, intuitive, and provide expliit ontrol over the generatedrevenue. Moreover, they have been suessfully designed for a wide range of appliations.Why aren't Moulin mehanisms enough? There are three reasons. First, reent negative re-sults [21, 40℄ show that for many fundamental ost-sharing problems, Moulin mehanisms inevitablysu�er from poor budget-balane, poor eonomi eÆieny, or both. Seond, designing the asendingpries that are o�ered in eah iteration of a Moulin mehanism an be a highly non-trivial problem.For example, for metri unapaitated faility loation (UFL) ost-sharing problems, many lassi-al approximation algorithms (e.g. [7, 17, 22, 24, 42℄) naturally indue pries, but suh pries neednot be asending and thus do not lead to truthful Moulin mehanisms; instead, a new metri UFLalgorithm was devised for this purpose [36℄. Third, Moulin mehanisms have found appliationprimarily in \binary demand games", in whih eah player is either served by the mehanism ornot (see also [34℄), and not in riher multi-parameter problems. These drawbaks motivate thesearh for mehanism design tehniques that go beyond Moulin mehanisms, while retaining theirdesirable features.1.1 Our ResultsWe propose ayli mehanisms, a new framework for designing truthful, approximately budget-balaned ost-sharing mehanisms. Ayli mehanisms stritly generalize Moulin mehanisms,retain nearly all of their laudable properties, and address the three drawbaks disussed above.To desribe the di�erene between Moulin and ayli mehanisms, reall that a Moulin meh-anism simulates an asending aution in whih pries are simultaneously o�ered to the remainingplayers in eah iteration. In an iteration of an ayli mehanism, these pries are o�ered to theplayers one-by-one in some designer-presribed order. If a player refuses the prie o�ered to it, theiteration terminates immediately, this player is removed for the rest of the aution, and the nextiteration begins anew with all of the remaining players. See Setion 3 for a formal de�nition. Per-haps surprisingly, this minor modi�ation greatly enrihes the set of possible truthful mehanisms.2



Problem Moulin lower bounds Ayli upper boundsVertex Cover �, � = 
(k1=3) � = O(log k), � = 2Set Cover �, � = 
(pk) �, � = O(log k)Metri UFL � = 
(log k), � = 3 � = O(log k), � = 1:61Steiner Tree � = 
(log2 k), � = 2 � = O(log2 k), � = 2Fault-Tolerant UFL N/A � = O(R2max + log k), � = O(R2max)Table 1: Summary of approximation results. \Moulin lower bounds" are provable lower bounds,established in [21, 40, 41℄, on the best-possible worst-ase approximate eÆieny and budget-balane ahievable by Moulin mehanisms for the given problem lass, where k denotes the numberof players. \Ayli upper bounds" are the performane guarantees for the ayli mehanismsdesigned and analyzed in this paper. For fault-tolerant UFL, Rmax denotes the maximum numberof failities to whih a demand might be onneted (Setion 7).The reason is that many natural methods of harging pries do not give rise to asending autionswhen pries are o�ered simultaneously, but do yield asending autions when some of the o�ers aresuppressed by the early termination of an iteration.Ayli mehanisms o�er three important advantages over Moulin mehanisms. First, we showin Setion 4 that several truthful ayli mehanisms follow in a generi way from \o�-the-shelf"primal-dual algorithms. For example, all known primal-dual and dual �tting algorithms for metriUFL [22, 24℄ and Steiner tree [1, 16℄ naturally indue truthful ayli mehanisms.Seond, for several important lasses of ost-sharing problems, ayli mehanisms have farbetter budget-balane and eonomi eÆieny than Moulin mehanisms. We make this ompari-son preise using the standard notions of �-approximate eÆieny and �-budget-balane, de�nedformally in Setion 2. The approximation ratios �; � are always at least one, with � = 1 and � = 1denoting full eÆieny and exat budget-balane, respetively. For some ost-sharing problems,Moulin mehanisms annot obtain good approximate eÆieny or budget-balane. For example,for Vertex Cover ost-sharing problems, every Moulin mehanism possesses 
(k1=3)-approximatebudget-balane and eonomi eÆieny, where k is the number of players [21, 40℄. In sharp ontrast,we show that the well-known primal-dual Vertex Cover approximation algorithm indues a truthfulayli mehanism that is 2-budget-balaned and has O(log k)-approximate eÆieny. We also givequantitative improvements over the best-possible Moulin mehanisms for several other types ofost-sharing problems. Table 1 summarizes our results. (We use f(n) = O(g(n)), f(n) = 
(g(n)),and f(n) = o(g(n)) to mean that limn!1 f(n)=g(n) is bounded above by a positive onstant,bounded below by a positive onstant, and equal to zero, respetively.)Finally, in Setion 6 we extend ayli mehanisms to general demand ost-sharing problems,a multi-parameter setting in whih eah bidder an be alloated one of multiple levels of servie.As a paradigmati example, in Setion 7 we fous on a fault-tolerant version of UFL ost-sharingproblems.What do we sari�e for the inreased generality of ayli mehanisms? Only a modiumof ollusion-resistane: while Moulin mehanisms are groupstrategyproof|without side payments,every non-trivial deviation by a oalition harms one of its members|ayli mehanisms are weaklygroupstrategyproof, meaning that every non-trivial deviation by a oalition fails to help one of itsmembers.
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Figure 1: Example 2.1. An instane of unapaitated faility loation (UFL).1.2 Related WorkThe theory of Moulin mehanisms was developed by Moulin [34℄ and Moulin and Shenker [35℄.Subsequently, researhers designed approximately budget-balaned Moulin mehanisms for a widerange of ombinatorial ost-sharing problems [4, 18, 19, 23, 25, 30, 31, 36, 41℄. Immorlia, Mahdian,and Mirrokni [21℄ were the �rst to prove that, for several basi lasses of ost-sharing problems,Moulin mehanisms inevitably su�er from poor budget-balane. Roughgarden and Sundarara-jan [40℄ developed a framework for quantifying eÆieny loss in Moulin mehanisms, and notedthat Moulin mehanisms with poor budget-balane have equally poor eonomi eÆieny. Finally,Devanur, Mihail, and Vazirani [10℄ designed several approximately budget-balaned ost-sharingmehanisms that are not Moulin mehanisms. All of the mehanisms in [10℄ are equivalent toinstantiations of the ayli mehanism framework developed in this paper.All of our mehanisms are derived from primal-dual algorithms. There is, of ourse, a longhistory of onnetions between ost sharing, mehanism design, and the primal-dual method (seee.g. [10, 23, 25, 36, 37℄ and the referenes therein). Our work further strengthens these onnetions.2 Preliminaries2.1 Cost-Sharing Problems and MehanismsA ost-sharing problem is spei�ed by a ost funtion C de�ned on a universe U of players. Everyplayer i 2 U has a private, nonnegative valuation vi for servie. We assume that the ost funtionC is non-dereasing (i.e., S � T implies C(S) � C(T )) and that C(;) = 0. The ost funtions thatwe onsider are impliitly de�ned by ombinatorial optimization problems; here, C(S) denotes thevalue of a minimum-ost solution to the subproblem indued by the subset S of players.Example 2.1 (UFL) An important type of impliitly de�ned ost funtion is an unapaitatedfaility loation (UFL) ost funtion. Suh a funtion is spei�ed by a set U of demands (theplayers), a set F of failities, an opening ost fq for eah faility q 2 F , and a nonnegative ostfuntion  de�ned on F � U . In Figure 1, for example, the universe ontains three players andtwo failities, the faility opening osts are f1 = 1 and f2 = 2, and the onnetion osts betweenfailities and players are as shown. For a subset S � U of the players, the ost C(S) is de�ned asthe ost of the heapest way to open a non-empty subset of failities and onnet all of the players4



in S to open failities. Formally,C(S) = min;6=F ��F 0�Xq2F � fq +Xi2S minq2F � (q; i)1A :For instane, in Figure 1, the ost C(fA;B;Cg) of serviing all of the players is 7.We fous on diret-revelation mehanisms. Suh a mehanism ollets a bid bi from eah playeri 2 U , selets a set S � U of players, and harges every player i a prie pi. We only allowmehanisms that satisfy the following standard assumptions: individual rationality, meaning thatpi = 0 if i =2 S and pi � bi if i 2 S; and no positive transfers, meaning that pries are alwaysnonnegative. We also assume that players have quasilinear utilities, meaning that eah player iaims to maximize ui(S; pi) = vixi�pi, where xi = 1 if i 2 S and xi = 0 if i =2 S. (Stritly speaking,we should use the notation ui(vi; S; pi); but the shorter form is onvenient and should ause noonfusion.)A mehanism is strategyproof (SP), or truthful, if no player an ever stritly inrease its utilityby misreporting its valuation. Formally, SP means that for every player i, every bid vetor b withbi = vi, and every bid vetor b0 with bj = b0j for all j 6= i, ui(S; pi) � ui(S0; p0i), where (S; p) and(S0; p0) denote the outputs of the mehanism for the bid vetors b and b0, respetively. (The playerhas true valuation vi in both ases.) It is groupstrategyproof (GSP) [35℄ if no oordinated false bidby a subset of players an ever stritly inrease the utility of one of its members without stritlydereasing the utility of some other member; transfers between oalition members are not allowed.It is weakly groupstrategyproof (WGSP) [10℄ if no oordinated false bid by a subset of players anever stritly inrease the utility of every one of its members. Thus, in a WGSP mehanism, everydeviating oalition has at least one indi�erent member. We note that while WGSP implies SP,truthful mehanisms are not generally WGSP; for example, VCG mehanisms are typially notWGSP.Traditionally, the role of a ost-sharing mehanism is to simply selet an alloation (suh as asubset of players to serve in a UFL ost-sharing problem). The reent omputer siene literaturehas, for the most part, additionally demanded ost-sharing mehanisms that produe a feasibleway of supplying the hosen alloation|in a UFL problem, a proposal of failities to open andonnetions between open failities and the served players. This paper follows the latter approah:all of the mehanisms we onsider also produe a feasible solution to the optimization problemindued by the served set S. The ost CM (S) of this feasible solution is permitted to exeedthe optimal ost C(S). For instane, in Example 2.1, a mehanism M might hoose to serviethe set fA;B;Cg by opening the seond faility, onneting all three players to it, and inurring(suboptimal) ost CM (fA;B;Cg) = 8. Allowing suboptimal solutions is neessary for feasiblyimplementable (i.e., polynomial-time) mehanisms: all of the optimization problems we onsiderare NP -hard, and thus omputing the optimal ost C(S) given a set S annot be aomplished inpolynomial time, unless P = NP .2.2 Approximate Budget-Balane and EÆienyWe study two types of approximation guarantees for ost-sharing mehanisms, one for revenue andone for eonomi eÆieny. First, for a parameter � � 1, a mehanism M is �-budget balaned ifCM (S)� �Xi2S pi � C(S)5



for every outome (set S, pries p, and feasible solution with ost CM (S)) of the mehanism. Weemphasize that the revenue of the mehanism must (approximately) over the ost of the solutionit proposes, whih an exeed the optimal ost C(S), and should also be no more than the optimalost. This requirement an only be met if the feasible solution produed by the mehanism has ostat most � times that of optimal. (Alternatively, we ould require that CM (S) �Pi2S pi � � �C(S).A mehanism satisfying one of these de�nitions is easily modi�ed to satisfy the other simply bysaling its pries by a � fator. All of our results have natural analogues for this alternativede�nition of approximate budget-balane.)Seond, following [40℄, we quantify eÆieny loss in ost-sharing mehanisms via the soial ostobjetive. The soial ost inurred by a mehanism is de�ned as the ost CM (S) of the feasiblesolution it produes for the instane orresponding to S, plus the sum Pi=2S vi of the exludedvaluations. The optimal soial ost is minS�U "C(S) +Xi=2S vi# : (1)A ost-sharing mehanism has two soures of ineÆieny: �rst, it might hoose a suboptimal set Sof players to serve; seond, it might produe a suboptimal solution to the optimization problemindued by S.Minimizing soial ost is ordinally equivalent to maximizing soial surplus Pi2S vi � C(S).No meaningful approximation results are possible for the latter objetive [14℄. The weaker goalof approximating the optimal soial ost permits the rigorous di�erentiation between ost-sharingmehanisms on eÆieny grounds, and the soial ost objetive an be interpreted as the \mini-mal perturbation" of surplus neessary for non-trivial approximation results (see [40℄ for a formalargument). We all a ost-sharing mehanism �-approximate if, assuming truthful bids, it alwaysprodues a solution with soial ost at most � times that of an optimal solution.2.3 Cost-Sharing Methods and Moulin MehanismsA Moulin mehanism is a type of ost-sharing mehanism that is driven by a ost-sharing method|a funtion � that assigns a non-negative ost share �(i; S) for every subset S � U of players andevery player i 2 S. We onsider ost-sharing methods that, given a set S, produe both the ostshares �(i; S) for all i 2 S and also a feasible solution for the optimization problem indued by S.A ost-sharing method is �-budget balaned for a ost funtion C and a parameter � � 1 ifC�(S)� �Xi2S �(i; S) � C(S); (2)where C�(S) is the ost of the feasible solution produed by the method �. This ost an exeedthe optimal ost C(S), and depends on the ost-sharing method �. A ost-sharing method isross-monotoni if the ost share of a player only inreases as other players are removed: for allS � T � U and i 2 S, �(i; S) � �(i; T ).Given a ost-sharing method � for C, we obtain the orresponding Moulin mehanism bysimulating an iterative asending aution, with the method � suggesting pries for the remainingplayers at eah iteration.De�nition 2.2 Let U be a universe of players and � a ost-sharing method de�ned on U . TheMoulin mehanism M(�) indued by � is the following.6



1. Collet a bid bi from eah player i 2 U .2. Initialize S := U .3. If bi � �(i; S) for every i 2 S, then halt. Output the set S, the feasible solution onstrutedby �, and harge eah player i 2 S the prie pi = �(i; S).4. Let i� 2 S be a player with bi� < �(i�; S).5. Set S := S n fi�g and return to Step 3.The Moulin mehanismM(�) learly inherits the budget-balane fator of the ost-sharing method �.Moulin [34℄ proved that for every ross-monotoni ost-sharing method �, the orresponding meh-anism M(�) is GSP.3 Ayli Mehanisms3.1 OverviewA Moulin mehanism an be viewed as a simulation of an iterative asending aution, with thepries that are simultaneously o�ered to the remaining players at eah iteration governed by theunderlying ost-sharing method. Cross-monotoniity of the ost-sharing method ensures that thesequene of pries o�ered to a player is nondereasing, whih in turn implies that the mehanismis truthful. Conversely, non-ross-monotoni ost-sharing methods result in iterative autions thatneed not be asending, and the orresponding mehanisms are generally not truthful.In an ayli mehanism, in eah iteration of the simulated iterative aution, pries are o�eredto the remaining players aording to a designer-spei�ed order. If eah remaining player aeptsthe prie o�ered to it, then the mehanism halts, and the remaining players are served at the prieso�ered in the �nal iteration. If some player refuses to pay the prie it is o�ered, then the iterationterminates immediately, this player is removed for the rest of the aution, and the next iterationbegins with the remaining players. Thus, a player need not be o�ered a prie in every iteration.Ordering the o�ers to the remaining players permits the onstrution of truthful mehanismsfrom non-ross-monotoni ost-sharing methods. Intuitively, the early termination of an iterationoneals subsequent pries from the players. If aborted iterations orrelate appropriately withfailures of ross-monotoniity, then the simulated iterative aution is asending in the followingsense: whenever an o�er is made to a player, it is at least as large as every o�er made in previousiterations. This property is suÆient for truthfulness. As we will see, many primal-dual algorithmsnaturally indue a ost-sharing method that is not ross-monotoni but possesses preisely thistype of orrelation.3.2 De�nitionsTo de�ne an ayli mehanism for a ost funtion C and a universe U , we require both a ost-sharing method � and an o�er funtion � . An o�er funtion spei�es a nonnegative o�er time�(i; S) for every subset S � U and every player i 2 S. These times speify the ordering in whihthe players of S should be o�ered a prie, with lower times orresponding to earlier o�ers, andequal times indiating simultaneous o�ers. As suggested in Setion 3.1, a ost-sharing method andan o�er funtion indue a mehanism that simulates an iterative aution in a natural, generi way.7



De�nition 3.1 Let U be a universe of players, � a ost-sharing method de�ned on U , and � ano�er funtion de�ned on U . The mehanism M(�; �) indued by � and � is the following.1. Collet a bid bi from eah player i 2 U .2. Initialize S := U .3. If bi � �(i; S) for every i 2 S, then halt. Output the set S, the feasible solution onstrutedby �, and harge eah player i 2 S the prie pi = �(i; S).4. Among all players i 2 S with bi < �(i; S), let i� be one with minimum �(i; S). (Break tiesarbitrarily.)5. Set S := S n fi�g and return to Step 3.Remark 3.2 The de�nition of the mehanism M(�; �) depends only on the ordering of the o�ertimes, and not on their numerial values. We work with real-valued o�er times rather than abstratorderings beause suh times arise naturally in primal-dual algorithms.Remark 3.3 For every universe U and ost-sharing method �, the Moulin mehanism induedby � is equivalent to the mehanism indued by � and the identially zero o�er funtion.As foreshadowed in Setion 3.1, the mehanism indued by a ost-sharing method and ano�er funtion will be truthful only if all failures of ross-monotoniity are suppressed by the o�erfuntion. We formalize the required property next; we prove that it is suÆient for truthfulness inSetion 3.3.Let � be an o�er funtion de�ned on a universe U . For a subset S � U and a player i 2 S, letL(i; S), E(i; S), and G(i; S) denote the players of S with o�er time �(�; S) stritly less than, equalto, and stritly greater than that of i, respetively.De�nition 3.4 Let � and � be a ost-sharing method and an o�er funtion, respetively, de�nedon a universe U . The funtion � is valid for � if the following two properties hold for every subsetS � U and player i 2 S:(a) �(i; S n T ) = �(i; S) for every subset T � G(i; S);(b) �(i; S n T ) � �(i; S) for every subset T � G(i; S) [ (E(i; S) n fig).In De�nition 3.4, a player's ost share must remain �xed as players with subsequent o�er timesare removed, and it an only inrease with the deletion of players with equal o�er times. Thedeletion of a player with an earlier o�er time imposes no onstraints, as suh a deletion terminatesthe iteration and suppresses the values of subsequent ost shares. Also, we impose no expliitonstraints on how the o�er funtion � hanges between onseutive iterations.Example 3.5 Consider the universe U = fx; yg and the non-ross-monotoni ost-sharing method �de�ned by �(y; fx; yg) = 1 and �(x; fx; yg) = �(y; fyg) = �(x; fxg) = 1=2. Let �x and �y denoteo�er funtions satisfying �x(x; fx; yg) < �x(y; fx; yg) and �y(y; fx; yg) < �y(x; fx; yg), respetively.Then �x is valid for � while �y is not.De�nition 3.6 An ayli mehanism is a mehanism M(�; �) indued by a ost-sharing method� and an o�er funtion � that is valid for �. 8



Remark 3.7 Ayli mehanisms are stritly more general than Moulin mehanisms. For exam-ple, all sequential mehanisms (see [34℄), in whih players are exogenously ordered and suessivelyo�ered servie at the urrent marginal ost, are easily implementable as ayli mehanisms. Thesemehanisms are fully budget-balaned and are not generally Moulin mehanisms. Sequential meh-anisms are not immediately useful for our purposes, however, as they have poor eÆieny andomputational omplexity properties.De�nition 3.4 is easy to satisfy in several appliations. Looking ahead, Setion 4 shows thatseveral well-known algorithms naturally indue a ost-sharing method and an o�er funtion that isvalid for it. In all of our appliations, the ost share �(i; S) of a player orresponds to part of a dualsolution to the optimization problem indued by S, and the o�er time �(i; S) is the time at whihplayer i is \deativated" by a primal-dual algorithm. For example, in UFL (Example 2.1), there isa one-to-one orrespondene between players and dual variables. We employ ost-sharing methodsthat de�ne ost shares as the dual variable values omputed by a primal-dual UFL algorithm thatruns over time. The o�er time of a player is de�ned as the time at whih the player's dual variable�rst assumes its �nal value.Remark 3.8 We use the term \ayli" to reet the fat that the o�er funtion of an aylimehanism orders the remaining players in a way that oneals the non-ross-monotoniity of theunderlying ost-sharing method. In partiular, De�nition 3.4 implies that for every subset S ofplayers, the following graph is direted ayli: the verties are the players of S, and the ar (i; j)is inluded if and only if �(j; S n fig) < �(j; S). This onsequene of De�nition 3.4 is reminisentof but di�erent from the notion of \semi-ross-monotoniity" introdued in [21℄.3.3 Properties of Ayli MehanismsThe following basi properties of ayli mehanisms are immediate.Proposition 3.9 Let � and � be a ost-sharing method and an o�er funtion de�ned on the uni-verse U , and M(�; �) the indued mehanism.(a) For every bid vetor b, the mehanism M(�; �) halts within jU j iterations.(b) If � and � run in polynomial time, then so does M(�; �).() If � is �-budget-balaned with respet to a ost funtion C, then so is M(�; �).(d) The mehanism M(�; �) has no positive transfers and is individually rational.The rest of this setion studies the inentive-ompatibility properties of ayli mehanisms.Our key lemma states that the pries o�ered to a player an only inrease during the exeution ofan ayli mehanism. To make this preise, we say that player i is o�ered the prie p in iteration jof an ayli mehanism M(�; �) if the following onditions hold: �rst, if S is the set of playersremaining at the beginning of the jth iteration, then i 2 S; seond, if a player i� is hosen fordeletion in this iteration, then �(i; S) � �(i�; S); third, the prie p is the ost share �(i; S).We �rst prove a preliminary result, stating that the prie o�ered to a player by an aylimehanism is �xed one a player with a subsequent o�er time is o�ered a prie.Lemma 3.10 Suppose an ayli mehanism M(�; �) o�ers pries to players j and i in an iterationwith remaining players S, and �(j; S) < �(i; S). Then �(j; S) is the only prie o�ered to j insubsequent iterations. 9



Proof: Let b denote the bid vetor and m the iteration with remaining players S. We show that noplayer of L(i; S) will ever be deleted; thus all removed players lie in G(j; S), and the lemma followsfrom De�nition 3.4(a).We proeed by ontradition, and let ` denote the �rst player of L(i; S) removed at or afteriterationm. Let T � S denote the players of S removed prior to `. Sine ` was removed, �(`; SnT ) >b`. Sine i was o�ered a prie in iteration m and ` 2 L(i; S), �(`; S) � b` < �(`; S n T ). By ourhoie of `, T ontains no players of L(i; S), and hene T � G(`; S). But De�nition 3.4(a) thengives �(`; S) = �(`; S n T ), a ontradition. �Corollary 3.11 If an ayli mehanism M(�; �) o�ers a prie to player i when the remainingset of players is S, then M never deletes a player of L(i; S).Proof: Let b denote the bid vetor. Sine i is o�ered a prie when the remaining set of players is S,�(j; S) � bj for every j 2 L(i; S). Lemma 3.10 implies that every player j 2 L(i; S) will be o�eredthe same prie �(j; S) in subsequent iterations, and hene no suh player will ever be deleted. �We now show that ayli mehanisms only o�er asending sequenes of pries.Lemma 3.12 If an ayli mehanism M(�; �) o�ers a player i the prie p1i in some iteration andthe prie p2i in a subsequent iteration, then p1i � p2i .Proof: Let S denote the remaining players in the earlier iteration, so p1i = �(i; S). Sine i waso�ered a prie in this iteration, Corollary 3.11 implies that no player of L(i; S) will be deleted inthis or subsequent iterations. The lemma now follows from De�nition 3.4(b). �Lemma 3.12 implies that ayli mehanisms are strategyproof.Theorem 3.13 Every ayli mehanism is strategyproof.Sine we generalize Theorem 3.13 in Theorem 3.16 below, we omit its short proof.The next example shows that mehanisms indued by invalid o�er funtions are not generallytruthful.Example 3.14 De�ne U , �, and �y as in Example 3.5. The mehanism M(�; �y) indued by �and �y is not strategyproof. To see this, suppose that vy = 3=4 and bx = 1=4. If player y bidstruthfully, it is not served and reeives zero utility. If it bids at least 1, however, it is served at theprie 1=2 and reeives positive utility.Reall from Setion 2.3 that Moulin mehanisms are groupstrategyproof (GSP). The next ex-ample shows that ayli mehanisms need not be GSP.Example 3.15 De�ne U , �, and �x as in Example 3.5. Sine �x is valid for �, the ayli mehanismM(�; �x) is strategyproof. It is not GSP, however. To see this, set vx = 1=2 and vy = 1. In everypossible exeution of M(�; �x), player x reeives zero utility. The oalition fx; yg an manipulatethe mehanism by bidding bx = 0 and by = 1; player x obtains the same utility as with truthfulbidding, and player y obtains stritly more.We onlude this setion by proving that ayli mehanisms are weakly groupstrategyproof(reall Setion 2.1), and thus nearly math the inentive-ompatibility guarantee of Moulin meh-anisms. 10



Theorem 3.16 Every ayli mehanism is WGSP.Proof: Let M(�; �) be an ayli mehanism de�ned on the universe U . Reall from Setion 2.1that a mehanism is WGSP if no oordinated false bid by a oalition of players an stritly inreasethe utility of every player in the oalition. Fix a oalition T � U , a valuation vi and a bid bi forevery player i 2 T , and bids b�T for the players not in T . Let Ev and Eb denote the exeutionsof M for the bid vetors (vT ; b�T ) and (bT ; b�T ), respetively. Let (S; p) and (S0; p0) denote theoutomes of these exeutions. We laim that ui(S; p) � ui(S0; p0) for some i 2 T .There are three ases. First, if no player of T is deleted in Ev or Eb, then these exeutionsterminate with idential outomes (S; p) and (S0; p0), and the laim holds. Seond, if some player i 2T is deleted in Eb, then ui(S0; p0) = 0. Sine ui(S; p) � 0 by the individual rationality of M(�; �)(Proposition 3.9(d)), the laim holds. For the �nal ase, assume that T � S0 and T 6� S, and let i bethe �rst player of T deleted in Ev, say in the jth iteration; obviously, ui(S; p) = 0. The exeutions Evand Eb are idential up to their jth iterations, and i is o�ered the same prie p�i in both exeutions.Sine i is deleted in Ev, p�i > vi. By Lemma 3.12, p0i � p�i > vi. Thus ui(S0; p0) < 0 = ui(S; p),ompleting the proof. �Remark 3.17 The proof of Theorem 3.16 immediately implies an inentive-ompatibility guaran-tee somewhat stronger than WGSP: for every ayli mehanism, every deviation by a oalitionthat stritly inreases the utility of one of its members either dereases the utility of or preventsservie to another member (f., Example 3.15).Remark 3.18 Not all WGSP mehanisms are ayli; see Juarez [27℄. For example, the followingmehanism for two players is WGSP but not ayli: o�er servie to the �rst player at a �xed prie,and to the seond at a prie that is a stritly inreasing funtion of the �rst player's bid.Charaterizing the lass of WGSP mehanisms and its relationship to ayli mehanisms is aninteresting diretion for future researh.4 Ayli Mehanisms via Primal-Dual AlgorithmsThis setion demonstrates how several well-known primal-dual algorithms naturally indue ayliost-sharing mehanisms. All of these algorithms were designed prior to the development ofMoulin mehanisms, but sine the ost-sharing methods indued by these algorithms are not ross-monotoni, they ould not be used to onstrut suh mehanisms. Setion 5 proves that thesemehanisms math or, in most ases, improve upon the best approximation guarantees possible forMoulin mehanisms.Setion 4.1 formally de�nes the �ve types of ombinatorial ost-sharing problems that we study.Setion 4.2 gives a self-ontained aount of three primal-dual algorithms, shows how eah induesa ost-sharing method and an o�er funtion in a natural way, and proves that these ost-sharingmethods are not ross-monotoni. Setion 4.3 proves the ayliity of these mehanisms, and alsoshows that not all natural primal-dual algorithms indue ayli mehanisms.4.1 Five Combinatorial Cost-Sharing ProblemsThis setion and the next fous on the following �ve lasses of ost-sharing problems.
11



Non-Metri Unapaitated Faility Loation (NMUFL). As introdued in Example 2.1,a non-metri unapaitated faility loation (NMUFL) ost funtion C is desribed by a universe Uof demands, a set F of failities with nonnegative opening osts, and onnetion ost funtion de�ned on F �U . In�nite onnetion osts are also allowed. For a subset S � U , C(S) is de�ned asthe ost of the heapest way to open a non-empty subset of failities and onnet all of the playersin S to open failities.Set Cover. A set over ost funtion C is desribed by a universe U of elements and a olletionC = fA1; : : : ; Amg of subsets of U with nonnegative osts 1; : : : ; m. For a subset S � U , C(S) isde�ned as the ost of the heapest way of overing the elements of S using subsets from C.There is a lose onnetion between NMUFL and Set Cover problems, and the latter anbe viewed as speial ases of the former: elements orrespond to demands, sets and their ostsorrespond to failities and their opening osts, and onnetion osts are either 0 (if the givenelement belongs to the given set) or +1 (otherwise).Vertex Cover. A vertex over ost funtion C is desribed by an undireted graph G = (V;U)with nonnegative vertex weights. For a subset S � U , C(S) is de�ned as the minimum weight of avertex over|a subset of verties that inludes at least one endpoint of eah edge|of (V; S).Vertex over ost funtions are learly speial ases of set over ost funtions: edges orrespondto elements, and sets of edges inident on a ommon vertex form the subsets.Metri Unapaitated Faility Loation. A metri unapaitated faility loation ost fun-tion is a NMUFL ost funtion in whih the onnetion osts satisfy the triangle inequality: forevery pair i; i0 2 U of demands and pair q; q0 2 F of failities,(q; i) � (q; i0) + (q0; i0) + (q0; i):Steiner Tree (ST). A Steiner tree (ST) ost funtion is spei�ed via an undireted graph G =(V;E) with nonnegative edge osts, a root vertex r 2 V , and a subset U � V of soure verties.For a subset S � U , C(S) is de�ned as the minimum ost of a subgraph of G that ontains at leastone path between the root r and eah soure of S.4.2 Primal-Dual Algorithms and Cost-Sharing MethodsGood ayli mehanisms depend on good ost-sharing methods|funtions that take as input asubset S of players, and output both a feasible solution for the optimization problem indued by Sand ost shares for the players that approximately over the ost of this solution. This goal isstrongly reminisent of that ahieved by primal-dual algorithms|algorithms that output a feasiblesolution to an optimization problem, as well as a \dual solution" that erti�es the near-optimalityof the solution. This parallel has already been exploited in the design of Moulin mehanisms(e.g. [18, 23, 25, 30, 36℄), and we demonstrate that this onnetion is equally powerful in the designof ayli mehanisms.This setion desribes three non-ross-monotoni ost-sharing methods indued by well-knownprimal-dual algorithms, inluding two inomparable methods for NMUFL problems and a methodfor ST problems. Setions 4.3{5.2 leverage these methods to design ayli mehanisms with goodperformane guarantees, and in partiular establish most of the upper bounds listed in Table 1.
12



4.2.1 The PD Mehanism for NMUFL ProblemsPrimal-dual algorithms lead to ost-sharing methods in a generi way. Our �rst illustration is aNMUFL algorithm that forms the basis of our 2-budget-balaned ayli mehanism for VertexCover problems. Consider a NMUFL problem de�ned by a universe U , failities F , and failityand onnetion osts f and , respetively. A star is a pair (q; T ), where q 2 F is a faility and Tis a subset of demands. The ost (q; T ) of the star (q; T ) is de�ned as fq +Pi2T (q; i). Let C(S)denote the set of all stars involving only players of S. The following integer program is an exatformulation of the NMUFL problem indued by a subset S � U of players:Min X(q;T )2C(S) (q; T )xqTsubjet to:(IP (S)) X(q;T )2C(S) : i2T xqT � 1 for all i 2 SxqT 2 f0; 1g for all (q; T ) 2 C(S).There is one deision variable per star (q; T ), and setting a variable xqT = 1 should be interpretedas opening the faility q and assigning all of the demands of T to q. There is one onstraint perplayer i of S, stating that at least one star ontaining i must be seleted. Every feasible solutionof the NMUFL instane indued by S an be mapped easily to a feasible solution of IP (S) of nogreater ost, and onversely.Replaing the last onstraint of IP (S) by xqT � 0 for every star (q; T ) 2 C(S) yields a linearprogramming relaxation. The dual linear program of this relaxation isMax Xi2S �isubjet to:(D(S)) Xi2T �i � (q; T ) for all (q; T ) 2 C(S)�i � 0 for all i 2 S.There is a one-to-one orrespondene between the dual deision variables �i and the players of S.By weak linear programming duality (see e.g. [9℄), the objetive funtion value of every feasiblesolution � ofD(S) provides a lower bound on the objetive funtion value of every feasible solution xof IP (S): Xi2S �i � X(q;T )2C(S) (q; T )xqT : (3)Why are these mathematial programs useful for designing ost-sharing methods? Suppose analgorithm is guaranteed to return feasible solutions x� and �� to IP (S) and D(S), respetively,suh that X(q;T )2C(S) (q; T )x�qT � � �Xi2S ��i : (4)Interpret x� as a feasible solution to the NMUFL instane indued by S, and eah dual variable ��ias a ost share �(i; S). By inequalities (3) and (4), this ost-sharing method � is �-budget-balaned.Thus, designing a �-budget-balaned ost-sharing method redues to designing a �-approximationalgorithm with performane guarantee established via the primal-dual inequalities (3) and (4).13



1. Initialize �i = 0 for all i 2 S, xqT = 0 for all (q; T ) 2 C(S), and the time t to 0. All playersof S are ative and unonneted.2. While ative players remain:(a) Uniformly inrease �i for every ative player i 2 S, until Pi2T �i = (q; T ) for somestar (q; T ) ontaining at least one ative player. Inrease t by the same amount.(b) Choose suh a star (q; T ) and letW denote the players already onneted to q. Set xqW =0 and xqT[W = 1. Deativate and onnet to q all of the players of T .Figure 2: The PD algorithm for NMUFL.There are several broadly appliable algorithmi paradigms for designing approximation algorithmsof this type (see e.g. [43℄).Cost-sharing methods do not automatially yield truthful ost-sharing mehanisms unless theysatisfy additional onstraints (f., De�nition 3.4). This motivates onentrating on a partiularlysimple lass of algorithms: primal-dual algorithms. Roughly, a primal-dual algorithm onstrutsfeasible solutions to a (primal) optimization problem and the dual of its linear relaxation in tandem,maintaining inequalities (3) and (4) as invariants during its exeution. Typially, the algorithmbegins with the all-zero primal and dual solutions, and primal feasibility is attained only at termi-nation.Figure 2 displays a primal-dual algorithm for the NMUFL problem, whih we all the PDalgorithm. (This algorithm is well known; see [20℄ and [43, Chapter 15℄.) At the beginning of thealgorithm, all dual variables are zero and all stars are unhosen. The algorithm also maintains anotion of time, initially zero. A player is ative if it is not ontained in a hosen star, and inativeotherwise. In eah iteration, the dual variables �i of all ative players are inreased simultaneouslyat unit rate until the dual onstraint for some unhosen star (q; T ) beomes tight: Pi2T �i = (q; T ).When suh a star beomes tight, it is hosen and the ative players of T are deativated; ties arebroken in an arbitrary but onsistent way. Suh a star an be found in polynomial time, eventhough there are an exponential number of stars (see [22℄). As long as there is a feasible solutionwith �nite ost, the algorithm will terminate with suh a solution. By Step 2a, it maintains dualfeasibility as an invariant.Lemma 4.1 (PD Invariant) For every NMUFL instane, the PD algorithm terminates with adual feasible solution.This primal-dual algorithm indues a ost-sharing method �PD for the given NMUFL problem:given a subset S � U , return the feasible NMUFL solution omputed by this algorithm, and seteah ost share �PD(i; S) to the �nal value of the dual variable �i.The ost-sharing method �PD is not ross-monotoni, even in the speial ase of Vertex Coverost-sharing problems, and thus does not yield a truthful Moulin mehanism.Example 4.2 Consider the Vertex Cover ost-sharing problem shown in Figure 3(a), with vertexweights as shown. This problem orresponds to the NMUFL instane shown in Figure 3(b). Edgesin the �gure represent zero onnetion osts; non-edges represent in�nite onnetion osts.14
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(b) Equivalent NMUFL problemFigure 3: Example 4.2. The ost-sharing method �PD is not ross-monotoni.We laim that �PD(C; fB;Cg) < �PD(C; fA;B;Cg), whih is a violation of ross-monotoniity.To ompute the ost share �PD(C; fA;B;Cg), we exeute the primal-dual algorithm of Figure 2with all three players present. At time 2, the star (2; fA;Bg) beomes tight and players A and Bare deativated. At time 4, the star (3; fB;Cg) beomes tight, C is deativated, and algorithmterminates with �PD(C; fA;B;Cg) = 4. If we remove player A and exeute the algorithm, thestar (3; fB;Cg) is the �rst to beome tight, at time t = 3. The algorithm halts at this point with�PD(C; fB;Cg) = 3 < �PD(C; fA;B;Cg).The primal-dual algorithm in Figure 2 also indues an o�er funtion: set �PD(i; S) equalto the time at whih player i is deativated in Step 2b of the algorithm. We all the meha-nism M(�PD; �PD) indued by �PD and �PD the PD mehanism. Setions 4.3{5.2 establish thatthe PD mehanism is ayli and, for Vertex Cover problems, is 2-budget-balaned and O(log k)-approximate.Example 4.3 In Example 4.2, �PD fails to be ross-monotoni beause�PD(C; fB;Cg) = 3 < 4 = �PD(C; fA;B;Cg):On the other hand, �PD(A; fA;B;Cg) = 2 < 4 = �PD(C; fA;B;Cg); in words, the PD mehanismo�ers player A its �rst-round prie of 2 before it o�ers player C its �rst-round prie of 4. Cross-monotoniity fails only when player A refuses this prie; in this ase, the PD mehanism makes no�rst-round o�er to player C, thereby suppressing the non-ross-monotoniity.4.2.2 The DMV Mehanism for NMUFL ProblemsNext we give a seond NMUFL ost-sharing method that leads to a mehanism that outperformsthe PD mehanism for general NMUFL and metri UFL problems (but not for Vertex Coverproblems). The method is again de�ned via a primal-dual algorithm for the programs IP (S)and D(S) (Figure 4). See also Remark 4.8 below for a greedy interpretation of this algorithm.This algorithm di�ers from the PD algorithm primarily in its hoie of the star (q; T ) in themain loop. First, only stars (q; T ) entirely omposed of ative players T are eligible for seletion.Seond, the seletion riterion depends on whether or not the faility q appears in a previouslyhosen star. These rules are designed to maintain the invariant that, prior to the saling in Step 3,the urrent primal and dual solutions have equal objetive funtion value. Primal-dual algorithms15



1. Initialize �i = 0 for all i 2 S, xqT = 0 for all (q; T ) 2 C(S), and the time t to 0. All playersof S are ative and unonneted, all failities are losed.2. While ative players remain:(a) Uniformly inrease �i for every ative player i 2 S, until for some star (q; T ) of ativeplayers T : (i) q is losed and Pi2T �i = (q; T ); or (ii) q is open and Pi2T �i =Pi2T (q; i). Inrease t by the same amount.(b) Choose suh a star (q; T ). Deativate and onnet to q all of the players of T . In ase (i),open q and set xqT = 1. In ase (ii), let W denote the players already onneted to q,and set xqW = 0 and xqT[W = 1.3. Divide every dual variable �i by Hk, where Hk =Pki=1 1=i and k = jU j.Figure 4: The DF algorithm for NMUFL.of this type are sometimes alled dual-�tting algorithms [22℄, so we all this algorithm the DFalgorithm.Lemma 4.4 (DF Invariant) After eah iteration of Step 2 of the DF algorithm,X(q;T )2C(S) (q; T )xqT =Xi2I �i;where I denotes the urrent set of inative players.We omit the straightforward indutive proof. See also [20, 22℄ for alternative desriptions of theDF algorithm, inluding polynomial-time implementations.The DF algorithm only onstrains dual variable growth in Step 2 via a strit subset of thedual onstraints|stars omprising only ative players|and the algorithm need not maintain dualfeasibility. This motivates Step 3, whih sales the dual variables to reover dual feasibility.Lemma 4.5 For every NMUFL instane, the DF algorithm terminates with a dual feasible solution.Lemma 4.5 follows from the well-known dual-�tting analysis of the greedy Set Cover algorithm(see [8, 20℄ and [43, Chapter 13℄).Remark 4.6 Lemma 4.5 holds with a saling fator of HjSj. For inentive-ompatibility reasons(Setion 4.3.1), we sale by the larger fator of HjU j in Step 3.Like the PD algorithm, the DF algorithm indues a ost-sharing method �DF and an o�erfuntion �DF . Given a subset S � U , the method �DF returns the feasible solution omputed bythe DF algorithm for the NMUFL instane indued by S, and ost shares equal to the �nal (saled)dual variables. The o�er time �DF (i; S) is de�ned as the time at whih player i is deativated inStep 2b of the DF algorithm. We all the indued mehanism M(�DF ; �DF ) the DMV mehanism,as speial ases of this mehanism were studied in [10℄. Setions 4.3{5.2 prove ayliity of andgood performane guarantees for the DMV mehanism.16



Remark 4.7 In Example 4.2, �DF (C; fA;B;Cg) = 6=H3 = 36=11 while �DF (C; fB;Cg) =3=H3 = 18=11. Thus �DF is not ross-monotoni. Minor modi�ations to this example showthat �DF also fails to be ross-monotoni in the speial ase of metri UFL problems.Remark 4.8 The DF algorithm an also be interpreted as a greedy algorithm [22℄. Given a partialsolution to a NMUFL instane, de�ne the ost e�etiveness of a star (q; T ) as (q; T )=jT j if q islosed and as Pi2T (q; i)=jT j if q is already open. The main loop of the DF algorithm (Step 2)is equivalent to repeatedly hoosing the star of ative players with smallest ost e�etiveness. Thedual variable of eah partiipating player is set to the ost e�etiveness of the star, divided by Hk.Remark 4.9 The DMV mehanism has an alternative desription in whih all of the suessiveinvoations of the underlying DF algorithm are ombined into a single one. In partiular, themehanisms in [10℄ are desribed in this way.4.2.3 The AKR-GW Mehanism for ST ProblemsOur �nal ost-sharing method is an analogue of the PD method for ST ost-sharing problems. Tode�ne this ST ost-sharing method, we introdue a well-known primal-dual formulation for the STproblem. Consider a graph G = (V;E) with nonnegative edge osts , a root vertex r, and soureverties U = fs1; : : : ; skg (the players). For a subset A � V of verties, let Æ(A) denote the edgesof E with preisely one endpoint in A. For a subset S � U of players, a subset A � V n frg isS-separating if it ontains at least one vertex of S. Let C(S) denote the S-separating subsets. Thefollowing integer program is an exat formulation of the ST problem indued by a subset S � U ofplayers: Min Xe2E exesubjet to:(IP � ST (S)) Xe2Æ(A) xe � 1 for all A 2 C(S)xe 2 f0; 1g for all e 2 E.The deision variables of IP (S) indiate whih edges are hosen. The onstraints require that forevery subset A that inludes at least one soure of S and exludes the root, at least one hosenedge protrudes from A. Every subgraph of G that spans S [ frg satis�es these onstraints, andonversely.We an obtain a linear program from IP � ST (S) by replaing the �nal set of onstraints bythe nonnegativity onstraints xe � 0 for all e 2 E. The dual linear program isMax XA2C(S) yAsubjet to:(D � ST (S)) XA2C(S) : e2Æ(A) yA � e for all e 2 EyA � 0 for all A 2 C(S).In ontrast to the previous dual program D(S), dual variables an orrespond to more than oneplayer of S. Despite this more omplex struture, we show that the standard primal-dual algorithmfor this problem leads easily to an ayli mehanism.17



1. Initialize yA = 0 for all A 2 C(S), xe = 0 for all e 2 E, F = ;, and the time t to 0. All playersof S are ative.2. While ative players remain:(a) Let A1; : : : ; A` denote the onneted omponents of (V; F ) that inlude at least one ativeplayer. Uniformly inrease the y-value of eah suh omponent untilPA2C(S) : e2Æ(A) yS =e for some edge e with xe = 0. Inrease t by the same amount.(b) Choose suh an edge e. Set xe = 1 and add e to F . Deativate every player ontainedin r's onneted omponent in (V; F ).3. Output F � = fe 2 F : F n feg is infeasibleg.Figure 5: The AKR-GW algorithm for ST.Next we review the primal-dual Steiner tree algorithm designed in [1℄; the primal-dual interpre-tation was made expliit in [16℄. We all this algorithm the AKR-GW algorithm, and it is shown inFigure 5. The algorithm starts with the all-zero primal and dual solutions, and iteratively augmentsits (infeasible) primal solution one edge at a time. A player i is de�ned to be ative while thereis no path from its soure si to the root. At eah iteration, the algorithm onsiders the onnetedomponents of (V; F ), where F is the edges seleted so far. The algorithm uniformly inreases thedual variables orresponding to the omponents that ontain at least one ative player. These dualvariables are inreased at a uniform rate until some dual onstraint beomes tight. The orrespond-ing edge is then added to the primal solution. The main loop halts when all players are inative,at whih point the urrent primal solution is feasible. Step 2a ensures that every dual onstraintis respeted, so the AKR-GW algorithm terminates with a dual feasible solution. The algorithmonludes with a pruning step (Step 3) that is relevant only for budget-balane (Theorem 5.8).Let F be the solution omputed by the main loop and all an edge e 2 F essential if F n feg is nota feasible Steiner tree. The essential edges of F form a feasible solution (see [16℄), and these arethe �nal output of the algorithm. This algorithm an be implemented in polynomial time [1, 16℄.We obtain a ost-sharing method �ST and o�er funtion �ST from the AKR-GW algorithmas follows. The o�er funtion is de�ned as in our earlier appliations: given S, �ST (i; S) is thetime at whih the AKR-GW algorithm deativates player i in Step 2b. De�ning the ost-sharingmethod �ST is ompliated by the many-to-many orrespondene between dual variables and play-ers (f., the dual program D(S) for NMUFL). A natural solution is to divide the value of a dualvariable equally among partiipating players [23, 30℄. Formally, let �(A) � 1 denote the number ofsoure verties of S inhabiting the S-separating set A, and de�ne�ST (i; S) = XA2C(S) : i2A yA�(A) ; (5)where fyAgA2C(S) is the dual feasible solution omputed by the AKR-GW algorithm.The ost-sharing method �ST , given S � U , returns the ost shares given in (5) together withthe solution omputed by the AKR-GW algorithm for the Steiner tree instane indued by S.Simple examples show that �ST is not ross-monotoni. We all the mehanism M(�ST ; �ST ) theAKR-GW mehanism. 18



4.3 AyliityWe now prove that all three of the mehanisms de�ned in Subsetion 4.2 are ayli.4.3.1 The PD and DMV MehanismsThe proofs of ayliity for the PD and DMV NMUFL mehanisms are essentially the same. Webegin by noting that ost shares and o�er times are equal in the PD method, and di�er only by a�xed saling fator in the DF method.Lemma 4.10 For every NMUFL problem with universe U , subset S � U , and player i 2 S:(a) �PD(i; S) = �PD(i; S);(b) �DF (i; S) = �DF (i; S)=HjU j.Proof: In the PD algorithm, every dual variable �i is inreased at unit rate from time 0 to thethe time at whih the orresponding player is deativated, whih by de�nition is �PD(i; S). Sine�PD(i; S) is the �nal value of �i, (a) follows.By the same argument, after Step 2 of the DF algorithm, �i = �DF (i; S) for every player i 2 S.Sine �DF (i; S) is this value divided by HjU j, (b) follows. �We an now prove that the PD mehanism is ayli and hene, by Theorem 3.16, WGSP.Theorem 4.11 The PD mehanism is ayli.Proof: Fix a NMUFL ost-sharing problem and let E(S) denote the exeution of the PD algorithmon the NMUFL instane indued by a subset S � U of players. Fix S � U and a player i 2 S. Let(q;A) denote the star hosen at time �PD(i; S) in E(S) that ontains player i.To establish De�nition 3.4(a), hoose T � G(i; S). Sine the o�er time of a player equals theearliest time at whih a star ontaining it is hosen by the PD algorithm, no star hosen in E(S) ator before time �PD(i; S) inludes a player of T . By indution on the main loop, the exeutions E(S)and E(S n T ) are idential up to and at the time �PD(i; S). As a result, �PD(i; S n T ) = �PD(i; S).By Lemma 4.10(a), �PD(i; S n T ) = �PD(i; S).The proof of De�nition 3.4(b) is similar. Fix a subset T � G(i; S)[(E(i; S)nfig) of players. Theexeutions E(S) and E(SnT ) are idential prior to the time �PD(i; S). Thus �PD(i; SnT ) � �PD(i; S)and, by Lemma 4.10(a), �PD(i; S n T ) � �PD(i; S). �An idential argument proves the ayliity of the DMV mehanism.Theorem 4.12 The DMV mehanism is ayli.4.3.2 The AKR-GW MehanismThe AKR-GW mehanism is also ayli, although the argument is more deliate than for the PDand DMV mehanisms. Indeed, Example 4.15 below shows that the orresponding mehanism fora more general lass of problems need not be ayli.First, we require a tehnial monotoniity lemma about the AKR-GW algorithm. A set A andthe orresponding dual variable yA are ative at time � in the AKR-GW algorithm if yA is inreasedin Step 2a when the time t equals � . 19



Lemma 4.13 Fix a Steiner tree ost-sharing problem with universe U . For S � U , let E(S) denotethe exeution of the AKR-GW algorithm on the instane indued by S. Choose T � S � U . Let ��denote the earliest time in E(S) at whih some soure of T is deativated.(a) If A ontains no players of T , then A is a onneted omponent in E(S) at time � � �� ifand only if it is a onneted omponent of E(S n T ) at time � .(b) If A is a onneted omponent at time � � �� in E(SnT ), then there is a onneted omponentA0 in E(S) at time � with A � A0.Roughly, Lemma 4.13 states that removing a subset T of soure verties an only shatter ativedual variables into smaller ones, up until the time at whih the �rst soure of T beomes inative.We omit the proof and move on to establish the ayliity of the AKR-GW mehanism.Theorem 4.14 The AKR-GW mehanism is ayli.Proof: Fix a Steiner tree ost-sharing problem with universe U , a subset S � U , and a playeri 2 S. By the de�nition of the AKR-GW algorithm and the ost-sharing method �ST (5), we aninterpret the ost share �ST (i; S) of a player i as aruing over the time interval [0; �ST (i; S)℄ inthe AKR-GW algorithm. The marginal inrease at time � is equal to 1=�(A), where A is player i'sonneted omponent at time � and �(A) is the number of players of S ontained in A.To hek De�nition 3.4(a), �x S, i 2 S, and a subset T � G(i; S). Let E(S) and E(S nT ) denotethe exeution of the AKR-GW algorithm on the Steiner tree instanes indued by S and S n T ,respetively. By the de�nition of �ST , the o�er time of a player is the time at whih it joins theonneted omponent of the root in the urrent primal solution. Sine T � G(i; S), no player of T isin the same onneted omponent as player i at or before time �(i; S) in E(S). By Lemma 4.13(a),the ontributions to player i's ost share are exatly the same in E(S) and in E(S nT ) until the time�(i; S), at whih time player i is deativated in both exeutions. Hene �ST (i; S) = �ST (i; S n T ),as desired.To hek De�nition 3.4(b), �x T � G(i; S) [ (E(i; S) n fig). Observe that players of T mighthave joined player i's onneted omponent long before time �ST (i; S) in E(S). By Lemma 4.13(b),at eah time prior to �ST (i; S), player i's onneted omponent in E(SnT ) ontains at most as manyplayers as that in E(S), and does not ontain the root r. Therefore, by time �ST (i; S), player i hasaumulated at least as large a ost share in E(S n T ) as in E(S). Sine player i's ost share in thelatter exeution is �xed by time �ST (i; S), the �nal ost shares satisfy �ST (i; S n T ) � �ST (i; S). �4.3.3 Is Ayliity Automati?Does every \natural" primal-dual algorithm indue an ayli mehanism? We next formalize thisquestion and answer it negatively. We restrit attention to primal-dual algorithms that share thefollowing properties with the ones studied in this paper. First, the primal-dual algorithm maintainsa notion of time. Seond, dual variables orrespond to non-empty subsets of players, are initiallyzero, and are only inreased throughout the algorithm. (The DF algorithm for NMUFL an beinterpreted as a suh an algorithm by moving its �nal saling step inside its main loop.) Third,at every point in time, every player is lassi�ed as either ative or inative, and a dual variable isinreased only if it orresponds to at least one ative player. Finally, the algorithm should terminatewith feasible primal and dual solutions.Every suh algorithm indues the following ost-sharing method and o�er funtion. For asubset S of players and a player i 2 S, the o�er time �(i; S) is the latest moment in time at20



whih player i is ative in the exeution of the primal-dual algorithm on the optimization problemindued by S. The ost-sharing method � returns the primal solution onstruted by the primal-dual algorithm and de�nes player i's ost share as follows. At the beginning of the primal-dualalgorithm, �(i; S) is initialized to zero. Whenever some dual variable is inreased in the algorithm,this inrease is split equally among the ative players to whih this variable orresponds. Thus, atevery moment in time, the sum of the players' ost shares equals the sum of the dual variables. Weall M(�; �) the anonial mehanism indued by the primal-dual algorithm. The PD, DMV, andAKR-GW mehanisms are all anonial in this sense.Not all anonial mehanisms are ayli. A Steiner forest ost-sharing problem is spei�ed bythe same data as a Steiner tree problem, exept that the soures U = fs1; : : : ; skg and root r arereplaed by a set U = f(s1; t1); : : : ; (sk; tk)g of soure-sink pairs (the players). For a subset S � U ,C(S) is de�ned as the minimum ost of a subgraph of G that ontains at least one path betweeneah si-ti pair of S. The AKR-GW algorithm of Figure 5 extends to (and was originally designedfor) Steiner forest problems [1, 16℄; the only di�erene is that a player is de�ned to be ative if andonly if its soure and sink lie in di�erent onneted omponents. The next example shows that theanonial mehanism for this primal-dual algorithm is not ayli.Example 4.15 Consider a Steiner forest ost-sharing problem with player set U = f1; 2; : : : ; kgand graph equal to the path of nodes s1; s3; s2; t1; t3; t2. The middle three edges have unit ost andthe outer two edges have ost 3=2. The �rst player orresponds to (s1; t1), the seond to (s2; t2),and k � 2 players have soures and sinks o-loated at s3 and t3, respetively. Let �SF denotethe ost-sharing method indued by the AKR-GW algorithm. When this algorithm is run with allplayers present, at time t = 1=2, all three of the middle edges will be seleted. All players otherthan the �rst two are deativated at this junture. The ost share of eah of the �rst two players is 1at this time, with a ontribution of 1/2 from both the soure and the sink of eah player. The �naltwo edges are seleted at t = 3=4, and the �nal ost shares of both players are 11=8, with s1 and t2ontributing a further 1=4 to their respetive ost shares, and s2 and t1 eah ontributing 1=8.Now suppose the seond player is absent. The sink t1 is in a singleton onneted omponentuntil t = 1=2, at whih point edge (t1; t3) is seleted. Similarly, the soure s1 is isolated untiltime t = 3=4, when edge (s1; s3) is seleted. These ontributions to the �rst player's ost shareequal 5=4. All other dual variable growth involving s1 or t1 is split equally among the �rst player andthe last k� 2 players; provided k is suÆiently large, the orresponding ontributions to player 1'sost share are negligible. Thus, �SF (1; U n f2g) � 5=4 < 11=8 = �SF (1; U). By symmetry,�SF (2; U n f1g) � 5=4 < 11=8 = �SF (2; U). This mutual failure of ross-monotoniity implies thatno o�er funtion, anonial or otherwise, an be valid for �SF (reall Remark 3.8).Remark 4.16 There is, however, a 2-budget-balaned and O(log2 k)-approximate Moulin meh-anism for Steiner forest problems [30℄. This mehanism is anonial for a primal-dual algorithmthat is similar to the AKR-GW algorithm but di�erent in an important respet: the duration ofativity of eah player is independent of the presene or absene of other players.Charaterizing the primal-dual algorithms that indue ayli anonial mehanisms is an in-teresting open problem.5 Improved Approximation GuaranteesThis setion proves tight upper and lower bounds on the approximate budget-balane (Setion 5.1)and eÆieny (Setion 5.2) of the three ayli mehanisms de�ned in the previous setion.21



5.1 Budget-Balane GuaranteesThis setion shows how budget-balane guarantees for all of the mehanisms de�ned in Setion 4.2follow easily from existing work in the approximation algorithms literature.5.1.1 The PD Mehanism for NMUFL and Vertex Cover ProblemsWe next show that the PD mehanism for NMUFL problems is dmax-budget-balaned, where dmaxdenotes the maximum number of failities to whih a player an be assigned at �nite ost. Themore important appliation of this mehanism is to Vertex Cover problems, for whih dmax = 2(f., Figure 3(b)). Extending the well-known analysis of primal-dual Set Cover algorithms impliesthe following guarantee for the PD algorithm.Lemma 5.1 For every NMUFL instane, the PD algorithm omputes a primal solution fx�qT g(q;T )2C(S)and a dual solution f��i gi2S satisfyingX(q;T )2C(S) (q; T )x�qT � dmax �Xi2S ��i :The intuition behind Lemma 5.1 is that every inrease of a dual variable in the PD algorithm onlyontributes to dual onstraints of dmax di�erent failities, and thus the primal ost will only exeedthe sum of the dual variables by a dmax fator. The details are essentially the same as those forSet Cover algorithms, whih appear in Hohbaum [20℄ and Vazirani [43, Chapter 15℄.In addition, the dual solution omputed by the PD algorithm is feasible (Lemma 4.1), and henethe omputed primal and dual solutions satisfy weak duality (3). As disussed in Setion 4.2.1,sine the ost shares of the PD method are the dual variables omputed by the PD algorithm,budget-balane of the PD method and mehanism follow.Theorem 5.2 For every NMUFL ost-sharing problem, the PD mehanism is dmax-budget-balaned.Reall that every Moulin mehanism for Vertex Cover problems is 
(k1=3)-budget-balaned [21℄.Assuming the Unique Games Conjeture [28℄, the budget-balane guarantee in Theorem 5.2 is thebest possible for a polynomial-time mehanism for small values of dmax [29℄.5.1.2 The DMV Mehanism for NMUFL and Metri UFL ProblemsThe PD mehanism has poor budget-balane in NMUFL problems in whih dmax is large. In theseases, the DMV mehanism ahieves a superior performane guarantee. In partiular, the followinglemma is obvious from Lemma 4.4 and Step 3 of the DF algorithm.Lemma 5.3 For every NMUFL instane, the DF algorithm omputes a primal solution fx�qT g(q;T )2C(S)and a dual solution f��i gi2S satisfyingX(q;T )2C(S) (q; T )x�qT = HjU j �Xi2S ��i :Also, by Lemma 4.5, the dual solution omputed by the DF algorithm is feasible. As withTheorem 5.2, budget-balane follows.Theorem 5.4 ([10℄) For every NMUFL ost-sharing problem with k players, the DMV mehanismis Hk-budget-balaned. 22



Every Moulin mehanism for NMUFL problems is 
(pk)-budget-balaned [21℄. Under standardomplexity assumptions, the budget-balane guarantee in Theorem 5.4 is the best possible forpolynomial-time NMUFL mehanisms [13℄.After a minor modi�ation, the DMV mehanism an ahieve radially better budget-balanefor the speial ase of metri UFL problems. In partiular, the metri DF algorithm is the sameas the DF algorithm, exept dual variables are only saled by a fator of 1.861 in Step 3 of thealgorithm. This hange learly has no e�et on the ayliity of the mehanism. Jain et al. [22℄proved the following.Lemma 5.5 ([22℄) For every metri UFL instane, the metri DF algorithm terminates with adual feasible solution.Budget-balane of the anonial mehanism follows.Theorem 5.6 ([10℄) For every metri UFL ost-sharing problem, the metri DMV mehanism is1:861-budget-balaned.No metri UFL Moulin mehanism is better than 3-budget-balaned [21℄.Remark 5.7 The budget-balane guarantee in Theorem 5.6 an be improved using a slightlydi�erent mehanism. Jain et al. [22℄ suggested a modi�ation of the DF algorithm for metri UFLand proved that saling its dual variables by a fator of 1.61 is enough to reover dual feasibility.The proof of Theorems 4.11 and 4.12 arries over to show that the anonial mehanism induedby this re�ned algorithm is ayli. As in Theorem 5.6, this mehanism is 1.61-budget-balaned.5.1.3 The AKR-GW Mehanism for ST ProblemsFinally, we argue that the AKR-GW algorithm is 2-budget-balaned. This fat nearly follows fromearlier work [1, 16℄; the only ompliation arises from the lak of dual variables for omponents thatontain the root vertex. Modifying the proof in [16℄ (details omitted) yields the following result.Theorem 5.8 For every ST ost-sharing problem, the AKR-GW mehanism is 2-budget-balaned.The budget-balane guarantee in Theorem 5.8 mathes the lower bound known for Moulinmehanisms [30℄. The �rst 2-budget-balaned Moulin mehanism for ST problems was given inJain and Vazirani [23℄. An interesting open question is whether or not there are polynomial-time�-budget-balaned ayli mehanisms for ST problems with � < 2. Suh a mehanism annot bebased diretly on the linear relaxation proposed in Setion 4.2.3, whih an have an integrality gaparbitrarily lose to 2 [43, Example 22.10℄.5.2 EÆieny GuaranteesThis setion proves mathing upper and lower bounds on the approximate eÆieny ahieved bythe three mehanisms de�ned in Setion 4.2. Reall from Setion 2.2 that the soial ost of amehanismM for an outome S with valuation pro�le v is de�ned as CM (S)+Pi=2S vi, where CM isthe ost of the feasible solution produed by the mehanism, and that a mehanism is �-approximateif its soial ost is always at most � times the minimum-possible (1).
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5.2.1 The PD and DMV Mehanisms for NMUFL ProblemsWe obtain eÆieny guarantees for the PD and DMV mehanisms for NMUFL problems as aonsequene of the following more general result.Theorem 5.9 Let M(�; �) be a �-budget-balaned ayli mehanism for a ost-sharing problem Cwith universe U of k players suh that:(P1) for some onstant  > 0, �(i; S) =  � �(i; S) for all S � U and i 2 S;(P2) for every S � U and T � S, Xi2T �(i; S) � C(T ): (6)Then, M(�; �) is (Hk + �)-approximate.Property (P1) states that o�er times are proportional to ost shares. Property (P2) an be in-terpreted as a \stability" property in the spirit of the ore (see e.g. [38℄), demanding that eahoalition T has no inentive to seede from the mehanism and seek servie elsewhere at ost C(T ).Theorem 5.9 has immediate impliations for the PD and DMV mehanisms.Corollary 5.10 For every NMUFL ost-sharing problem, the PD mehanism is O(dmax + log k)-approximate, where dmax is the largest number of failities to whih a demand an be assigned at�nite ost.Proof: To hek ondition (6), �x a NMUFL problem with universe U and subsets T � S � U .Let �PD denote the PD ost-sharing method. The ost shares f�PD(i; S)gi2S form a feasiblesolution to the dual program D(S) of Setion 4.2.1 (Lemma 4.1). The subset of ost sharesf�PD(i; S)gi2T form a feasible solution to the dual program D(T ). Condition (6) follows fromweak duality.The orollary is now immediate from Lemma 4.10(a), Theorem 5.2, and Theorem 5.9. �For example, for Vertex Cover problems, the PD mehanism is O(log k)-approximate. EveryMoulin mehanism for suh problems is 
(k1=3)-approximate [21, 40℄.Corollary 5.11 For every NMUFL ost-sharing problem, the DMV mehanism is O(log k)-approximate.Proof: Immediate from Lemma 4.5, Lemma 4.10(b), Theorem 5.4, and Theorem 5.9. �Every Moulin mehanism for NMUFL problems is 
(pk)-approximate [21, 40℄.Remark 5.12 Corollary 5.11 also applies to the 1.61-budget-balaned metri UFL mehanismdisussed in Remark 5.7.Our proof of Theorem 5.9 depends on two lemmas. The �rst upper bounds the servie ostinurred by the mehanism in terms of the servie ost and part of the exluded valuations of anoptimal solution.
24



Lemma 5.13 Let M =M(�; �) be a �-budget-balaned ayli mehanism for a ost-sharing prob-lem C with universe U that satis�es property (P2) of Theorem 5.9. Let v be a valuation pro�lefor U , S the outome of M on input v, and S� the outome with optimal soial ost. Then,CM(S) � � �0�C(S�) + Xi2SnS� vi1A :Proof: Sine M is �-budget-balaned,CM (S) � � �0� Xi2S\S� �(i; S) + Xi2SnS� �(i; S)1A : (7)By property (P2) and sine C is nondereasing,Xi2S\S� �(i; S) � C(S \ S�) � C(S�): (8)By individual rationality (Proposition 3.9(d)), �(i; S) � vi for every i 2 S nS�; ombining this withinequalities (7) and (8) proves the lemma. �The seond lemma upper bounds the exluded valuation of the mehanism in terms of theservie ost of an optimal solution.Lemma 5.14 Let M = M(�; �) be an ayli mehanism for a ost-sharing problem C with uni-verse U of k players that satis�es properties (P1) and (P2) of Theorem 5.9. Let v be a valuationpro�le for U , S the outome of M on input v, and S� the outome with optimal soial ost. Then,Xi2S�nS vi � Hk � C(S�):Proof: Let ` = jS� n Sj and rename the players so that player i is the ith player of S� n S to bedeleted by M on input v. Let Si denote the set of players from whih i is deleted by M . We provethat �(i; Si) � C(S�)`� i+ 1 (9)for every i 2 f1; 2; : : : ; `g. Player i's deletion from Si implies that vi < �(i; Si); summing (9) overall players of S� n S then yields the lemma.Fix a player i of S� n S. We �rst laim that, when player i is deleted, its o�er time �(i; Si) isminimum among the remaining players fi; i + 1; : : : ; `g of S� n S. If not, there is a player j > i ofS� n S with �(j; Si) < �(i; Si). Sine i is o�ered a prie in the iteration it is deleted, Corollary 3.11implies that L(i; Si) � S. But j 2 L(i; Si) \ (S� n S), a ontradition.This laim and property (P1) imply that, when player i is deleted, its ost share �(i; Si) isminimum among the remaining players of S�nS. Property (P2) and the fat that C is nondereasinggive a bound on the sum of the ost shares of these players:X̀j=i �(j; Si) � C(fi; i+ 1; : : : ; `g) � C(S�);25



sine player i's ost share is the smallest of the (`� i+1) remaining players of S� nS, it is at mostC(S�)=(`� i+ 1). This establishes (9) and ompletes the proof. �Theorem 5.9 now follows easily.Proof of Theorem 5.9: Fix a ost-sharing problem with universe U and a valuation pro�le v for U .Applying Lemmas 5.13 and 5.14, we upper bound the soial ost inurred by M in terms of theoptimal soial ost as follows:CM (S) +Xi=2S vi � � �0�C(S�) + Xi2SnS� vi1A+Hk � C(S�) + Xi2Un(S[S�) vi� (Hk + �) �0�C(S�) + Xi2UnS� vi1A :�Remark 5.15 Lemma 5.14 and Theorem 5.9 ontinue to hold if property (P1) is replaed by theweaker assumption that, for every subset S � U of players and i; j 2 S, �(i; S) < �(j; S) if andonly if �(i; S) < �(j; S).Our �nal result in this setion shows that the logarithmi fator in Theorem 5.9 annot beremoved: even for extremely simple ost-sharing problems, every O(1)-budget-balaned aylimehanism is 
(log k)-approximate.Example 5.16 (Publi exludable good) In a publi exludable good ost-sharing problem, C(;) =0 and C(S) = 1 for every nonempty set S. This problem an be interpreted as a metri UFL prob-lem with all players o-loated with a single faility that has unit opening ost. It an also beinterpreted as a Vertex Cover problem on a star graph, in whih the enter has unit weight andthe other verties have in�nite weight.Theorem 5.17 Every �-budget-balaned ayli mehanism for a publi exludable good problemwith k players is at least (Hk=�)-approximate.Proof: Fix a universe U of k players and a �-budget-balaned ayli mehanism M(�; �). We �rstlaim the following: for every nonempty set S � U , there is a player with minimum o�er time �(i; S)and ost share �(i; S) � 1=�jSj. In proof, let T � S denote the players with o�er time stritlylarger than the minimum. Sine � is �-budget-balaned, Pi2SnT �(i; S n T ) � C(S n T )=� = 1=�and hene �(i; S n T ) � 1=�jS n T j � 1=�jSj for some player i 2 S n T . Invoking De�nition 3.4(a)shows that �(i; S) = �(i; S n T ) and ompletes the laim.Using this laim, we an indutively rename the players of U as follows. For i = 1; 2; : : : ; k,player i is a player of Si � U n f1; 2; : : : ; i� 1g that has minimum o�er time �(�; Si) and ost share�(�; Si) at least 1=�(k � i+ 1). Now set the valuation vi of player i to 1=�(k � i+ 1)� � for small� > 0. The optimal soial ost is at most 1. Sine player i has minimum o�er time in Si andvi < �(i; Si) for every i, the mehanism M outputs the empty alloation and inurs soial ostPki=1 vi � Hk=�. �Very reently, Dobzinski et al. [11℄ extended this lower bound to all strategyproof mehanisms:every O(1)-budget-balaned randomized or deterministi SP mehanism is 
(log k)-approximatefor publi exludable good problems. 26



5.2.2 The AKR-GW Mehanism for ST ProblemsWe now establish the following eÆieny guarantee for the AKR-GW mehanism.Theorem 5.18 For every ST ost-sharing problem, the AKR-GWmehanism is O(log2 k)-approximate.Lemma 5.14 does not apply to this mehanism beause its ost shares need not be proportionalto its o�er times. However, the mehanism satis�es ondition (6), enabling the appliation ofLemma 5.13.Lemma 5.19 For every ST ost funtion, the AKR-GW ost-sharing method �ST satis�es prop-erty (P2) of Theorem 5.9.Proof: By the de�nition of �ST (5),Xi2T �ST (i; S) � XA2C(T ) y�A;where fy�AgA2C(S) is the dual feasible solution produed by the AKR-GW algorithm for D(S)�ST .Sine fy�AgA2C(T ) is feasible for D(T )� ST , the lemma follows from weak duality. �We require a surrogate for Lemma 5.14|an upper bound on the exluded valuationsPi2S�nS vi.We aomplish this by a \redution" to another ST ost-sharing method designed by Jain and Vazi-rani [23℄. We omit a detailed desription of the method, and note only that it is ross-monotoni [23,Theorem 3℄ and anonial in the sense of Setion 4.3.3 for a primal-dual algorithm of Edmonds [12℄.Roughgarden and Sundararajan [40, Theorem 4.5℄ proved that the Jain-Vazirani method �JVis O(log2 k)-summable, whih has the following onsequene.Proposition 5.20 ([40℄) There is a onstant a > 0 suh that the following holds: for every Steinertree problem C with universe U of k players, subset S � U , and ordering � of the players,jSjXi=1 �JV (i; Si) � (a log2 k) � C(U);where i and Si denote the ith player of S and the set of all players of U that follow i (inluding iitself) with respet to �.We also use the fat that the JV method �JV dominates the AKR-GW method �ST in thefollowing sense.Lemma 5.21 For every ST ost-sharing problem with universe U , subset S � U , and player i 2 S,�JV (i; S) � �ST (i; S)=2.Lemma 5.21 follows from a monotoniity result similar to Lemma 4.13(b). (The fator of 2 arisesbeause of a saling step required to obtain the method �JV from the dual variables in Edmonds'salgorithm [12℄.)Our proxy for Lemma 5.14 is as follows.Lemma 5.22 Fix a Steiner tree problem C with universe U of k players and a valuation pro�le vfor U . Let S be the outome of the AKR-GW mehanism on input v and S� the outome withoptimal soial ost. Then, Xi2S�nS vi = O(log2 k) � C(S�):27



Proof: Let � denote the order in whih players are deleted by the AKR-GW mehanism, withplayers of S appearing last in an arbitrary relative order. De�ne `, i, and Si as in the proof ofLemma 5.14. We haveXi2S�nS vi < X̀i=1 �ST (i; Si) � 2X̀i=1 �JV (i; Si) � 2X̀i=1 �JV (i; Si \ S�) = O(log2 k) � C(S�);the �rst inequality follows from the de�nition of the AKR-GW mehanism, the seond fromLemma 5.21, the third from the ross-monotoniity of �JV , and the �nal bound from applyingProposition 5.20 to the ST ost-sharing problem indued by S� and to the subset S� n S. �Proof of Theorem 5.18: Idential to the proof of Theorem 5.9, with Lemma 5.14 replaed byLemma 5.22. �Adapting an example from [40℄ shows that the bound in Theorem 5.18 is tight, up to a onstantfator. An interesting open question is whether or not O(1)-budget-balaned, polynomial-timeayli mehanisms an ahieve o(log2 k)-approximate eÆieny for ST ost-sharing problems. Fullbudget-balane and O(log k)-approximate eÆieny are possible if the polynomial-time onstraintis dropped [2℄.5.2.3 Ayli Mehanisms and SummabilityThe generi methods known for deriving eÆieny guarantees for Moulin mehanisms do not seemto arry over to ayli mehanisms. In more detail, reall that a ost-sharing method � is �-summable [40℄ for a ost-funtion C if, for every ordering � of the players of U and every subset S �U , jSjX̀=1 �(i`; S`) � � � C(S) (10)where S` and i` denote the set of the �rst ` players of S and the `th player of S (with respet to�), respetively. Intuitively, the ordering � represents the reversal of the order in whih playersare deleted, and �(i`; S`) is the worst-ase valuation that player i` ould have possessed, given thatit was deleted from the set S`. For Moulin mehanisms, summability haraterizes approximateeÆieny in the following sense: if M is a Moulin mehanism based on an �-summable, �-budget-balaned ost-sharing method, then it is �(�+ �)-approximate [40℄.Unfortunately, the summability of a ost-sharing method � does not imply upper or lowerbounds on the approximate eÆieny of an ayli mehanism onstruted from �. Summabilitydoes not automatially lead to a valid lower bound on approximate eÆieny beause, dependingon the assoiated o�er funtion, not all orderings of the players orrespond to possible deletionsequenes. It does not automatially give a valid upper bound beause it only treats deletionsequenes that result in the empty set. For ross-monotoni ost-sharing methods, worst-asedeletion sequenes are, essentially without loss of generality, of this form. For a non-ross-monotonimethod, this need not be the ase; intuitively, the presene of additional undeleted players aninrease the left-hand side of (10).The de�nition of summability an be re�ned to handle both of these issues, resulting in aharaterization of the approximate eÆieny of an ayli mehanism. However, the resultingexpression is too unwieldy to be evaluated easily for non-trivial mehanisms. An important openproblem is to obtain useful and widely appliable upper or lower bounds on the approximateeÆieny of an ayli mehanism in terms of its ost-sharing method and o�er funtion.28



6 General Demand Cost-Sharing ProblemsWe now extend ayli mehanisms to general demand ost-sharing problems, in whih playersan be alloated one of several \levels of servie". The next setion applies this framework tofault-tolerant faility loation problems.6.1 PreliminariesIn a general demand ost-sharing problem, there is a universe U = f1; 2; : : : ; kg of players. Eahplayer i has a publily known maximum level of servie Ri, a positive integer. An alloation S isnow a vetor (s1; : : : ; sk) of nonnegative integers with si � Ri for every i, whih desribes the levelof servie o�ered to eah player. The ost funtion C desribes the ost inurred by the mehanismas a funtion of the alloation S. We assume that the ost of the all-zero vetor is zero, and thatthe ost is nondereasing in eah omponent. We also assume that every player prefers higher levelsof servie, but obtains diminishing returns. In other words, the private valuation of a player i is anonnegative vetor vi, where vi(j) denotes the marginal value of level j (over level j�1) to player i,and we assume that vi(j) is noninreasing in j. A player's bid bi = (bi(1); : : : ; bi(Ri)) is a vetor ofannouned marginal values, whih must also be noninreasing in the level of servie. Given a bidvetor from eah player, a mehanism must determine an alloation S, a feasible solution to theoptimization problem indued by S, and a prie pi to harge eah player. The utility of the playeris then ui(S; pi) = vi(si) � pi, where vi(si) = P1�j�si vi(j) denotes the total value the player hasfor the alloation.Example 6.1 (FTUFL) A fault-tolerant unapaitated faility loation (FTUFL) ost funtion isindued by a UFL instane (Example 2.1)|demands (players) U , failities F with opening osts f ,onnetion osts |and also a requirement vetor R, indexed by U . The value Ri is the maximumnumber of distint open failities to whih a player might be onneted; in UFL, Ri = 1 for everyplayer. The ost C(S) is the ost of the optimal way to open failities and onnet eah demand ito si distint open failities. For example, if S = (2; 1; 0) in the instane shown in Figure 1, thenthe optimal solution is to open both failities and onnet eah player i to the nearest si failities.The ost of the solution is 17=2. A valuation vi(1); : : : ; vi(Ri) for a player i in an FTUFL problemdesribes, for eah level of servie j, the additional value i derives from being onneted to j failitiesover j � 1 failities.Our objetives of inentive-ompatibility, budget-balane, and eonomi eÆieny extend togeneral demand problems in a straightforward way. The de�nition of SP and WGSP mehanismsare idential to those in Setion 2.1, with player bids and utilities de�ned as above. The de�nitionof (approximate) budget-balane requires no modi�ation. As in the binary demand ase, thesoial ost inurred by a mehanism M is the servie ost CM (S) inurred plus the total exludedvaluation: Pi2UPj>si vi(j). The optimal soial ost is nowminS�U 24C(S) +Xi2U RiXj=si+1 vi(j)35 :As before, a mehanism is �-approximate if its soial ost is always at most � times the minimumpossible.A ost-sharing method � for a general demand problem takes as input an alloation S and returnsa feasible solution for the optimization problem indued by S, as well as a ost share �(i; j; S) for29



eah player i 2 U and j � si. The total ost share assigned to player i is Pj�si �(i; j; S). Weall a ost-sharing method demand-monotone if, for every player i and alloation S, �(i; j; S) isnondereasing in j 2 f1; : : : ; sig. Finally, an o�er funtion � assigns an o�er time �(i; j; S) for eahi 2 U and j � si.6.2 Ayli Mehanisms for General Demand ProblemsAs in the binary demand ase, a ost-sharing method and an o�er funtion together de�ne amehanism that simulates an iterative aution.De�nition 6.2 Let U be a universe of players, where player i has maximum level of servie Ri.Let � and � denote a ost-sharing method and an o�er funtion de�ned on the possible alloations.The mehanism M(�; �) indued by � and � is the following.1. Collet a bid bi from eah player i 2 U .2. Initialize S := (R1; : : : ; Rk).3. If bi(j) � �(i; j; S) for every i 2 U and j � si, then halt. Output the alloation S, the feasiblesolution onstruted by �, and harge eah player i 2 U the prie pi =Psij=1 �(i; j; S).4. Among all players i 2 U and levels j 2 f1; : : : ; sig with bi(j) < �(i; j; S), let (i�; j�) be onewith minimum �(i; j; S). (Break ties arbitrarily.)5. Set si� = j� � 1 and return to Step 3.As in Proposition 3.9, the mehanism M inherits the budget-balane guarantee of its underlyingost-sharing method. Also, if � and � are polynomial-time algorithms, then so is M(�; �). Themehanism learly has no positive transfers, and it satis�es a strengthened form of individualrationality. Preisely, the marginal prie pi(j) harged to a player i for level of servie j by suh amehanism M(�; �) in an outome S is de�ned as �(i; j; S) if j � si and 0 if j > si.Proposition 6.3 Let M = M(�; �) be a general demand mehanism indued by the ost-sharingmethod � and o�er funtion � . For every bid vetor b, the mehanism M omputes an alloation Sand marginal pries p suh that, for every player i and level of servie j: (i) if j � si, thenpi(j) � bi(j); and (ii) if j > si, then pi(j) = 0.Individual rationality in the standard sense (Setion 2.1) follows from Proposition 6.3 by summingmarginal pries and bids over the servie levels.The next de�nition identi�es onditions on a ost-sharing method and o�er funtion so that theindued general demand mehanism is truthful (and even WGSP). Call a set of pairs P = f(i; j)gof positive integers losed if (i; j) 2 P whenever (i; j + 1) 2 P . Alloations S are de�ned asnonnegative vetors but orrespond to losed sets of pairs in a natural way, with a pair (i; j)indiating that player i reeives level of servie at least j. We use these two representations ofalloations interhangeably. For an alloation S and (i; j) 2 S, de�ne the sets L(i; j; S), E(i; j; S),and G(i; j; S) by f(i0; j0) 2 S : �(i0; j0; S) < �(i; j; S)g, f(i0; j0) 2 S : �(i0; j0; S) = �(i; j; S)g, andf(i0; j0) 2 S : �(i0; j0; S) > �(i; j; S)g, respetively.De�nition 6.4 Let � and � be a ost-sharing method and an o�er funtion, respetively, de�nedon a universe U in whih player i has maximum level of servie Ri. The funtion � is valid for � ifthe following three properties hold for every alloation S and player i 2 U :30



(a) for every j � si and T � G(i; j; S) with S n T losed, �(i; j; S n T ) = �(i; j; S);(b) for every j � si and T � G(i; j; S) [ (E(i; j; S) n f(i; j)g) with S n T losed, �(i; j; S n T ) ��(i; j; S);() o�er times �(i; j; S) are stritly inreasing in j.The �rst two onditions are natural generalizations of those in De�nition 3.4. The general demandsetting also neessitates the third ondition.Remark 6.5 De�nition 6.4() an be relaxed so that o�er times are only nondereasing in j,provided ties in Step 4 in De�nition 6.2 are broken in favor of higher servie levels.De�nition 6.6 A general demand ayli mehanism is a mehanismM(�; �) indued by a demand-monotone ost-sharing method � and an o�er funtion � that is valid for �.We then have the following inentive-ompatibility guarantee.Theorem 6.7 Every general demand ayli mehanism is WGSP.To prove Theorem 6.7, we require analogues of Lemmas 3.10 and 3.12. We say that player iis o�ered the marginal prie pi(j) in iteration ` of a general demand ayli mehanism M(�; �)if the following onditions hold: �rst, if S is the urrent alloation at the beginning of the `thiteration, then (i; j) 2 S; seond, if player i�'s servie level is dereased to j� � 1 in this iteration,then �(i; j; S) � �(i�; j�; S); third, the prie pi(j) is the ost share �(i; j; S). The �rst lemma thenstates that, in an ayli mehanism, the marginal prie of a player-servie level pair (i; j) is �xedone a marginal prie is o�ered for some pair with a subsequent o�er time.Lemma 6.8 Suppose an ayli mehanism M(�; �) o�ers marginal pries to players i and i0for servie levels j and j0 in an iteration with urrent alloation S, and �(i; j; S) < �(i0; j0; S).Then �(i; j; S) is the only marginal prie o�ered to i for servie level j in subsequent iterations.The seond lemma proves that marginal pries only inrease throughout the exeution of anayli mehanism.Lemma 6.9 If a general demand ayli mehanismM(�; �) o�ers a player i the marginal prie p1i (j)in some iteration and the marginal prie p2i (j) in a subsequent iteration, then p1i (j) � p2i (j).The proofs of Lemmas 6.8 and 6.9 rely only on parts (a) and (b) of De�nition 6.4 and are thesame as those of Lemmas 3.10 and 3.12. We an now prove Theorem 6.7.Proof of Theorem 6.7: Let M(�; �) be a general demand ayli mehanism with universe U andvetor R of maximum levels of servie. Fix a oalition T � U , a valuation vi and bid bi for eahplayer i 2 T , and bids for the players of U n T . Let Ev and Eb denote the exeutions of M in whiheah player i 2 T bids vi and bi, respetively. If these exeutions are idential, they terminatewith equal alloations and pries, and every player obtains equal utility in both. So onsider the�rst iteration in whih Ev and Eb di�er, neessarily beause player i 2 T is o�ered a marginal priefor some servie level j that lies between bi(j) and vi(j). Sine o�er times are stritly inreasingwith the servie level (De�nition 6.4()), Lemma 6.8 implies that the marginal pries o�ered to ifor servie levels 1 through j � 1 are �xed at their urrent values throughout the remainder of Ev31



and Eb. Therefore, player i derives the same utility from these servie levels in both exeutions.For servie levels j and above, we onsider two ases.Case 1: Suppose bi(j) > vi(j). In the �rst iteration in whih Ev and Eb di�er, player i is o�ereda marginal prie pi(j) 2 (vi(j); bi(j)℄. Sine o�ered marginal pries only inrease (Lemma 6.9), atthis or some subsequent iteration in Ev, player i's servie level will be redued to j�1 or less. Thusin Ev, player i reeives zero utility for servie levels j and above. In Eb, sine o�ered marginal priesfor level j only inrease (Lemma 6.9), and sine � is demand-monotone (De�nition 6.6), player iis harged at least pi(j) for eah servie level j and above. By assumption, player i's marginalvaluations are dereasing with servie level, and hene i reeives nonpositive utility from servielevels j and above in Eb.Case 2: Suppose bi(j) < vi(j). In the �rst iteration in whih Ev and Eb di�er, player i is o�ered amarginal prie pi(j) 2 (bi(j); vi(j)℄. Arguing as in Case 1, player i reeives zero utility from servielevels j and above in Eb. By Proposition 6.3, player i reeives nonnegative utility from these servielevels in Ev.In both ases, player i's total utility in Ev is at least that in Eb, so the proof is omplete. �7 Fault Tolerant Faility LoationThis setion applies the mehanism design framework of the previous setion to FTUFL problems(Example 6.1). Our main result is as follows.Theorem 7.1 There is an ayli mehanism for non-metri FTUFL that is Hk-budget-balanedand (2Hk +HRmax)-approximate, where k is the number of players and Rmax = maxi2U Ri is thehighest level of servie that an be o�ered to a player.We prove Theorem 7.1 by extending the DMV mehanism of Setion 4.2.2. Essentially the samemehanism was studied in [10℄.We derive a demand-monotone ost-sharing method and an o�er funtion for FTUFL using ageneralization of the DF algorithm (Setion 4.2.2), whih we all the FTDF algorithm. Reall fromRemark 4.8 that the DF algorithm an be viewed as a greedy algorithm: at eah step, it hooses astar (q; T ) omprising ative players T with minimum ost e�etiveness, where the ost e�etivenessof a star (q; T ) is (Pi2T (q; i))=jT j if faility q is already open and (fq+Pi2T (q; i))=jT j otherwise.The FTDF algorithm, when supplied with a UFL instane and a nonnegative requirement si foreah player i 2 U , repeatedly hooses the star (q; T ) with minimum ost e�etiveness, where T isa set of players that eah require at least one further onnetion, until eah player i is onnetedto si failities. Of ourse, a player i annot partiipate in a star (q; T ) if i is already onneted to q.We de�ne the o�er time �FTDF (i; j; S) to be the ost e�etiveness of the jth star in whih player ipartiipates, and the ost share �FTDF (i; j; S) to be this same value, saled down by an HjU j fator.We all the indued mehanism M(�FTDF ; �FTDF ) the FTDMV mehanism.A variant on an argument of Rajagopolan and Vazirani [39℄, also desribed in Vazirani [43,Setion 13.2℄, shows that the FTDF algorithm an be interpreted as a dual �tting algorithm. Inpartiular, the (saled) ost shares an be mapped to a dual feasible solution to a FTUFL linearprogramming relaxation given by Jain and Vazirani [26℄. Sine the sum of the ost shares assignedby the method �FTDF equals the ost of the feasible solution that it onstruts, divided by HjU j,budget-balane of the FTDMV mehanism follows.32



Lemma 7.2 For every non-metri FTUFL ost-sharing problem with k players, the FTDMV meh-anism is Hk-budget-balaned.Next we disuss ayliity.Lemma 7.3 The FTDMV mehanism is ayli.Proof: First onsider two iterations, not neessarily onseutive, of the FTDF algorithm. Let (q1; T1)and (q2; T2) denote the stars hosen in these iterations. Every player ative in the later iterationwas ative in the earlier one, and every player already onneted to q2 in the earlier one is alsoonneted to q2 prior to the later one. Thus, the star (q2; T2) was eligible for seletion in the earlieriteration. That (q1; T1) was seleted instead implies at least one of the following two statements:(i) the ost e�etiveness of (q1; T1) is at most that of (q2; T2); (ii) q1 = q2. Sine a player i anonly partiipate in a single star with a given faility, the ost e�etiveness of the stars in whih ipartiipates is nondereasing throughout the FTDF algorithm.This fat immediately implies that the o�er funtion �FTDF satis�es the relaxation of De�-nition 6.4() disussed in Remark 6.5. Sine ost shares are proportional to o�er times, it alsoimmediately implies that the ost-sharing method �FTDF is demand-monotone. Finally, a varianton the proof of Theorem 4.11 shows that parts (a) and (b) of De�nition 6.4 hold, whih ompletesthe proof of ayliity. �We establish an eÆieny guarantee for the FTDMV mehanism via the following extension ofTheorem 5.9 to general demand mehanisms.Theorem 7.4 Let C be a general demand ost-sharing problem with universe U of k players andmaximum o�er level Rmax. Let M(�; �) be a �-budget-balaned ayli mehanism for C suh that:(P1) for some onstant  > 0, �(i; j; S) =  ��(i; j; S) for every requirement vetor S, player i 2 U ,and servie level j � si;(P2) for all alloation vetors S; T with ti � si � Ri for all i 2 U ,Xi2U X1�j�ti �(i; j; S) � C(T ):Then, M(�; �) is (Hk +HRmax + �)-approximate.Theorem 7.4 follows easily from analogues of Lemmas 5.13 and 5.14 for general demand mehanisms,where the Hk bound in Lemma 5.14 is replaed by Hk +HRmax .Corollary 7.5 For every non-metri FTUFL ost-sharing problem with k players and maximumo�er level Rmax, the FTDMV mehanism is (2Hk +HRmax)-approximate.Proof Sketh: The FTDMV mehanism learly satis�es property (P1) of Theorem 7.4. As inCorollary 5.10, it satis�es property (P2) beause it employs ost shares that an be mapped to adual feasible solution of a suitably strutured linear programming relaxation [26, 39℄. The orollarynow follows from Lemma 7.2 and Theorem 7.4. �Theorem 7.1 follows immediately from Lemma 7.2, Lemma 7.3, and Corollary 7.5.33



Remark 7.6 Can Theorem 7.1 be improved for metri instanes of FTUFL? One approah wouldbe to prove that, for metri instanes, saling the o�er times of the FTDF algorithm by a fator of� � HjU j produes a budget-balaned ost-sharing method (f., Theorem 5.6). For the speial aseof uniform metri FTUFL instanes, where all players have a ommon onnetivity requirement,Jain et al. [22, 32℄ proved that saling o�er times by a 1.81 fator is enough. For non-uniformmetri instanes, whih are unavoidable in a mehanism design ontext, no upper bound on thissaling fator smaller than Hk is known.On the other hand, we an use a di�erent mehanism to obtain better budget-balane andeÆieny guarantees when the maximum o�er level Rmax is small. Spei�ally, the binary demandmetri UFL ost-sharing method of P�al and Tardos [36℄ an be invoked iteratively to de�ne anO(R2max)-budget-balaned, O(R2max + log k)-approximate ayli mehanism for metri FTUFLproblems. The details are tehnial and deferred to a future paper. Very reently, Bleishwitz andShoppmann [3℄ modi�ed the P�al-Tardos method so that applying it iteratively diretly gives anO(Rmax)-budget-balaned and O(Rmax � log k)-approximate metri FTUFL mehanism that is alsoGSP.8 Conlusions and Open ProblemsWe developed a framework for designing approximately budget-balaned and eÆient ost-sharingmehanisms that subsumes previous work of Moulin [34℄. We demonstrated its appliability byshowing how well-known algorithms naturally indue mehanisms with performane guaranteesprovably superior to those ahievable via Moulin mehanisms. Our work suggests a large numberof diretions for future researh; we list some of them below, loosely organized by topi.8.1 Better Approximation GuaranteesOne natural goal is to improve upon the performane guarantees ahieved by the mehanismspresented in this paper. Some onrete suggestions follow.1. Is there a polynomial-time, �-budget-balaned ayli mehanism for Steiner tree ost-sharingproblems with � < 2 and reasonable (e.g., O(logd k) for some onstant d) approximate eÆ-ieny?2. Is there a polynomial-time, O(1)-budget-balaned, o(log2 k)-approximate ayli mehanismfor Steiner tree ost-sharing problems?3. Metri UFL algorithms with approximation ratio less than 1.61 are known [6, 33℄. Can thesebe used to obtain polynomial-time ayli mehanisms with omparable budget-balane andreasonable approximate eÆieny?A reent result by Bleishwitz, Monien, and Shoppmann [2℄ gives ayli mehanisms for theabove problems that are fully budget-balaned and O(log k)-approximate, but that do not run inpolynomial time (unless P = NP ).Sine ayliity is only the means to the end of inentive-ompatibility, we an ask the samequestions for wider lasses of mehanisms.4. Answer questions 1{3 with \ayli mehanism" replaed by \WGSP mehanism" and by\SP mehanism". 34



The quest for better performane guarantees ould be aided by general proof tehniques. ForMoulin mehanisms, upper bounding approximate eÆieny redues to upper bounding the summa-bility of the underlying ost-sharing method (see Setion 5.2.3) [40℄. No suh result is known forayli mehanisms.5. Identify onditions under whih the approximate eÆieny of an ayli mehanism is hara-terized, or at least bounded above, by the summability of its ost-sharing method. Or, designan alternative to summability for this purpose.8.2 General Demand MehanismsGeneral demand ost-sharing problems should be studied in muh greater depth.6. Is there a polynomial-time, O(1)-budget-balaned ayli mehanism for metri FTUFL thathas reasonable eonomi eÆieny?7. Is there a general mehanism design tehnique when marginal valuations an be inreasing?8. What other general demand problems admit good ayli mehanisms? In partiular, on-netivity ost-sharing problems|in whih eah player seeks a presribed number of disjointpaths in a network between its soure and sink verties|pose a onrete hallenge for ourtehniques.8.3 CharaterizationsFinally, we have few haraterizations of ost-sharing mehanisms. Moulin [34℄ provides har-aterizations under the assumptions of GSP and full budget-balane. Immorlia, Mahdian, andMirrokni [21℄ provide a partial haraterization of GSP mehanisms without any budget-balaneassumptions.9. Is there a simple haraterization of WGSP mehanisms? To what extent do ayli meha-nisms exhaust the lass of WGSP mehanisms? (See Juarez [27℄ for reent progress on thesequestions.)10. Is there a simple haraterization of the mehanisms that are implementable as ayli meh-anisms? When does a \natural" primal-dual algorithm indue an ayli mehanism? Arethere general tehniques other than the primal-dual method for designing good ayli meh-anisms? (See [2, 5℄ for reent results along these lines.)Referenes[1℄ A. Agrawal, P. Klein, and R. Ravi. When trees ollide: an approximation algorithm for thegeneralized Steiner problem on networks. SIAM Journal on Computing, 24(3):440{456, 1995.[2℄ Y. Bleishwitz, B. Monien, and F. Shoppmann. To be or not to be (served). In Proeedingsof the Third Annual International Workshop on Internet and Network Eonomis (WINE),volume 4858 of Leture Notes in Computer Siene, pages 515{528, 2007.[3℄ Y. Bleishwitz and F. Shoppmann. Group-strategyproof ost sharing for metri fault tolerantfaility loation. In Proeedings of the First International Symposium on Algorithmi GameTheory (SAGT), 2008. To appear. 35
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