A Stronger Bound on Braess’s Paradox
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In 1968, Braess [1] demonstrated a remarkable fact,
now known as “Braess’s Paradox”: in a network in
which users selfishly choose minimum-latency paths and
the latency of an edge increases with the amount of
edge congestion, deleting an edge from the network can
decrease the latency encountered by traffic.

Our work here is primarily motivated by a paper
of Roughgarden [3] that determines the maximum-
possible severity of Braess’s Paradox. Specifically,
in [3] it was shown that there is a network with n
vertices in which removing a set of edges decreases the
latency encountered by the network traffic by a factor
of |n/2], and that no greater decrease is possible. The
construction for n = 4 gives Braess’s original example.

However, the “Braess graphs” of [3] differ from
Braess’s example in that |n/2| — 1 edges need to be
removed to effect an |n/2] factor of decrease in latency.
It is thus natural to ask: allowing only a single edge
removal, is there a network in which Braess’s Paradox
is more severe than in Braess’s original example?

In this note, we introduce a simple but powerful
combinatorial lemma that resolves this question in the
negative: for any integer £k > 1, the only way to
decrease the latency experienced by traffic by a factor
strictly greater than k is by removing at least k& edges
from the network. Along the way, we give the first
combinatorial proof of a useful monotonicity property
of traffic equilibria, and give a new proof of the bound
from [3] on the worst-case severity of Braess’s Paradox.

The Model. We consider a directed network G =
(V, E) with vertex set V, edge set E, source vertex s,
and destination vertex t. We denote the set of s-t paths
by P. A flowis a function f : P — R™T; for a fixed flow
[ we define the load fe = Y p..cp fp. With respect to
a finite and positive traffic rate r, a flow f is said to
be feasible if ) p fp = r. Each edge e € E is given
a load-dependent latency that we denote by £.(-). We
assume that each /. is a nonnegative, continuous, and
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nondecreasing function. The latency of a path P with
respect to a flow f is then the sum of the latencies of
the edges in the path, denoted by £p(f) = > cp Le(fe)-
We call the triple (G, r,£) an instance.

Flows at Nash Equilibrium. A flow f feasible for
(G,r,£) is said to be at Nash equilibrium (or is a Nash
flow) if for every two s-t paths Py, P» € P with fp, > 0,
Lp,(f) < €p,(f). In particular, if a flow f is at Nash
equilibrium then all s-t flow paths have equal latency.

Finally, it is well known that Nash flows always
exist, and that we can assume that Nash flows are both
unique and directed acyclic (see [3]). The following
definition then makes sense: for an instance (G, r, £), let
L(G,r,£) denote the common latency of all flow paths
in a flow at Nash equilibrium for (G,r, ¥).

Alternating Paths. The crucial object in the proofs
of this paper is an “alternating path”, defined as follows.

DEFINITION 1. Let f be a flow feasible for (G,r,£) and
f' another flow in G. Edge e of G is light if fo < f!
and f! > 0, heavy if fo > f!, and useless if f = f. = 0.
An undirected path P in G is alternating if it comprises
only forward light edges and backward heavy edges.

We now prove that alternating paths exist, when
comparing one flow to another at the same or an
increased traffic rate.

LEMMA 2. Let f be feasible for (G,r,£) and f' feasible
for (G,r',£), with 7' > r. Then there is an alternating
s-t path. Moreover, if f is acyclic, then every such path
begins and ends with a light edge.

Proof. Suppose for contradiction that there is no alter-
nating s-t path and let S denote the set of nodes reach-
able from s via alternating paths. The set S contains s
and, by assumption, does not contain ¢; it is therefore
an s-t cut. By the definition of S, edges that exit S
are heavy or useless; since f is a flow, at least one must
be heavy. Edges that enter S are light or useless. It
follows that there is strictly less net f’-flow than net f-
flow crossing the cut S, which contradicts the fact that
f' is a flow feasible for a rate no less than that of f.

Moreover, if f is acyclic then it sends no flow into
s or out of t. Thus, the first and last edges of every
alternating path must be light.



A Monotonicity Theorem. We intuitively expect
the latency encountered by traffic in a Nash flow to in-
crease as we inject new traffic into the system. While
true, this statement is not obvious (especially in light
of Braess’s Paradox) and requires proof. It was first
proved by Hall [2], in a more general multicommodity
network setting, using techniques from sensitivity analy-
sis of convex programs. Here, we give a direct, combina-
torial proof for single-commodity networks. The proof
techniques will also be useful for our final theorem.

THEOREM 3. ([2]) If o'
L(G,7,0).

> r, then L(G,r',f) >

Proof. Let f and f' be Nash flows for (G,r,¢) and
(G,r',0), respectively, and d(v) and d'(v) the shortest-
path distance from s to v w.r.t. edge lengths {f.(f.)}
and {€.(f!)}, respectively. By definition, all flow paths
of f and f' are shortest paths w.r.t. their respective edge
lengths. Thus, the theorem asserts that d(t) < d'(¢).

We will prove the stronger result that d(v) < d'(v)
for all vertices v of an arbitrary alternating s-t path P,
which exists by Lemma 2. We proceed by induction.
For the base case, d(s) = d'(s) = 0. Now suppose that
d(v) < d'(v) holds for some vertex v on P, and let w be
the subsequent vertex on P.

We will assume that edge e = (v,w) is light; the
case where e is heavy is similar. Since e is light,
Le(fe) < Le(fl) and f! > 0. By the triangle inequality
for shortest-path distances, the inductive hypothesis,
and the fact that f' routes only on shortest paths, we
have d(w) < d(v) + Lo(fe) < d'(v) + Le(fL) = d'(w).

In fact, the proofs of Lemma 2 and Theorem 3 can
be strengthened to show that d(v) < d'(v) for all vertices
v, where d and d' denote the shortest-path distances
used in the proof above.

Bounding Braess’s Paradox. We now show how a
refinement of the preceding argument leads to the main
theorem of this note: to improve the latency of a Nash
flow by a factor of more than k, k edges must be removed
from the network.

THEOREM 4. Let (G,r,£) be an instance, and (H,r,f)

an instance obtained by removing at most k edges from
G. Then, L(G,r,0) < (k+1) - L(H,r,¥).

Proof. Let f and f' be Nash flows for (G,r,£) and
(H,r,t), respectively. We view f' as a flow (no longer at
Nash equilibrium) in the larger network G in the obvious
way. Let P be an alternating path, which exists by
Lemma 2. Let d and d' denote shortest-path distances
w.r.t. the edge latencies induced by f and f’ in G and
H, respectively. Our proof must differ from that of
Theorem 3, as f’ is a Nash flow in H but not in G.

In this proof, we will proceed by induction on the
segments of P, where by a segment we mean a maximal
subpath of P that contains only light or only heavy
edges. We claim that if v is a vertex at the end of
a segment of P, and ¢ segments of P between s and
v contain some edge in G but not H, then d(v) <
d'(v) + ¢ - L(H,r,£). This inequality trivially holds
when v = s, so suppose we know that it holds for a
vertex v that is last on a segment of P. We wish to
prove the corresponding inequality for w, defined as the
last vertex on the next segment. If all edges on the
segment between v and w lie in H as well as G, then the
arguments from the proof of Theorem 3 apply directly
here. Since edges outside H can only be heavy, we now
need prove the inductive hypothesis only in the case
where the segment between v and w is heavy backward
edges, at least one of which is absent from H.

To finish the proof, note first that since there is
a directed path of heavy edges from w to v (used
by f), d(w) < d(v). By the inductive hypothesis,
dlv) < d'(v) + ¢ L(G,r,f). By Lemma 2, this
segment of heavy edges has a predecessor segment in
P, which must be a path of light edges (used by f')
that terminates at v; hence, f' must route flow from v
to t and d'(v) < d'(t) = L(H,r,£). Putting the chain
of inequalities together and noting that d'(w) > 0, we
obtain d(w) < d'(w)+(c+1)-L(H,r,£), which completes
the inductive step and the proof of the theorem.

In the proof, the upper bound on d-values increases
by at most L(H,r,£) per segment of heavy edges that
are not all in H, and distinct segments of heavy edges
are vertex-disjoint. Moreover, Lemma 2 implies that
an alternating path excludes all heavy edges incident
to s or t. We have thus proved a stronger result, as
follows. Suppose (G,r,£) is an instance, (H,r,£) an
instance with a set S of edges from G removed, and the
size of a maximum matching in S that avoids both s
and t is at most k. Then, L(G,r,¢) < (k+1)-L(H,r,?).
As an immediate corollary, we obtain a new proof of one
of the main results from [3].

COROLLARY 5. ([3]) Let (G,r,£) be an instance and H
a subgraph of G. Then, L(G,r,{) < |n/2] - L(H,r,{).
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