
Beyond the Worst-Case Analysis of Algorithms

Edited by

Tim Roughgarden

Contents

1 Distributional Analysis T. Roughgarden page 4

1.1 Introduction 4

1.2 Average-Case Justifications of Classical Algorithms 8

1.3 Good-on-Average Algorithms for Euclidean Problems 13

1.4 Random Graphs and Planted Models 17

1.5 Robust Distributional Analysis 21

1.6 Notes 23

Exercises 26

1

Distributional Analysis
Tim Roughgarden

Abstract

In distributional or average-case analysis, the goal is to design an algorithm with

good-on-average performance with respect to a specific probability distribution.

Distributional analysis can be useful for the study of general-purpose algorithms

on “non-pathological” inputs, and for the design of specialized algorithms in ap-

plications where there is detailed understanding of the relevant input distribution.

For some problems, however, pure distributional analysis encourages “overfitting”

an algorithmic solution to a particular distributional assumption and a more robust

analysis framework is called for. This chapter presents numerous examples of the

pros and cons of distributional analysis, highlighting some of its greatest hits while

also setting the stage for the hybrids of worst- and average-case analysis studied in

later chapters.

1.1 Introduction

Part I of this book covered refinements of worst-case analysis which do not impose

any assumptions on the possible inputs. Part II described several deterministic

models of data, where inputs to a problem were restricted to those with properties

that are plausibly shared by all “real-world” inputs. This chapter, and a majority

of the remaining chapters in the book, consider models that include a probability

distribution over inputs.

1.1.1 The Pros and Cons of Distributional Analysis

In its purest form, the goal in distributional analysis is to analyze the average

performance of algorithms with respect to a specific input distribution, and perhaps

also to design new algorithms that perform particularly well for this distribution.

What do we hope to gain from such an analysis?

• In applications where the input distribution is well understood (e.g., due to lots of

Distributional Analysis 5

recent and representative data), distributional analysis is well suited both to pre-

dict the performance of existing algorithms and to design algorithms specialized

to the input distribution.

• When there is a large gap between the empirical and worst-case performance of an

algorithm, an input distribution can serve as a metaphor for “non-pathological”

inputs. Even if the input distribution cannot be taken literally, a good average-

case bound is a plausibility argument for the algorithm’s empirical performance.

The three examples in Section 1.2 are in this spirit.

• Optimizing performance with respect to a specific input distribution can lead

to new algorithmic ideas that are useful much more broadly. The examples in

Sections 1.3 and 1.4 have this flavor.

And what could go wrong?

• Carrying out an average-case analysis of an algorithm might be analytically

tractable only for the simplest (and not necessarily realistic) input distributions.

• Optimizing performance with respect to a specific input distribution can lead to

“overfitting,” meaning algorithmic solutions that are overly reliant on the details

of the distributional assumptions and have brittle performance guarantees (which

may not hold if the distributional assumptions are violated).

• Pursuing distribution-specific optimizations can distract from the pursuit of more

robust and broadly useful algorithmic ideas.

This chapter has two goals. The first is to celebrate a few classical results in the

average-case analysis of algorithms, which constitute some of the earliest work on

alternatives to worst-case analysis. Our coverage here is far from encyclopedic, with

the discussion confined to a sampling of relatively simple results for well-known

problems that contribute to the chapter’s overarching narrative. The second goal is

to examine critically such average-case results, thereby motivating the more robust

models of distributional analysis outlined in Section 1.5 and studied in detail later

in the book.

1.1.2 An Optimal Stopping Problem

The pros and cons of distributional analysis are evident in a famous example from

optimal stopping theory, which is interesting in its own right and also relevant to

some of the random-order models described in Chapter 11. Consider a game with n

stages. Nonnegative prizes arrive online, with vi denoting the value of the prize

that appears in stage i. At each stage, an algorithm must decide between accepting

the current prize (which terminates the game) and proceeding to the next stage

after discarding it. This involves a difficult trade-off, between the risk of being too

ambitious (and skipping over what turns out to be the highest-value prize) and not

6 T. Roughgarden

ambitious enough (settling for a modest-value prize instead of waiting for a better

one).

Suppose we posit specific distributions D1, D2, . . . , Dn, known in advance to the

algorithm designer, such that the value vi of the stage-i prize is drawn indepen-

dently from Di. (The Di’s may or may not be identical.) An algorithm learns the

realization vi of a prize value only at stage i. We can then speak about an op-

timal algorithm for the problem, meaning an online algorithm that achieves the

maximum-possible expected prize value, where the expectation is with respect to

the assumed distributions D1, D2, . . . , Dn.

The optimal algorithm for a given sequence of prize value distributions is easy

enough to specify, by working backward in time. If an algorithm finds itself at

stage n without having accepted a prize, it should definitely accept the final prize.

(Recall all prizes have nonnegative values.) At an earlier stage i, the algorithm

should accept the stage-i prize if and only if vi is at least the expected prize value

obtained by the (inductively defined) optimal strategy for stages i+ 1, i+ 2, . . . , n.

1.1.3 Discussion

The solution above illustrates the primary advantages of distributional analysis:

an unequivocal definition of an “optimal” algorithm, and the possibility of a crisp

characterization of such an algorithm (as a function of the input distributions).

The disadvantages of average-case analysis are also on display, and there are

several reasons why one might reject this optimal algorithm.

1 The algorithm takes the distributional assumptions literally and its description

depends in a detailed way on the assumed distributions. It is unclear how robust

the optimality guarantee is to misspecifications of these distributions, or to a

reordering of the distributions.

2 The algorithm is relatively complicated, in that it is defined by n different pa-

rameters (one threshold for each stage).

3 The algorithm does not provide any qualitative advice about how to tackle similar

problems (other than “work backwards”).

The third point is particularly relevant when studying a problem chosen as a delib-

erate simplification of a “real-world” problem that is too messy to analyze directly.

In this case, an optimal solution to the simpler problem is useful only inasmuch as

it suggests a plausibly effective solution to the more general problem.

For our optimal stopping problem, could there be non-trivial guarantees for sim-

pler, more intuitive, and more robust algorithms?

Distributional Analysis 7

1.1.4 Threshold Rules and the Prophet Inequality

Returning to the optimal stopping problem of Section 1.1.2, a threshold stopping

rule is defined by a single parameter, a threshold t. The corresponding online algo-

rithm accepts the first prize i with value satisfying vi ≥ t (if any). Such a rule is

clearly suboptimal, as it doesn’t even necessarily accept the prize at stage n. Nev-

ertheless, the following prophet inequality proves that there is a threshold strategy

with an intuitive threshold that performs approximately as well as a fully clairvoy-

ant prophet.1

Theorem 1.1 (Samuel-Cahn (1984)) For every sequence D = D1, D2, . . . , Dn

of independent prize value distributions, there is a threshold rule that guarantees

expected reward at least 1
2Ev∼D[maxi vi], where v denotes (v1, . . . , vn).

This guarantee holds, in particular, for the threshold t at which there is a 50/50

chance that the rule accepts one of the n prizes.

Proof Let z+ denote max{z, 0}. Consider a threshold strategy with threshold t

(to be chosen later). The plan is to prove a lower bound on the expected value of

this strategy and an upper bound on the expected value of a prophet such that the

two bounds are easy to compare.

What value does the t-threshold strategy obtain? Let q(t) denote the probability

of the failure mode where the threshold strategy accepts no prize at all; in this case,

it obtains zero value. With the remaining probability 1−q(t), the rule obtains value

at least t. To improve this lower bound, consider the case where exactly one prize i

satisfies vi ≥ t; then, the rule also gets “extra credit” of vi − t above and beyond

its baseline value of t.2

Formally, we can bound the expected value obtained by the t-threshold strategy

from below by

(1− q(t)) · t +
n∑
i=1

Ev[vi − t | vi ≥ t, vj < t ∀j 6= i] ·Pr[vi ≥ t] ·Pr[vj < t ∀j 6= i] (1.1)

= (1− q(t)) · t+

n∑
i=1

Ev[vi − t | vi ≥ t] ·Pr[vi ≥ t]︸ ︷︷ ︸
=E[(vi−t)+]

·Pr[vj < t ∀j 6= i]︸ ︷︷ ︸
≥q(t)

(1.2)

≥ (1− q(t)) · t+ q(t)

n∑
i=1

Ev

[
(vi − t)+

]
, (1.3)

where we use the independence of the Di’s in (1.1) to factor the two probability

1 See Chapter 11 for an analogous result for a related problem, the secretary problem.
2 The difficulty when two prizes i and j exceed the threshold is that this extra credit is either vi − t

or vj − t (whichever appeared earlier). The proof avoids reasoning about the ordering of the
distributions by crediting the rule only with the baseline value of t in this case.

8 T. Roughgarden

terms and in (1.2) to drop the conditioning on the event that vj < t for every j 6= i.

In (1.3), we use that q(t) = Pr[vj < t ∀j] ≤ Pr[vj < t ∀j 6= i].

Now we produce an upper bound on the prophet’s expected value Ev∼D[maxi vi]

that is easy to compare to (1.3). The expression Ev[maxi vi] doesn’t reference the

strategy’s threshold t, so we add and subtract it to derive

Ev

[
n

max
i=1

vi

]
= Ev

[
t+

n
max
i=1

(vi − t)
]

≤ t+ Ev

[
n

max
i=1

(vi − t)+
]

≤ t+

n∑
i=1

Ev

[
(vi − t)+

]
. (1.4)

Comparing (1.3) and (1.4), we can complete the proof by setting t so that q(t) = 1
2 ,

with a 50/50 chance of accepting a prize.3

The drawback of this threshold rule relative to the optimal online algorithm is

clear: it does not guarantee as much expected value. Nonetheless, this solution pos-

sesses several attractive properties that are not satisfied by the optimal algorithm:

1 The threshold rule recommended by Theorem 1.1 depends on the prize value dis-

tributions D1, D2, . . . , Dn only inasmuch as it depends on the number t for which

there is a 50/50 probability that at least one realized value exceeds t. For exam-

ple, reordering the distributions arbitrarily does not change the recommended

threshold rule.

2 A threshold rule is simple in that it is defined by only one parameter. Intuitively,

a single-parameter rule is less prone to “overfitting” to the assumed distributions

than a more highly parameterized algorithm like the (n-parameter) optimal al-

gorithm.4

3 Theorem 1.1 gives flexible qualitative advice about how to approach such prob-

lems: Start with threshold rules, and don’t be too risk-averse (i.e., choose an

ambitious enough threshold that receiving no prize is a distinct possibility).

1.2 Average-Case Justifications of Classical Algorithms

Distributional assumptions can guide the design of algorithms, as with the optimal

stopping problem introduced in Section 1.1.2. Distributional analysis can also be

used to analyze a general-purpose algorithm, with the goal of explaining mathe-

matically why its empirical performance is much better than its worst-case per-

formance. In these applications, the assumed probability distribution over inputs

3 If there is no such t because of point masses in the Di’s, then a minor extension of the argument
yields the same result (Exercise 1.1).

4 See Chapter 29 on data-driven algorithm design for a formalization of this intuition.

Distributional Analysis 9

should not be taken literally; rather, it serves as a metaphor for “real-world” or

“non-pathological” inputs. This section gives the flavor of work along these lines

by describing one result for each of three classical problems: sorting, hashing, and

bin packing.

1.2.1 QuickSort

Recall the QuickSort algorithm from undergraduate algorithms which, given an

array of n elements from a totally ordered set, works as follows:

• Designate one the n array entries as a “pivot” element.

• Partition the input array around the pivot element p, meaning rearrange the

array entries so that all entries less than p appear before p in the array and all

entries greater than p appear after p in the array.

• Recursively sort the subarray comprising the elements less than p.

• Recursively sort the subarray comprising the elements greater than p.

The second step of the algorithm is easy to implement in Θ(n) time. There are

many ways to choose the pivot element, and the running time of the algorithm

varies between Θ(n log n) and Θ(n2), depending on these choices.5 One way to

enforce the best-case scenario is to explicitly compute the median element and use

it as the pivot. A simpler and more practical solution is to choose the pivot element

uniformly at random; most of the time, it will be close enough to the median that

both recursive calls are on significantly smaller inputs. A still simpler solution, which

is common in practice, is to always use the first array element as the pivot element.

This deterministic version of QuickSort runs in Θ(n2) time on already-sorted arrays,

but empirically its running time is Θ(n log n) on almost all other inputs. One way

to formalize this observation is to analyze the algorithm’s expected running time

on a random input. As a comparison-based sorting algorithm, the running time

of QuickSort depends only on the relative order of the array entries, so we can

assume without loss of generality that the input is a permutation of {1, 2, . . . , n} and

identify a “random input” with a random permutation. With any of the standard

implementations of the partitioning subroutine, the average-case running time of

this deterministic QuickSort algorithm is at most a constant factor larger than its

best-case running time.

Theorem 1.2 (Hoare (1962)) The expected running time of the deterministic

QuickSort algorithm on a random permutation of {1, 2, . . . , n} is O(n log n).

Proof We sketch one of the standard proofs. Assume that the partitioning subrou-

tine only makes comparisons that involve the pivot element; this is the case for all

5 In the best-case scenario, every pivot element is the median element of the subarray, leading to the
recurrence T (n) = 2T (n

2) + Θ(n) with solution Θ(n logn). In the worst-case scenario, every pivot
element is the minimum or maximum element of the subarray, leading to the recurrence
T (n) = T (n− 1) + Θ(n) with solution Θ(n2).

10 T. Roughgarden

of the textbook implementations. Each recursive call is given a subarray consisting

of the elements from some interval {i, i+ 1, . . . , j}; conditioned on this interval, the

relative order of its elements in the subarray is uniformly random.

Fix elements i and j with i < j. These elements are passed to the same sequence

of recursive calls (along with i+ 1, i+ 2, . . . , j − 1), up to the first call in which an

element from {i, i+ 1, . . . , j} is chosen as a pivot element. At this point, i and j are

either compared to each other (if i or j was the chosen pivot) or not (otherwise);

in any case, they are never compared to each other again in the future. With

all subarray orderings equally likely, the probability that i and j are compared

is exactly 2
j−i+1 . By the linearity of expectation, the expected total number of

comparisons is then
∑n−1
i=1

∑n
j=i+1

2
j−i+1 = O(n log n), and the expected running

time of the algorithm is at most a constant factor larger.

1.2.2 Linear Probing

A hash table is a data structure that supports fast insertions and lookups. Under

the hood, most hash table implementations maintain an array A of some length n

and use a hash function h to map each inserted object x to an array entry h(x) ∈
{1, 2, . . . , n}. A fundamental issue in hash table design is how to resolve collisions,

meaning pairs x, y of distinct inserted objects for which h(x) = h(y). Linear probing

is a specific way of resolving collisions:

1 Initially, all entries of A are empty.

2 Store a newly inserted object x in the first empty entry in the sequence A[h(x)],

A[h(x) + 1], A[h(x) + 2], . . ., wrapping around to the beginning of the array, if

necessary.

3 To search for an object x, scan the entries A[h(x)], A[h(x)+1], A[h(x)+2], . . . until

encountering x (a successful search) or an empty slot (an unsuccessful search),

wrapping around to the beginning of the array, if necessary.

That is, the hash function indicates the starting position for an insertion or lookup

operation, and the operation scans to the right until it finds the desired object

or an empty position. The running time of an insertion or lookup operation is

proportional to the length of this scan.

The bigger the fraction α of the hash table that is occupied (called its load),

the fewer empty array entries and the longer the scans. To get calibrated, imagine

searching for an empty array entry using independent and uniformly random probes.

The number of attempts until a success is then a geometric random variable with

success probability 1 − α, which has expected value 1
1−α . With linear probing,

however, objects tend to clump together in consecutive slots, resulting in slower

operation times. How much slower?

Non-trivial mathematical guarantees for hash tables are possible only under as-

sumptions that rule out data sets that are pathologically correlated with the table’s

Distributional Analysis 11

hash function; for this reason, hash tables have long constituted one of the killer

applications of average-case analysis. Common assumptions include asserting some

amount of randomness in the data (as in average-case analysis), in the choice of hash

function (as in randomized algorithms), or both (as in Chapter 26). For example,

assuming that the data and hash function are such that every hash value h(x) is an

independent and uniform draw from {1, 2, . . . , n}, the expected time of insertions

and lookups scales with 1
(1−α)2 .6

1.2.3 Bin Packing

The bin packing problem played a central role in the early development of the

average-case analysis of algorithms; this section presents one representative result.7

Here, the average-case analysis is of the solution quality output by a heuristic (as

with the prophet inequality), not its running time (unlike our QuickSort and linear

probing examples).

In the bin packing problem, the input is n items with sizes s1, s2, . . . , sn ∈ [0, 1].

Feasible solutions correspond to ways of partitioning the items into bins so that the

sum of the sizes in each bin is at most 1. The objective is to minimize the number of

bins used. This problem is NP -hard, so every polynomial-time algorithm produces

suboptimal solutions in some cases (assuming P 6= NP).

Many practical bin packing heuristics have been studied extensively from both

worst-case and average-case viewpoints. One example is the first-fit decreasing

(FFD) algorithm:

• Sort and reindex the items so that s1 ≥ s2 ≥ · · · sn.

• For i = 1, 2, . . . , n:

– If there is an existing bin with room for item i (i.e., with current total size at

most 1− si), add i to the first such bin.

– Otherwise, start a new bin and add i to it.

For example, consider an input consisting of 6 items with size 1
2 +ε, 6 items with size

1
4 +2ε, 6 jobs with size 1

4 +ε, and 12 items with size 1
4−2ε. The FFD algorithm uses 11

bins while an optimal solution packs them perfectly into 9 bins (Exercise 1.3).

Duplicating this set of 30 jobs as many times as necessary shows that there are

arbitrarily large inputs for which the FFD algorithm uses 11
9 times as many bins as

an optimal solution. Conversely, the FFD algorithm never uses more than 11
9 times

the minimum-possible number of bins plus an additive constant (see the Notes for

details).

The factor of 11
9 ≈ 1.22 is quite good as worst-case approximation ratios go, but

6 This result played an important role in the genesis of the mathematical analysis of algorithms.
Donald E. Knuth, its discoverer, wrote: “I first formulated the following derivation in 1962. . . Ever
since that day, the analysis of algorithms has in fact been one of the major themes in my life.”

7 See Chapter 11 for an analysis of bin packing heuristics in random-order models.

12 T. Roughgarden

empirically the FFD algorithm usually produces a solution that is extremely close

to optimal. One approach to better theoretical bounds is distributional analysis.

For bin-packing algorithms, the natural starting point is the case where item sizes

are independent draws from the uniform distribution on [0, 1]. Under this (strong)

assumption, the FFD algorithm is near-optimal in a strong sense.

Theorem 1.3 (Frederickson (1980)) For every ε > 0, for n items with sizes

distributed independently and uniformly in [0, 1], with probability 1−o(1) as n→∞,

the FFD algorithm uses less than (1+ε) times as many bins as an optimal solution.

In other words, the typical approximation ratio of the FFD algorithm tends to 1

as the input size grows large.

We outline a two-step proof of Theorem 1.3. The first step shows that the guar-

antee holds for a less natural algorithm that we call the truncate and match (TM)

algorithm. The second step shows that the FFD algorithm never uses more bins

than the TM algorithm.

The truncate and match algorithm works as follows:

• Pack every item with size at least 1− 2
n1/4 in its own bin.8

• Sort and reindex the remaining k items so that s1 ≥ s2 ≥ · · · ≥ sk. (Assume for

simplicity that k is even.)

• For each i = 1, . . . , k/2, put items i and k − i+ 1 into a common bin if possible;

otherwise, put them in separate bins.

To explain the intuition behind the TM algorithm, consider the order statistics

(i.e., expected minimum, expected second-minimum, etc.) of n independent sam-

ples from the uniform distribution on [0, 1]. It can be shown that these split [0, 1]

evenly into n+ 1 subintervals; the expected minimum is 1
n+1 , the expected second-

minimum 2
n+1 , and so on. Thus at least in an expected sense, the first and last

items together should fill up a bin exactly, as should the second and second-to-last

items, and so on. Moreover, as n grows large, the difference between the realized

order statistics and their expectations should become small. Setting aside a small

number of the largest items in the first step then corrects for any (small) deviations

from these expectations with negligible additional cost. See Exercise 1.4 for details.

We leave the second step of the proof of Theorem 1.3 as Exercise 1.5.

Lemma 1.4 For every bin packing input, the FFD algorithm uses at most as

many bins as the TM algorithm.

The description of the general-purpose FFD algorithm is not tailored to a distri-

butional assumption, but the proof of Theorem 1.3 is fairly specific to uniform-type

distributions. This is emblematic of one of the drawbacks of average-case analysis:

Often, it is analytically tractable only under quite specific distributional assump-

tions.
8 For clarity, we omit ceilings and floors. See Exercise 1.4 for the motivation behind this size cutoff.

Distributional Analysis 13

1.3 Good-on-Average Algorithms for Euclidean Problems

Another classical application domain for average-case analysis is in computational

geometry, with the input comprising random points from some subset of Euclidean

space. We highlight two representative results for fundamental problems in two

dimensions, one concerning the running time of an always-correct convex hull algo-

rithm and one about the solution quality of an efficient heuristic for the NP -hard

Traveling Salesman Problem.

1.3.1 2D Convex Hull

A typical textbook on computational geometry begins with the 2D convex hull

problem. The input consists of a set S of n points in the plane (in the unit square

[0, 1] × [0, 1], say) and the goal is to report, in sorted order, the points of S that

lie on the convex hull of S.9 There are several algorithms that solve the 2D convex

hull problem in Θ(n log n) time. Can we do better—perhaps even linear time—when

the points are drawn from a distribution, such as the uniform distribution on the

square?

Theorem 1.5 (Bentley and Shamos (1978)) There is an algorithm that solves

the 2D convex hull problem in expected O(n) time for n points drawn independently

and uniformly from the unit square.

The algorithm is a simple divide-and-conquer algorithm. Given points S = {p1, p2, . . . , pn}
drawn independently and uniformly from the plane:

• If the input S contains at most 5 points, compute the convex hull by brute force.

Return the points of S on the convex hull, sorted by x-coordinate.

• Otherwise, let S1 = {p1, . . . , pn/2} and S2 = {p(n/2)+1, . . . , pn} denote the first

and second halves of S. (Assume for simplicity that n is even.)

• Recursively compute the convex hull C1 of S1, with its points sorted by x-

coordinate.

• Recursively compute the convex hull C2 of S2, with its points sorted by x-

coordinate.

• Merge C1 and C2 into the convex hull C of S. Return C, with the points of C

sorted by x-coordinate.

For every set S and partition of S into S1 and S2, every point on the convex hull

of S is on the convex hull of either S1 or S2. Correctness of the algorithm follows

immediately. The last step is easy to implement in time linear in |C1| + |C2|; see

Exercise 1.6. Because the subproblems S1 and S2 are themselves uniformly random

9 Recall that the convex hull of a set of points is the smallest convex set containing them, or
equivalently the set of all convex combinations of points from S. In two dimensions, imagine the
points as nails in a board, and the convex hull as a taut rubber band that encloses them.

14 T. Roughgarden

points from the unit square (with the sorting occurring only after the recursive

computation completes), the expected running time of the algorithm is governed

by the recurrence

T (n) ≤ 2 · T (n2) +O(E[|C1|+ |C2|]).

Theorem 1.5 follows immediately from this recurrence and the following combina-

torial bound.

Lemma 1.6 (Rényi and Sulanke (1963)) The expected size of the convex hull of n

points drawn independently and uniformly from the unit square is O(log n).

Proof Imagine drawing the input points in two phases, with n
2 points Si drawn

in phase i for i = 1, 2. An elementary argument shows that the convex hull of the

points in S1 occupies, in expectation, at least a 1 − O(logn
n) fraction of the unit

square (Exercise 1.7). Each point of the second phase thus lies in the interior of the

convex hull of S1 (and hence of S1 ∪ S2) except with probability O(logn
n), so the

expected number of points from S2 on the convex hull of S1 ∪ S2 is O(log n). By

symmetry, the same is true of S1.

1.3.2 The Traveling Salesman Problem in the Plane

In the Traveling Salesman Problem (TSP), the input consists of n points and dis-

tances between them, and the goal is to compute a tour of the points (visiting

each point once and returning to the starting point) with the minimum-possible

total length. In Euclidean TSP, the points lie in Euclidean space and all distances

are straight-line distances. This problem is NP -hard, even in two dimensions. The

main result of this section is analogous to Theorem 1.3 in Section 1.2.3 for the bin

packing problem—a polynomial-time algorithm that, when the input points are

drawn independently and uniformly from the unit square, has approximation ratio

tending to 1 (with high probability) as n tends to infinity.

The algorithm, which we call the Stitch algorithm, works as follows:

• Divide the unit square evenly into s = n
lnn subsquares, each with side length

√
lnn.10

• For each subsquare i = 1, 2, . . . , s, containing the points Pi:

– If |Pi| ≤ 6 log2 n, compute the optimal tour Ti of Pi using dynamic program-

ming.11

– Otherwise, return an arbitrary tour Ti of Pi.

10 Again, we ignore ceilings and floors.
11 Given k points, label them {1, 2, . . . , k}. There is one subproblem for each subset S of points and

point j ∈ S, whose solution is the minimum-length path that starts at the point 1, ends at the
point j, and visits every point of S exactly once. Each of the O(k2k) subproblems can be solved
in O(k) time by trying all possibilities for the final hop of the optimal path. When k = O(logn),

this running time of O(k22k) is polynomial in n.

Distributional Analysis 15

• Choose an arbitrary representative point from each non-empty set Pi, and let R

denote the set of representatives.

• Construct a tour T0 of R by visiting points from left-to-right in the bottommost

row of subsquares, right-to-left in the second-to-bottom row, and so on, returning

to the starting point after visiting all the points in the topmost row.

• Shortcut the union of the subtours ∪si=0Ti to a single tour T of all n points, and

return T .12

This algorithm runs in polynomial time with probability 1 and returns a tour of

the input points. As for the approximation guarantee:

Theorem 1.7 (Karp (1977)) For every ε > 0, for n points distributed indepen-

dently and uniformly in the unit square, with probability 1 − o(1) as n → ∞, the

Stitch algorithm returns a tour with total length less than (1 + ε) times that of an

optimal tour.

Proving Theorem 1.7 requires understanding the typical length of an optimal tour

of random points in the unit square and then bounding from above the difference

between the lengths of the tour returned by the Stitch algorithm and of the optimal

tour. The first step is not difficult (Exercise 1.8).

Lemma 1.8 There is a constant c1 > 0 such that, with probability 1 − o(1) as

n→∞, the length of an optimal tour of n points drawn independently and uniformly

from the unit square is at least c1
√
n.

Lemma 1.8 implies that proving Theorem 1.7 reduces to showing that (with high

probability) the difference between the lengths of Stitch’s tour and the optimal tour

is o(
√
n).

For the second step, we start with a simple consequence of the Chernoff bound

(see Exercise 1.9).

Lemma 1.9 In the Stitch algorithm, with probability 1 − o(1) as n → ∞, every

subsquare contains at most 6 log2 n points.

It is also easy to bound the length of the tour T0 of the representative points R

in the Stitch algorithm (see Exercise 1.10).

Lemma 1.10 There is a constant c2 such that, for every input, the length of the

tour T0 in the Stitch algorithm is at most

c2 ·
√
s = c2 ·

√
n

lnn
.

The key lemma states that an optimal tour can be massaged into subtours for

all of the subsquares without much additional cost.

12 The union of the s+ 1 subtours can be viewed as a connected Eulerian graph, which then admits a
closed Eulerian walk (using every edge of the graph exactly once). This walk can be transformed to
a tour of the points with only smaller length by skipping repeated visits to a point.

16 T. Roughgarden

Lemma 1.11 Let T ∗ denote an optimal tour of the n input points, and let Li
denote the length of the portion of T ∗ that lies within the subsquare i ∈ {1, 2, . . . , s}
defined by the Stitch algorithm. For every subsquare i = 1, 2, . . . , s, there exists a

tour of the points Pi in the subsquare of length at most

Li + 6

√
lnn

n
. (1.5)

The key point in Lemma 1.11 is that the upper bound in (1.5) depends only on

the size of the square, and not on the number of times that the optimal tour T ∗

crosses its boundaries.

Before proving Lemma 1.11, we observe that Lemmas 1.8–1.11 easily imply The-

orem 1.7. Indeed, with high probability:

1 The optimal tour has length L∗ ≥ c1
√
n.

2 Every subsquare in the Stitch algorithm contains at most 6 lnn points, and hence

the algorithm computes an optimal tour of the points in each subsquare (with

length at most (1.5)).

3 Thus, recalling that s = n
lnn , the total length of Stitch’s tour is at most

s∑
i=1

(
Li + 6

√
lnn

n

)
+ c2 ·

√
n

lnn
= L∗ +O

(√
n

lnn

)
= (1 + o(1)) · L∗.

Finally, we prove Lemma 1.11.

Proof (Lemma 1.11) Fix a subsquare i with a non-empty set Pi of points. The

optimal tour T ∗ visits every point in Pi while crossing the boundary of the subsquare

an even number 2t of times; denote these crossing points by Qi = {y1, y2, . . . , y2t},
indexed in clockwise order around the subsquare’s perimeter (starting from the

lower left corner). Now form a connected Eulerian multi-graph G = (V,E) with

vertices V = Pi ∪Qi by adding the following edges:

• Add the portions of T ∗ that lie inside the subsquare (giving points of Pi a degree

of 2 and points of Qi a degree of 1).

• Let M1 (respectively, M2) denote the perfect matching of Qi that matches each

yj with j odd (respectively, with j even) to yj+1. (In M2, y2t is matched with y1.)

Add two copies of the cheaper matching to the edge set E and one copy of the

more expensive matching (boosting the degree of points of Qi to 4 while also

ensuring connectivity).

The total length of the edges contributed by the first ingredient is Li. The total

length of the edges in M1 ∪M2 is at most the perimeter of the subsquare, which is

4
√

lnn
n . The second copy of the cheaper matching adds at most 2

√
lnn
n to the total

length of the edges in G. As in footnote 12, because G is connected and Eulerian,

we can extract from it a tour of Pi ∪Qi (and hence of Pi) that has total length at

most that of the edges of G, which is at most Li + 6
√

lnn
n .

Distributional Analysis 17

1.3.3 Discussion

To what extent are the two divide-and-conquer algorithms of this section tailored

to the distributional assumption that the input points are drawn independently

and uniformly at random from the unit square? For the convex hull algorithm in

Section 1.3.1, the consequence of an incorrect distributional assumption is mild; its

worst-case running time is governed by the recurrence T (n) ≤ 2T (n2) + O(n) and

hence is O(n log n), which is close to linear. Also, analogs of Lemma 1.6 (and hence

Theorem 1.5) can be shown to hold for a number of other distributions.

The Stitch algorithm in Section 1.3.2, with its fixed dissection of the unit square

into equal-size subsquares, may appear hopelessly tied to the assumption of a uni-

form distribution. But minor modifications to it result in more robust algorithms,

for example by using an adaptive dissection, which recursively divides each square

along either the median x-coordinate or the median y-coordinate of the points

in the square. Indeed, this idea paved the way for later algorithms that obtained

polynomial-time approximation schemes (i.e., (1+ε)-approximations for arbitrarily

small constant ε) even for the worst-case version of Euclidean TSP (see the Notes).

Zooming out, our discussion of these two examples touches on one of the biggest

risks of average-case analysis: distributional assumptions can lead to algorithms

that are unduly tailored to the assumptions. On the other hand, even when this

is the case, the high-level ideas behind the algorithms can prove useful much more

broadly.

1.4 Random Graphs and Planted Models

Most of our average-case models so far concern random numerical data. This sec-

tion studies random combinatorial structures, and specifically different probability

distributions over graphs.

1.4.1 Erdős-Rényi Random Graphs

This section reviews the most well-studied model of random graphs, the Erdős-

Rényi random graph model. This model is a family {Gn,p} of distributions, indexed

by the number n of vertices and the edge density p. A sample from the distribution

Gn,p is a graph G = (V,E) with |V | = n and each of the
(
n
2

)
possible edges

present independently with probability p. The special case of p = 1
2 is the uniform

distribution over all n-vertex graphs. This is an example of an “oblivious random

model,” meaning that it is defined independently of any particular optimization

problem.

The assumption of uniformly random data may have felt like cheating already in

our previous examples, but it is particularly problematic for many computational

18 T. Roughgarden

problems on graphs. Not only is this distributional assumption extremely specific, it

also fails to meaningfully differentiate between different algorithms.13 We illustrate

this point with two problems that are discussed at length in Chapters 9 and 10.

Example: Minimum bisection. In the graph bisection problem, the input is an undi-

rected graph G = (V,E) with an even number of vertices, and the goal is to identify

a bisection (i.e., a partition of V into two equal-size groups) with the fewest number

of crossing edges.

To see why this problem is algorithmically uninteresting in the Erdős-Rényi ran-

dom graph model, take p = 1
2 and let n tend to infinity. In a random sample

from Gn,p, for every bisection (S, S̄) of the set V of n vertices, the expected number

of edges of E crossing it is n2

8 . A straightforward application of the Chernoff bound

shows that, with probability 1−o(1) as n→∞, the number of edges crossing every

bisection is (1 ± o(1)) · n
2

8 (Exercise 1.11). Thus even an algorithm that computes

a maximum bisection is an almost optimal algorithm for computing a minimum

bisection!

Example: Maximum clique. In the maximum clique problem, the goal (given an

undirected graph) is to identify the largest subset of vertices that are mutually

adjacent. In a random graph in the Gn,1/2 model, the size of the maximum clique

is very likely to be ≈ 2 log2 n.14 To see heuristically why this is true, note that for

an integer k, the expected number of cliques on k vertices in a random graph of

Gn,1/2 is exactly (
n

k

)
2−(k

2) ≈ nk2−k
2/2,

which is 1 precisely when k = 2 log2 n. That is, 2 log2 n is approximately the

largest k for which we expect to see at least one k-clique.

On the other hand, while there are several polynomial-time algorithms (including

the obvious greedy algorithm) that compute, with high probability, a clique of size

≈ log2 n in a random graph from Gn,1/2, no such algorithm is known to do better.

The Erdős-Rényi model fails to distinguish between different efficient heuristics for

the Maximum Clique problem.

1.4.2 Planted Graph Models

Chapters 5 and 6 study deterministic models of data in which the optimal solu-

tion to an optimization problem must be “clearly optimal” in some sense, with the

motivation of zeroing in on the instances with a “meaningful” solution (such as an

informative clustering of data points). Planted graphs models implement the same

stability idea in the context of random graphs, by positing probability distributions

13 It also fails to replicate the statistical properties commonly observed in “real-world” graphs; see
Chapter 28 for further discussion.

14 In fact, the size of the maximum clique turns out to be incredibly concentrated; see the Notes.

Distributional Analysis 19

over inputs which generate (with high probability) graphs in which an optimal so-

lution “sticks out.” The goal is then to devise a polynomial-time algorithm that

recovers the optimal solution with high probability, under the weakest-possible as-

sumptions on the input distribution. Unlike an oblivious random model such as the

Erdős-Rényi model, planted models are generally defined with a particular compu-

tational problem in mind.

Algorithms for planted models generally fall into three categories, listed roughly

in order of increasing complexity and power.

1 Combinatorial approaches. We leave the term “combinatorial” safely undefined,

but basically it refers to algorithms that work directly with the graph, rather

than resorting to any continuous methods. For example, an algorithm that looks

only at vertex degrees, subgraphs, shortest paths, etc., would be considered com-

binatorial.

2 Spectral algorithms. Here “spectral” means an algorithm that computes and uses

the eigenvectors of a suitable matrix derived from the input graph. Spectral

algorithms often achieve optimal recovery guarantees for planted models.

3 Semidefinite programming (SDP). Algorithms that use semidefinite programming

have proved useful for extending guarantees for spectral algorithms in planted

models to hold also in semi-random models (see Chapters 9 and 10).

Example: Planted bisection. In the planted bisection problem, a graph is generated

according to the following random process (for a fixed vertex set V , with |V | even,

and parameters p, q ∈ [0, 1]):

1 Choose a partition (S, T) of V with |S| = |T | uniformly at random.

2 Independently for each pair (i, j) of vertices inside the same cluster (S or T),

include the edge (i, j) with probability p.

3 Independently for each pair (i, j) of vertices in different clusters, include the edge

(i, j) with probability q.15

Thus the expected edge density inside the clusters is p, and between the clusters

is q.

The difficulty of recovering the planted bisection (S, T) clearly depends on the

gap between p and q. The problem is impossible if p = q and trivial if p = 1

and q = 0. Thus the key question in this model is: how big does the gap p− q need

to be before exact recovery is possible in polynomial time (with high probability)?

When p, q, and p − q are bounded below by a constant independent of n, the

problem is easily solved by combinatorial approaches (Exercise 1.12); unfortunately,

these do not resemble algorithms that perform well in practice.

We can make the problem more difficult by allowing p, q, and p − q to go to 0

15 This model is a special case of the stochastic block model studied in Chapter 10.

20 T. Roughgarden

with n. Here, semidefinite programming-based algorithms work for an impressively

wide range of parameter values. For example:

Theorem 1.12 (Abbe et al. (2016); Hajek et al. (2016)) If p = α lnn
n and q = β lnn

n

with α > β, then:

(a) If
√
α−
√
β ≥
√

2, there is a polynomial-time algorithm that recovers the planted

partition (S, T) with probability 1− o(1) as n→∞.

(b) If
√
α−
√
β <
√

2, then no algorithm recovers the planted partition with constant

probability as n→∞.

In this parameter regime, semidefinite programming algorithms provably achieve

information-theoretically optimal recovery guarantees. Thus, switching from the

p, q, p− q = Ω(1) parameter regime to the p, q, p− q = o(1) regime is valuable not

because we literally believe that the latter is more faithful to “real-world” instances,

but rather because it encourages better algorithm design.

Example: Planted clique. The planted clique problem with parameters k and n con-

cerns the following distribution over graphs.

1 Fix a vertex set V with n vertices. Sample a graph from Gn,1/2: Independently

for each pair (i, j) of vertices, include the edge (i, j) with probability 1
2 .

2 Choose a random subset Q ⊆ V of k vertices.

3 Add all remaining edges between pairs of vertices in Q.

Once k is significantly bigger than ≈ 2 log2 n, the likely size of a maximum clique

in a random graph from Gn,1/2, the planted clique Q is with high probability the

maximum clique of the graph. How big does k need to be before it becomes visible

to a polynomial-time algorithm?

When k = Ω(
√
n log n), the problem is trivial, with the k highest-degree vertices

constituting the planted clique Q. To see why this is true, think first about the

sampled Erdős-Rényi random graph, before the clique Q is planted. The expected

degree of each vertex is ≈ n/2, with standard deviation ≈
√
n/2. Textbook large

deviation inequalities show that, with high probability, the degree of every vertex

is within ≈
√

lnn standard deviations of its expectation (Figure 1.1). Planting a

clique Q of size a
√
n log n, for a sufficiently large constant a, then boosts the degrees

of all of the clique vertices enough that they catapult past the degrees of all of the

non-clique vertices.

The “highest degrees” algorithm is not very useful in practice. What went wrong?

The same thing that often goes wrong with pure average-case analysis—the solution

is brittle and overly tailored to a specific distributional assumption. How can we

change the input model to encourage the design of algorithms with more robust

guarantees?

One idea is to mimic what worked well for the planted bisection problem, and to

Distributional Analysis 21

Figure 1.1 Degree distribution of an Erdős-Rényi random graph with edge density 1
2
,

before planting the k-clique Q. If k = Ω(
√
n lgn), then the planted clique will consist of

the k vertices with the highest degrees.

study a more difficult parameter regime that forces us to develop more useful algo-

rithms. For the planted clique problem, there are non-trivial algorithms, including

spectral algorithms, that recover the planted clique Q with high probability pro-

vided k = Ω(
√
n) (see the Notes).

1.4.3 Discussion

There is a happy ending to the study of both the planted bisection and planted

clique problems: with the right choice of parameter regimes, these models drive us

toward non-trivial algorithms that might plausibly be useful starting points for the

design of practical algorithms. Still, both results seem to emerge from “threading

the needle” in the parameter space. Could there be a better alternative, in the form

of input models that explicitly encourage the design of robustly good algorithms?

1.5 Robust Distributional Analysis

Many of the remaining chapters in this book pursue different hybrids of worst-

and average-case analysis, in search of a “sweet spot” for algorithm analysis that

both encourages robustly good algorithms (like in worst-case analysis) and allows

for strong provable guarantees (like in average-case analysis). Most of these models

assume that there is in fact a probability distribution over inputs (as in average-case

analysis), but that this distribution is a priori unknown to an algorithm. The goal

is then to design algorithms that work well no matter what the input distribution

is (perhaps with some restrictions on the class of possible distributions). Indeed,

several of the average-case guarantees in this chapter can be viewed as applying

simultaneously (i.e., in the worst case) across a restricted but still infinite family of

input distributions:

• The 1
2 -approximation in the prophet inequality (Theorem 1.1) for a threshold-t

22 T. Roughgarden

rule applies simultaneously to all distribution sequences D1, D2, . . . , Dn such that

Prv∼D[maxi vi ≥ t] = 1
2 (e.g., all possible reorderings of one such sequence).

• The guarantees for our algorithms for the bin packing (Theorem 1.3), convex hull

(Theorem 1.5), and Euclidean TSP (Theorem 1.7) problems hold more generally

for all input distributions that are sufficiently close to uniform.

The general research agenda in robust distributional analysis is to prove approx-

imate optimality guarantees for algorithms for as many different computational

problems and as rich a class of input distributions as possible. Work in the area

can be divided into two categories, both well represented in this book, depending

on whether an algorithm observes one or many samples from the unknown input

distribution. We conclude this chapter with an overview of what’s to come.

1.5.1 Simultaneous Near-Optimality

In single-sample models, an algorithm is designed with knowledge only of a class D
of possible input distributions, and receives only a single input drawn from an un-

known and adversarially chosen distribution from D. In these models, the algorithm

cannot hope to learn anything non-trivial about the input distribution. Instead, the

goal is to design an algorithm that, for every input distribution D ∈ D, has ex-

pected performance close to that of the optimal algorithm specifically tailored for D.

Examples include:

• The semi-random models in Chapters 9–11 and 17 and the smoothed analysis

models in Chapters 13–15 and 19. In these models, nature and an adversary

collaborate to produce an input, and each fixed adversary strategy induces a

particular input distribution. Performing well with respect to the adversary in

these models is equivalent to performing well simultaneously across all of the

induced input distributions.

• The effectiveness of simple hash functions with pseudorandom data (Chapter 26).

The main result in this chapter is a guarantee for universal hashing that holds

simultaneously across all data distributions with sufficient entropy.

• Prior-independent auctions (Chapter 27), which are auctions that achieve near-

optimal expected revenue simultaneously across a wide class of valuation distri-

butions.

1.5.2 Learning a Near-Optimal Solution

In multi-sample models, an algorithm observes multiple samples from an unknown

input distribution D ∈ D, and the goal is to efficiently identify a near-optimal

algorithm for D from as few samples as possible. Examples include:

Distributional Analysis 23

• Self-improving algorithms (Chapter 12) and data-driven algorithm design (Chap-

ter 29), where the goal is to design an algorithm that, when presented with in-

dependent samples from an unknown input distribution, quickly converges to an

approximately best-in-class algorithm for that distribution.

• Supervised learning (Chapters 16 and 22), where the goal is to identify the ex-

pected loss-minimizing hypothesis (from a given hypothesis class) for an unknown

data distribution given samples from that distribution.

• Distribution testing (Chapter 23), where the goal is to make accurate inferences

about an unknown distribution from a limited number of samples.

1.6 Notes

The prophet inequality (Theorem 1.1) is due to Samuel-Cahn (1984). The pros and

cons of threshold rules versus optimal online algorithms is discussed also by Hartline

(2017). QuickSort and its original analysis are due to Hoare (1962). The (1− α)−2

bound for linear probing with load α and random data, as well as the corresponding

quote in Section 1.2.2, are in Knuth (1998). A good (if outdated) entry point to the

literature on bin packing is Coffman, Jr. et al. (1996). The lower bound for the FFD

algorithm in Exercise 1.3 is from Johnson et al. (1974). The first upper bound of the

form 11
9 ·OPT+O(1) for the number of bins used by the FFD algorithm, where OPT

denotes the minimum-possible number of bins, is due to Johnson (1973). The exact

worst-case bound for FFD was pinned down recently by Dósa et al. (2013). The

average-case guarantee in Theorem 1.3 is a variation on one by Frederickson (1980),

who proved that the expected difference between the number of bins used by FFD

and an optimal solution is O(n2/3). A more sophisticated argument gives a tight

bound of Θ(n1/2) on this expectation (Coffman, Jr. et al., 1991).

The linear expected time algorithm for 2D convex hulls (Theorem 1.5) is by Bent-

ley and Shamos (1978). Lemma 1.6 was first proved by Rényi and Sulanke (1963);

the proof outlined here follows Har-Peled (1998). Exercise 1.6 is solved by Andrews

(1979). The asymptotic optimality of the Stitch algorithm for Euclidean TSP (The-

orem 1.7) is due to Karp (1977), who also gave an alternative solution based on the

adaptive dissections mentioned in Section 1.3.3. A good general reference for this

topic is Karp and Steele (1985). The worst-case approximation schemes mentioned

in Section 1.3.3 are due to Arora (1998) and Mitchell (1999).

The Erdős-Rényi random graph model is from Erdős and Rényi (1960). The size

of the maximum clique in a random graph drawn from Gn,1/2 was characterized

by Matula (1976); with high probability it is either k or k + 1, where k is an

integer roughly equal to 2 log2 n. Grimmett and McDiarmid (1975) proved that

the greedy algorithm finds, with high probability, a clique of size roughly log2 n

in a random graph from Gn,1/2. The planted bisection model described here was

proposed by Bui et al. (1987) and is also a special case of the stochastic block model

24 T. Roughgarden

defined by Holland et al. (1983). Part (b) of Theorem 1.12 and a weaker version of

part (a) were proved by Abbe et al. (2016); the stated version of part (b) is due

to Hajek et al. (2016). The planted clique model was suggested by Jerrum (1992).

Kucera (1995) noted that the “top-k degrees” algorithm works with high probability

when k = Ω(
√
n log n). The first polynomial-time algorithm for the planted clique

problem with k = O(
√
n) was the spectral algorithm of Alon et al. (1998). Barak

et al. (2016) supplied evidence, in the form of a sum-of-squares lower bound, that

the planted clique problem is intractable when k = o(
√
n).

The versions of the Chernoff bound stated in Exercises 1.4(a) and 1.9 can be

found, for example, in Mitzenmacher and Upfal (2017).

Acknowledgments

I thank Anupam Gupta, C. Seshadhri, and Sahil Singla for helpful comments on a

preliminary draft of this chapter.

References

Abbe, E., Bandeira, A. S., and Hall, G. 2016. Exact Recovery in the Stochastic
Block Model. IEEE Transactions on Information Theory, 62(1), 471–487.

Alon, N., Krivelevich, M., and Sudakov, B. 1998. Finding a Large Hidden Clique
in a Random Graph. Random Structures & Algorithms, 13(3-4), 457–466.

Andrews, A. M. 1979. Another Efficient Algorithm for Convex Hulls in Two Di-
mensions. Information Processing Letters, 9(5), 216–219.

Arora, S. 1998. Polynomial Time Approximation Schemes for Euclidean Traveling
Salesman and other Geometric Problems. Journal of the ACM, 45(5), 753–782.

Barak, B., Hopkins, S. B., Kelner, J. A., Kothari, P., Moitra, A., and Potechin,
A. 2016. A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique
Problem. Pages 428–437 of: Proceedings of the 57th Annual IEEE Symposium
on Foundations of Computer Science (FOCS).

Bentley, J. L., and Shamos, M. I. 1978. Divide and Conquer for Linear Expected
Time. Information Processing Letters, 7(2), 87–91.

Bui, T. N., Chaudhuri, S., Leighton, F. T., and Sipser, M. 1987. Graph bisection
algorithms with good average case behavior. Combinatorica, 7(2), 171–191.

Coffman, Jr., E. G., Courcoubetis, C., Garey, M. R., Johnson, D. S., McGeoch,
L. A., Shor, P. W., Weber, R. R., and Yannakakis, M. 1991. Fundamental
Discrepancies between Average-Case Analyses under Discrete and Continuous
Distributions: A Bin Packing Case Study. Pages 230–240 of: Proceedings of the
23rd Annual ACM Symposium on Theory of Computing (STOC).

Coffman, Jr., E. G., Garey, M. R., and Johnson, D. S. 1996. Approximation Al-
gorithms for Bin Packing: A Survey. Chap. 2, pages 46–93 of: Hochbaum, D.
(ed), Approximation Algorithms for NP-Hard Problems. PWS.

Distributional Analysis 25

Dósa, G., Li, R., Hanc, X., and Tuza, Z. 2013. Tight Absolute Bound for First Fit
Decreasing Bin-Packing: FFD(L) ≤ 11/9OPT (L)+6/9. Theoretical Computer
Science, 510, 13–61.

Erdős, P., and Rényi, A. 1960. On the evolution of random graphs. Publ. Math.
Inst. Hungar. Acad. Sci., 5, 17–61.

Frederickson, G. N. 1980. Probabilistic Analysis for Simple One- and Two-
Dimensional Bin Packing Algorithms. Information Processing Letters, 11(4-5),
156–161.

Grimmett, G., and McDiarmid, C. J. H. 1975. On Colouring Random Graphs.
Mathematical Proceedings of the Cambridge Philosophical Society, 77, 313–
324.

Hajek, B., Wu, Y., and Xu, J. 2016. Achieving Exact Cluster Recovery Threshold
via Semidefinite Programming: Extensions. IEEE Transactions on Information
Theory, 62(10), 5918–5937.

Har-Peled, S. 1998. On the Expected Complexity of Random Convex Hulls. Tech.
rept. 330/98. School of Mathematical Sciences, Tel Aviv University.

Hartline, J. D. 2017. Mechanism Design and Approximation. Book in preparation.
Hoare, C. A. R. 1962. Quicksort. The Computer Journal, 5(1), 10–15.
Holland, P. W., Lasket, K., and Leinhardt, S. 1983. Stochastic blockmodels: First

steps. Social Networks, 5(2), 109–137.
Jerrum, M. 1992. Large Cliques Elude the Metropolis Process. Random Structures

and Algorithms, 3(4), 347–359.
Johnson, D. S. 1973. Near-Optimal Bin Packing Algorithms. Ph.D. thesis, MIT.
Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham, R. L.

1974. Worst-Case Performance Bounds for Simple One-Dimensional Packing
Algorithms. SIAM Journal on Computing, 3(4), 299–325.

Karp, R. M. 1977. Probabilistic Analysis of Partitioning Algorithms for the
Traveling-Salesman Problem in the Plane. Mathematics of Operations Re-
search, 2(3), 209–224.

Karp, R. M., and Steele, J. M. 1985. Probabilistic Analysis of Heuristics. Chap. 6,
pages 181–205 of: Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and
Shmoys, D. B¿ (eds), The Traveling Salesman Problem. John Wiley & Sons.

Knuth, D. E. 1998. The Art of Computer Programming: Sorting and Searching.
Vol. 3. Addison-Wesley. Second edition.

Kucera, L. 1995. Expected Complexity of Graph Partitioning Problems. Discrete
Applied Mathematics, 57(2-3), 193–212.

Matula, D. W. 1976. The Largest Clique Size in a Random Graph. Tech. rept. 7608.
Department of Computer Science, Southern Methodist University.

Mitchell, J. S. B. 1999. Guillotine Subdivisions Approximate Polygonal Subdivi-
sions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP,
k-MST, and Related Problems. SIAM Journal on Computing, 28(4), 1298–
1309.

Mitzenmacher, M., and Upfal, E. 2017. Probability and Computing. Cambridge.
Second edition.

Rényi, A., and Sulanke, R. 1963. Über die konvexe Hülle von n zugällig gewählten
Punkten. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2,
75–84.

26 T. Roughgarden

Samuel-Cahn, E. 1984. Comparison of threshold stop rules and maximum for in-
dependent nonnegative random variables. Annals of Probability, 12(4), 1213–
1216.

Exercises

1.1 Extend the prophet inequality (Theorem 1.1) to the case where there is no

threshold t with q(t) = 1
2 , where q(t) is the probability that no prize meets

the threshold.

[Hint: Define t such that Pr[πi > t for all i] ≤ 1
2 ≤ Pr[πi ≥ t for all i]. Show

that at least one of the two corresponding strategies—either taking the first

prize with value at least t, or the first with value exceeding t—satisfies the

requirement.]

1.2 The prophet inequality (Theorem 1.1) provides an approximation guarantee

of 1
2 relative to the expected prize value obtained by a prophet, which is at

least (and possibly more than) the expected prize value obtained by an optimal

online algorithm. Show by examples that the latter quantity can range from

50% to 100% of the former.

1.3 Prove that for a bin packing instance consisting of 6 items with size 1
2 + ε, 6

items with size 1
4 + 2ε, 6 jobs with size 1

4 + ε, and 12 items with size 1
4 − 2ε,

the first-fit decreasing algorithm uses 11 bins and an optimal solution uses 9

bins.

1.4 This exercise and the next outline a proof of Theorem 1.3. Divide the inter-

val [0, 1] evenly into n1/4 intervals, with Ij denoting the subinterval [j−1
n1/4 ,

j
n1/4]

for j = 1, 2, . . . , n1/4. Let Pj denote the items with size in Ij .

(a) One version of the Chernoff bound states that, for every sequenceX1, X2, . . . , Xn

of Bernoulli (0-1) random variables with means p1, p2, . . . , pn and every

δ ∈ (0, 1),

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ
2/3,

where X and µ denote
∑n
i=1Xi and

∑n
i=1 pi, respectively. Use this bound

to prove that

|Pj | ∈
[
n3/4 −

√
n, n3/4 +

√
n
]

for all j = 1, 2, . . . , n1/4 (1.6)

with probability 1 as n→∞.

(b) Assuming (1.6), prove that the sum
∑n
i=1 si is at least 1

2n−c1n
3/4 for some

constant c > 0. What does this imply about the number of bins used by an

optimal solution?

(c) Assuming (1.6), prove that in the third step of the TM algorithm, every

pair of items i and k − i+ 1 fits in a single bin.

Distributional Analysis 27

(d) Conclude that there is a constant c2 > 0 such that, when property (1.6)

holds, the TM algorithm uses at most 1
2n+ c2n

3/4 = (1 + o(1)) ·OPT bins,

where OPT denotes the number of bins used by an optimal solution.

1.5 Prove Lemma 1.4.

1.6 Give an algorithm that, given a set S of n points from the square sorted by

x-coordinate, computes the convex hull of S in O(n) time.

[Hint: compute the lower and upper parts of the convex hull separately.]

1.7 Prove that the convex hull of n points drawn independently and uniformly at

random from the unit square occupies a 1−O(logn
n) fraction of the square.

1.8 Prove Lemma 1.8.

[Hint: Chop the unit square evenly into n subsquares of side length n−1/2,

and each subsquare further into 9 mini-squares of side length 1
3 · n

−1/2. For

a given subsquare, what is the probability that the input includes one point

from its center mini-square and none from the other 8 mini-squares?]

1.9 Another variation of the Chernoff bound states that, for every sequenceX1, X2, . . . , Xn

of Bernoulli (0-1) random variables with means p1, p2, . . . , pn and every t ≥ 6µ,

Pr[X ≥ t] ≤ 2−t,

where X and µ denote
∑n
i=1Xi and

∑n
i=1 pi, respectively. Use this bound to

prove Lemma 1.9.

1.10 Prove Lemma 1.10.

1.11 Use the Chernoff bound from Exercise 1.4(a) to prove that, with probability

approaching 1 as n → ∞, every bisection of a random graph from Gn,p has

(1± o(1)) · n
2

8 crossing edges.

1.12 Consider the planted bisection problem with parameters p = c1 and q = p−c2
for constants c1, c2 > 0. Consider the following simple combinatorial algorithm

for recovering a planted bisection:

• Choose a vertex v arbitrarily.

• Let A denote the n
2 vertices that have the fewest common neighbors with v.

• Let B denote the rest of the vertices (including v) and return (A,B).

Prove that, with high probability over the random choice of G (approaching 1

as n→∞), this algorithm exactly recovers the planted bisection.

[Hint: compute the expected number of common neighbors for pairs of vertices

on the same and on different sides of the planted partition. Use the Chernoff

bound.]

1.13 Consider the planted clique problem (Section 1.4.2) with planted clique size

k ≥ c log2 n for a sufficiently large constant c. Design an algorithm that runs in

nO(logn) time and, with probability 1−o(1) as the number of vertices n→∞,

recovers the planted clique.

