
Algorithmic Game Theory∗

Tim Roughgarden†

May 12, 2009

1 Introduction

The widespread adoption of the Internet and the emergence of the Web changed society’s relation-
ship with computers. The primary role of a computer evolved from a stand-alone, well-understood
machine for executing software to a conduit for global communication, content-dissemination, and
commerce. The algorithms and complexity theory community has responded to these changes by
formulating novel problems, goals, and design and analysis techniques relevant for modern appli-
cations. Game theory, which has studied deeply the interaction between competing or cooperating
individuals, plays a central role in these new developments. Research on the interface of theoretical
computer science and game theory, an area now known as algorithmic game theory (AGT), has
exploded phenomenally over the past ten years.

The primary research themes in AGT differ from those in classical microeconomics and game
theory in important, albeit predictable, respects. Firstly in application areas: Internet-like networks
and non-traditional auctions motivate much of the work in AGT. Secondly in its quantitative engi-
neering approach: AGT research typically models applications via concrete optimization problems
and seeks optimal solutions, impossibility results, upper and lower bounds on feasible approxi-
mation guarantees, and so on. Finally, AGT usually adopts reasonable (e.g., polynomial-time)
computational complexity as a binding constraint on the feasible behavior of system designers and
participants. These themes, which have played only a peripheral role in traditional game theory,
give AGT its distinct character and relevance.

The next three sections touch on the current dominant research trends in AGT, loosely following
the organization of the first book in the field [30]. We focus on contributions of the algorithms and
complexity theory community; see two recent CACM articles [18, 40] and the references therein for
alternative perspectives on computer science and game theory.

2 Algorithmic Mechanism Design

Algorithmic mechanism design studies optimization problems where the underlying data — such
as the value of a good or the cost of performing a task — is initially unknown to the algorithm
designer, and must be implicitly or explicitly elicited from self-interested participants (e.g., via a

∗This article is a revised and abridged version of [35].
†Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305.

Supported in part by NSF CAREER Award CCF-0448664, an ONR Young Investigator Award, an AFOSR MURI
grant, and an Alfred P. Sloan Fellowship. Email: tim@cs.stanford.edu.

1

bid). Auction settings are canonical examples, where the private data is the willingness to pay
of the bidders for the goods on sale, and the optimization problem is to allocate the goods to
maximize some objective, such as revenue or overall value to society. A “mechanism” is a protocol
that interacts with participants and determines a solution to the underlying optimization problem.

There is a complex dependence between the way a mechanism employs elicited data and partic-
ipant behavior. For example, consider the sale of a single good in a sealed-bid auction with several
bidders. In a “first-price” auction, the selling price is the bid of the winner (i.e., the maximum
bid). Bidders naturally shade their bids below their maximum willingness to pay in first-price
auctions, aspiring to achieve the lowest-possible price subject to winning the auction. Determining
how much to shade requires guessing about the behavior of the other bidders. A different auction
is the “second-price” auction, in which the selling price is only the second-highest bid. A famous
result of Vickrey [43] is that every participant of a second-price auction may as well bid its true
value for the good: intuitively, a second-price auction optimally shades the bid of the winner on its
behalf, to the minimum alternative winning bid. eBay and Amazon auctions are similar to second-
price auctions in many (but not all) respects; see Steiglitz [42] for a detailed discussion. Keyword
search auctions, such as those run by Google, Yahoo!, and Microsoft, are more complex variants of
second-price auctions with multiple heterogeneous goods, corresponding to the potential ad slots
on a search results page. Lahaie et al. [30, Chapter 28] provide an overview of theoretical work on
search auctions.

While the economic literature on mechanism design is quite mature [20], computer scientists
have initiated a number of new research directions. We concentrate here on the emphasis in algo-
rithmic mechanism design on complexity bounds and worst-case approximation guarantees, as first
proposed by Nisan and Ronen [29]. Additional aspects including prior-free revenue-maximization,
distributed (or “Internet-suitable”) mechanism design, and online (or “real-time”) mechanism de-
sign are discussed in [30, Part II].

The technical core of this part of algorithmic mechanism design is the following deep question:

(Q1) to what extent is “incentive-compatible” efficient computation fundamentally less powerful
than “classical” efficient computation?

To translate question (Q1) into mathematics, reconsider the Vickrey (second-price) auction for
selling a single good. Each bidder i has a private willingness-to-pay vi and submits to the auctioneer
a bid bi. The auction comprises two algorithms: an allocation algorithm, which picks a winner,
namely the highest bidder; and a payment algorithm, which uses the bids to charge payments,
namely 0 for the losers and the second-highest bid for the winner. We argued intuitively that this
auction is truthful in the following sense: for every bidder i and every set of bids by the other
participants, bidder i maximizes its “net value” — its value for the good, if received, minus its
payment, if any — by bidding its true private value: bi = vi. Moreover, no false bid is as good as
the truthful bid for all possible bids by the other participants. Assuming all bidders bid truthfully
(as they should), the Vickrey auction solves the social welfare maximization problem, in the sense
that the good is allocated to the participant with the highest value for it.

More generally, an allocation algorithm x is implementable if, for a judiciously chosen payment
algorithm π, coupling x with π yields a truthful mechanism: every participant is guaranteed to max-
imize its payoff by reporting its true preferences. For a single-good auction, the “highest-bidder”
allocation algorithm is implementable (as we have seen); the “second-highest bidder” allocation
algorithm is not (a straightforward exercise). Thus some but not all algorithms are implementable.

2

We can mathematically phrase the question (Q1) as follows: are implementable algorithms less
powerful than arbitrary algorithms for solving fundamental optimization problems?

Understanding this question involves two interrelated goals: characterization theorems and
approximation bounds.

(G1) Usefully characterize the implementable allocation algorithms for an optimization problem.

(G2) Prove upper and lower bounds on the best-possible solution quality of an implementable
algorithm for a given objective function, possibly subject to additional constraints, such as
polynomial running time.

The second goal quantifies the limitations of implementable algorithms via an approximation mea-
sure; the most commonly used such measure is the worst-case ratio, over all possible inputs, be-
tween the objective function value of the algorithm’s solution and the optimal objective function
value. The first goal aims to reformulate the unwieldy definition of implementability into a more
operational form amenable to both upper and lower approximation bounds. Both goals, and espe-
cially (G1), seem to grow more complex with the number of independent parameters required to
describe the private information of a participant.

Versions of (G2) pervade modern algorithmic research: for a given “constrained computational
model”, where the constraint can be either computational (as for polynomial-time approximation
algorithms) or information-theoretic (as for online algorithms), quantify its limitations for opti-
mization and approximation. Goal (G1) reflects the additional difficulty in algorithmic mechanism
design that even the “computational model” (of implementable algorithms) induced by strategic
constraints is poorly understood — for example, determining whether or not a given algorithm is
online is intuitively far easier than checking if one is implementable.

Single-Parameter Mechanism Design. This two-step approach is vividly illustrated by the
important special case of single-parameter problems, where goal (G1) has been completely resolved.
A mechanism design problem is single-parameter if the possible outcomes are real n-vectors ω and
each participant i has an objective function of the form viωi for a private real number vi (the “single
parameter”). The numbers ωi and vi can be thought of as the quantity received and the value-
per-unit of a good, respectively. A single-item auction is the special case in which each ω is either
a standard basis vector or the all-zero vector. Keyword search auctions are also single-parameter,
under the assumptions that every advertiser cares only about the probability ωi of a click on its
sponsored link and has a common value vi for every such click.

An algorithm for a single-parameter problem is monotone if a greater bid begets a greater
allocation: increasing the value of a bid (keeping the other bids fixed) can only increase the corre-
sponding value of the computed ωi. For example, the “highest bidder” allocation algorithm for a
single-good auction is monotone, while the “second-highest bidder” allocation algorithm is not. In
general, monotonicity characterizes implementability for single-parameter problems.

Myerson’s Lemma ([27]) An allocation algorithm for a single-parameter mechanism design prob-
lem is implementable if and only if it is monotone.

Myerson’s Lemma is a useful solution to the first goal (G1) and reduces implementable algorithm
design to monotone algorithm design. For example, consider the following “rank-by-weighted bid”
allocation algorithm for a keyword search auction. Advertisers’ bids are sorted in decreasing order,
possibly after scaling by advertiser-specific “relevance” factors, and ad slots are populated in this

3

order. Assuming that the probability of a click is higher in higher slots, every such algorithm
is monotone: increasing one’s bid can only increase one’s position in the ordering, which in turn
leads to an only higher probability of a click. Thus, Myerson’s Lemma guarantees an analog of the
second-price rule that extends the allocation algorithm into a truthful auction.1

Despite our thorough understanding of goal (G1), question (Q1) remains open for single-
parameter problems. A single-parameter scheduling problem proposed by Archer and Tardos [1] had
been the most natural candidate for differentiating between the optimization power of monotone
and arbitrary polynomial-time algorithms, but Dhangwatnotai et al. [14] recently gave a (random-
ized) polynomial-time monotone algorithm for the problem with approximate guarantee as good as
the best-possible polynomial-time algorithm (assuming P 6= NP).

Multi-Parameter Mechanism Design. Many important mechanism design problems are not
single-parameter. Combinatorial auctions [11], in which each participant aims to acquire a hetero-
geneous set of goods and has unrelated values for different sets, are a practical and basic example.
Combinatorial auctions are used in practice to sell wireless spectrum (where the goods are different
licenses), with recent auction designs by theoretical economists generating billions of dollars of rev-
enue over the past decade [11]. Their complexity stems from “complements”, meaning goods that
are more useful when purchased in tandem (e.g., spectrum licenses for small but adjacent regions);
and “substitutes”, meaning goods that are partially redundant (e.g., two different but functionally
identical licenses for the same region). Each bidder in a combinatorial auction has, in principle, an
exponential number of private parameters — one private value for each subset of goods.

Multi-parameter mechanism design is complex and our current understanding of goals (G1)
and (G2) is primitive for most problems of interest. Here, there can be a provable gap between
the worst-case approximation ratio of implementable and arbitrary polynomial-time algorithms for
natural optimization problems. This fact was first proved by Lavi et al. [23]; recently, Papadimitriou
et al. [33] showed that this gap can be very large (polynomial in the number of bidders). Because
of its importance and bounty of open questions, multi-parameter mechanism design has been a
hotbed of activity over the past few years. See [35] for a survey of the primary research threads,
including upper and lower approximation bounds for polynomial-time welfare maximization for
combinatorial auctions, and work toward multi-parameter analogs of Myerson’s Lemma.

3 Quantifying Inefficiency and the Price of Anarchy

The truthful mechanisms studied in Section 2 are — by design — strategically degenerate in that
the best course of action of a participant (i.e., truthtelling) does not depend on the actions taken
by the others. When a designer cannot specify the rules of the game and directly dictate the allo-
cation of resources — or when there is no central designer at all — dependencies between different
participants’ optimal courses of action are generally unavoidable and preclude exact optimization
of standard objective functions. This harsh reality motivates adopting an equilibrium concept —
a rigorous proposal for the possible outcomes of a game with self-interested participants — and
an approximation measure that quantifies the inefficiency of a game’s equilibria, to address the
following basic question:

1Modern search engines use allocation algorithms that are similar to rank-by-weighted bid algorithms. By historical
accident, they use a slightly different pricing rule than that advocated by Myerson’s Lemma, although the two pricing
rules lead to comparable outcomes and revenue at equilibrium. See Lahaie et al. [30, Chapter 28] for more details.

4

(Q2) when, and in what senses, are game-theoretic equilibria guaranteed to approximately optimize
natural objective functions?

Such a guarantee implies that the benefit of imposing additional control over the system is small,
and is particularly reassuring when implementing an optimal solution is infeasible (as in a typical
Internet application).

Routing with Congestion. There are now numerous answers to question (Q2) in different
models; we describe one by Roughgarden and Tardos [37, 39], for a model of “selfish routing”
originally proposed for road traffic (see [4]) and subsequently adapted to communication networks
(see [5]). This was the first general approximation bound on the inefficiency of equilibria; the idea
of quantifying such inefficiency was explored previously in a scheduling model [22].

Consider a directed graph with fixed traffic rates between various origin-destination pairs in
which the traffic chooses routes to minimize individual cost; see also Figure 1. In this section, we
assume that the traffic comprises a large number of selfish users, each of negligible size — such
as drivers on a highway or packets in a network. Edge costs are congestion-dependent, with the
continuous, nondecreasing function ce(x) denoting the per-unit cost incurred by traffic on edge e
when x units of traffic use it. In an equilibrium, each user travels along a minimum-cost path from
its origin to its destination, given the congestion caused by the traffic. These selfish routing games
are strategically non-trivial in that the minimum-cost path for a given user generally depends on
the paths chosen by the others.

For example, in a “Pigou-like network” (Figure 1(a)), r units of selfish traffic autonomously
decide between parallel edges e1 and e2 that connect the origin s to the destination t. Suppose
the second edge has some cost function c2(·), and the first edge has a constant cost function c1

everywhere equal to c2(r). Such networks are strategically trivial, just like the truthful mechanisms
of Section 2: the second edge’s cost is never larger than that of the first, even when it is fully
congested. For this reason, all traffic uses the second edge at equilibrium. This equilibrium does
not generally minimize the average cost of all users. For example, if r = 1 and c2(x) = x as in
Figure 1(a), the average cost at equilibrium is 1, while splitting the traffic equally between the
two edges yields a routing with average cost 3/4. The latter traffic pattern is not an equilibrium
because of a “congestion externality”: a selfish network user routed on the first edge would switch
to the second edge, indifferent to the fact that this switch (slightly) increases the cost incurred by a
large portion of the population. Similarly, in the “Braess’s Paradox” [7] network of Figure 1(b), the
average cost at equilibrium is 2 (with all traffic on the zig-zag path), while a benevolent dictator
could route the traffic at average cost 3/2 (by splitting traffic between the two two-hop paths).2

The price of anarchy (POA) of a selfish routing network is the ratio of the average user cost at
equilibrium and in an optimal routing — 4/3 in both of the networks in Figure 1. The closer the
POA is to 1, the lesser the consequences of selfish behavior. Replacing the cost function of the second
edge in Figure 1(a) by c2(x) = xd for large d shows that the POA can be arbitrarily large, even in
Pigou-like networks, and suggests that the POA is governed by the “degree of nonlinearity” of the
cost function c2. A key result formalizes and extends this intuition to arbitrary networks: among all
networks with cost functions lying in a set C (e.g., bounded-degree polynomials with nonnegative

2This network is called a “paradox” because removing the intuitively helpful zero-cost edge — depriving users of
one of their options — recovers the optimal solution as an equilibrium, thereby decreasing the cost incurred by all
users. Analogously, cutting a taut string in a network of strings and springs that carries a heavy weight can cause
the weight to levitate further off of the ground! [10]

5

ts

(x) = 1

(x) = x

c

c
(a) Pigou’s Example

s t

w

v

(x) = 1 (x) = x

(x) = 1

(x) = 0

(x) = x c

c c

c

c

(b) Braess’s Paradox

Figure 1: Two selfish routing networks with price of anarchy 4/3. One unit of selfish traffic travels
from s to t. At equilibrium, all traffic travels on the bottom path and the zig-zag path, respectively.
In an optimal solution, traffic is split equally between the two edges and between the two two-hop
paths, respectively.

coefficients), the largest-possible POA is achieved already in Pigou-like networks [37]. Conceptually,
complex topologies do not amplify the worst-case POA. This reduction permits the easy calculation
of tight bounds on the worst-case POA for most interesting sets C of cost functions. For example,
the POA of every selfish routing network with affine cost functions (of the form ce(x) = aex + be

for non-negative ae, be) is at most 4/3, with a matching lower bound provided by the examples in
Figure 1. See [30, Chapter 18] for a recent survey detailing these and related results.

These POA bounds provide a theoretical justification for a common rule of thumb used in
network design and management: overprovisioning networks with extra capacity ensures good per-
formance. Precisely, suppose every edge e of a network has a capacity ue and a corresponding cost
function ce(x) = 1/(ue − x); see Figure 2(a). (If x ≥ ue, we interpret the cost as infinite.) This
is the standard M/M/1 queueing delay function with service rate ue. We say that a network is β-
overprovisioned for β ∈ (0, 1) if, at equilibrium, at least a β fraction of each edge’s capacity remains
unused. The following is a tight bound on the POA for such networks; the bound is illustrated in
Figure 2(b).

Theorem (Consequence of [37]) The POA of every β-overprovisioned network is at most

1

2

(

1 +
1√
β

)

.

Thus even 10% extra capacity reduces the worst-case price of anarchy of selfish routing to roughly 2.

Further Aspects of Quantifying Inefficiency. We have barely scratched the surface of recent
work on equilibrium efficiency analyses. See [30, Part III] for an overview of work on some other
application domains, including resource allocation, scheduling, facility location, and network design.

An important emerging trend in this area is to prove POA-type bounds under increasingly weak
assumptions on the rationality of participants. Recall that in Section 2, our only assumption was
that participants will make use of a “foolproof” strategy (one that dominates all others), should one
be available. This section implicitly assumed that selfish participants can reach an equilibrium of a

6

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2

(a) M/M/1 delay function

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(b) Extra capacity vs. POA curve

Figure 2: Modest overprovisioning guarantees near-optimal routing. The left-hand figure displays
the per-unit cost c(x) = 1/(u − x) as a function of the load x for an edge with capacity u = 2.
The right-hand figure shows the worst-case price of anarchy as a function of the fraction of unused
network capacity.

game without such foolproof strategies, presumably through repeated experimentation. This much
stronger assumption has been addressed in two different ways in the recent literature. The first is
to formally justify it by positing natural experimentation strategies and proving that they quickly
reach a (possibly approximate) equilibrium; see [9] and the references therein for a sampling of
such results. The second is to prove POA-like guarantees that apply “on average,” even when such
experimentation strategies fail to converge to an equilibrium. Remarkably, such approximation
bounds hold in interesting classes of games, including in selfish routing networks. See [2, 6, 19]
for initial formalizations of this approach, and [36] for a recent general result that shows that,
under weak conditions, POA bounds for equilibria extend automatically to the results of repeated
experimentation.

4 Complexity of Equilibrium Computation

Equilibrium concepts — most famously the Nash equilibrium [28] — play a starring role in game
theory and microeconomics. If nothing else, a notion of equilibrium describes outcomes that, once
reached, persist under some model of individual behavior. In engineering applications we generally
demand a stronger interpretation of an equilibrium, as a credible prediction of the long-run state of
the system. But none of the standard equilibrium notions or the corresponding proofs of existence
suggest how to arrive at an equilibrium with a reasonable amount of effort. This fact motivates
the following questions.

(Q3) When can the participants of a game quickly converge to an equilibrium? More modestly,
when can a centralized algorithm quickly compute an equilibrium?

These questions are interesting for two reasons. First, algorithms for equilibrium computation
can be useful practically, for example in game-playing and for multi-agent reasoning [41]. Second,
assuming that players can invest only polynomial computation in playing a game, resolving the
complexity of computing an equilibrium concept has economic implications: a polynomial-time

7

algorithm is an important step toward establishing the concept’s credibility, while an intractability
result casts doubt on its predictive power.

There has been a frenzy of recent work on these questions, for many different fundamental equi-
librium concepts. Perhaps the most celebrated results in the area concern the PPAD-completeness
of computing mixed-strategy Nash equilibria in finite games with two or more players [8, 12]. To
briefly convey the spirit of the area with a minimum of technical fuss, we instead discuss the com-
plexity of converging to and computing pure-strategy Nash equilibria in a variant of the routing
games studied in Section 3. We then discuss the key differences between the two settings. For
work on the complexity of computing other equilibrium concepts, such as market, correlated, and
approximate Nash equilibria, and for a discussion of equilibrium computation in extensive-form,
compact, randomly generated, and stochastic games, see [30, Part I] and [38] and the references
therein.

Pure Nash Equilibria in Network Congestion Games. In the atomic variant of selfish
routing, there are a finite number k of players that each control a non-negligible amount of traffic
(say one unit each) and choose a single route for it. Each edge cost function ce : {1, 2, . . . , k} → R+,
describing the per-player cost along an edge as a function of its number of users, is non-decreasing.
An outcome (P1, . . . , Pk) — a choice of a path Pi for each player i — is a pure-strategy Nash
equilibrium (PNE) if each player simultaneously chooses a best response: a path with minimum-
possible cost, given the paths chosen by the other players. For instance, consider Pigou’s example
(Figure 1(a)) with the constant cost on the upper edge raised from 1 to 2. If there are two players
(with origin s and destination t), then there are three PNE: one with both players on the lower
link, and two in which each link is used by a single player. In every case, a deviating player would
incur cost 2 and be no better off than in the equilibrium.

Best-response dynamics is a simple model of experimentation by players over time: while the
current outcome is not a PNE, choose an arbitrary player that is not using a best response, and
update its path to a best response. The update of one player usually changes the best responses of
the others; for this reason, best-response dynamics fails to converge in many games (such as “Rock-
Paper-Scissors”). In an atomic selfish routing network, however, every iteration of best-response
dynamics strictly decreases the potential function

Φ(P1, . . . , Pk) =
∑

e∈E

[ce(1) + ce(2) + · · · + ce(xe)],

where xe denotes the number of paths Pi that contain edge e, and is thus guaranteed to terminate,
necessarily at a PNE [26, 34]. Does convergence require polynomial or exponential time? Can we
compute a PNE of such a game by other means in polynomial time?

Assume for the moment that the problem of computing a PNE of an atomic selfish routing
network is not solvable in polynomial time; how would we amass evidence for this fact? An obvious
idea is to prove that the problem is NP -hard. Remarkably, a short argument [21, 25] shows that this
is possible only if NP = coNP ! Intuitively, solving an NP -hard problem like satisfiability means to
either exhibit a satisfying truth assignment of the given Boolean formula or to correctly determine
that none exist. Computing a PNE of an atomic selfish routing game appears easier because the
latter situation (of there being no PNE) can be ruled out a priori — the “only” challenge is to
exhibit a solution in polynomial time.3

3The complexity classes P and NP are usually defined for decision problems, where the answer sought is a simple

8

To motivate the definition of the appropriate complexity class, recall that problems in the class
NP are characterized by short and efficiently verifiable witnesses of membership, such as satisfying
truth assignments or Hamiltonian cycles. There is thus a generic “brute-force search” algorithm for
NP problems: given an input, enumerate the exponentially many possible witnesses of membership,
and check if any of them are valid. Computing a PNE of an atomic selfish routing game appears
to be easier than an NP -hard problem because there is a guided search algorithm (namely, best-
response dynamics) that navigates the set of possible witnesses and is guaranteed to terminate with
a legitimate one. At worst, computing a PNE might be as hard as all problems solvable by such a
“guided search” procedure. This is in fact the case, as we formalize next.

What are the minimal ingredients that guarantee that a problem is solvable via guided search?
The answer is provided by the complexity class PLS (for “polynomial local search”) [21]. A
PLS problem is described by three polynomial-time algorithms: one to accept an instance and
output an initial candidate solution; one to evaluate the objective function value of a candidate
solution; and one that either verifies local optimality (for some local neighborhood) or else returns
a neighboring solution with strictly better objective function value. To “solve” a PLS problem
means to compute a local optimum, by local search or by other means. For example, computing a
PNE of an atomic selfish routing game can be cast as a PLS problem by adopting the potential
function as an objective function, and defining two outcomes to be neighbors if all but one player
choose the same path in both. Local minima then correspond to the PNE of the game. A problem
in PLS is then PLS-complete if every problem in PLS reduces to it in polynomial time, in which
case the complete problem is solvable in polynomial time only if every problem in PLS is.

The problem of computing a PNE of an atomic selfish routing network is PLS-complete [17].
It is therefore polynomial-time solvable if and only if P = PLS. In the spirit of the P vs. NP
question, it is generally believed that P 6= PLS but researchers seem far from a resolution in either
direction. Since PLS contains several important problems that have resisted all attempts at a
computationally efficient solution, PLS-hardness is viewed as strong evidence that a problem will
not be solved in polynomial time (at least in the near future).

Mixed-Strategy Nash Equilibria and PPAD. A mixed strategy is a probability distribution
over the pure strategies of a player. In a mixed-strategy Nash equilibrium (MNE), every player
simultaneously chooses a mixed strategy maximizing its expected payoff, given those chosen by the
others. For example, in “Rock-Paper-Scissors”, with each player receiving payoff 1 for a win, 0
for a draw, and -1 for a loss, the only MNE has each player randomizing uniformly over its three
strategies to obtain an expected payoff of 0. Nash proved that every game with a finite number
players and strategies has at least one MNE [28]. Computing an MNE of a finite game is a central
equilibrium computation problem.

We focus on the two-player (“bimatrix”) case, where the input is two m × n payoff matrices
(one for each player) with integer entries; with three or more players, the problem appears to be
harder in a precise complexity-theoretic sense [15]. We emphasize that the two payoff matrices
are completely unrelated, and need not be “zero-sum” like in Rock-Paper-Scissors. (When the two
payoff matrices sum to a constant matrix, an MNE can be computed in polynomial time via linear
programming; see e.g. [30, Chapter 1] for details.)

There is a non-obvious “guided search” algorithm for two-player games called the Lemke-Howson

“yes” or “no”. Here we refer to the similar but more general search versions of P and NP , where for a “yes” instance,
the deliverables include a correct solution.

9

algorithm [24]; see von Stengel [30, Chapter 3] for a careful exposition. This algorithm is a path-
following algorithm in the spirit of local search, but it is not guided by an objective or potential
function and thus does not prove that computing an MNE of a bimatrix game is in PLS. In
conjunction with our earlier reasoning, however, the Lemke-Howson algorithm shows that the
problem is not NP -hard unless NP = coNP [25].

A complexity class that is related to but apparently different from PLS is PPAD, which stands
for “polynomial parity argument, directed version”. This class was defined in [32] to capture the
complexity of computing MNE and related problems, such as computing approximate Brouwer
fixed points. Its formal definition parallels that of PLS, with a PPAD problem consisting of
the minimal ingredients necessary to execute a Lemke-Howson-like path-following procedure (again
easily phrased as three polynomial-time algorithms). A problem in PPAD is PPAD-complete if
every problem in PPAD reduces to it in polynomial time; the complete problem is then polynomial-
time solvable only if all problems in PPAD are. Since PPAD contains several well-studied problems
that are not known to be solvable via a polynomial-time algorithm, a proof of PPAD-completeness
can be interpreted as a significant intractability result.

A few years ago, the problem of computing an MNE of a bimatrix game was shown to be PPAD-
complete [8, 12]. Thus, if P 6= PPAD, there is no general-purpose and computationally efficient
algorithm for this problem, and in particular there is no general and tractable way for players to
reach a Nash equilibrium in a reasonable amount of time. This hardness result casts doubt on the
predictive power of the Nash equilibrium concept in arbitrary games. See the papers [8, 12] for the
details of this tour de force result and the recent CACM article [13] for a high-level survey of the
proof.

5 Future Directions

The astonishing rate of progress in algorithmic game theory, nourished by deep connections with
other areas of theoretical computer science and a consistent infusion of new motivating applications,
suggests that it will flourish for many years to come. There is a surfeit of important open research
directions across all three of the AGT areas surveyed here, such as developing theory for the
design and analysis of mechanisms for multi-parameter problems, for minimizing the inefficiency
of equilibria (e.g., via a mediating network protocol), and for the computation of approximate
equilibria. See [35] and the concluding sections of many chapters in [30] for more details and many
concrete open problems.

A broad challenge, mentioned also in Shoham’s recent CACM article [40], is to develop more
appropriate models of agent behavior. All of the results described in this article, even the welfare
guarantee of the simple second-price auction, depend on some kind of behavioral assumptions about
the participants. Such assumptions are required to address modern applications, yet are largely
foreign to the theoretical computer science mindset, which is characterized by minimal assumptions
and worst-case analysis. But a number of new types of worst-case guarantees, coupled with novel
behavioral models, have already begun to sprout in the AGT literature. For example: mechanism
implementation in undominated strategies [3] and in ex post collusion-proof Nash equilibrium [31];
the price of total anarchy [6, 36]; and the complexity of unit-recall games [16]. We expect that
these are only the vanguard of what promises to be a rich and relevant theory.

10

References

[1] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In FOCS ’01, pages 482–491.

[2] B. Awerbuch, Y. Azar, A. Epstein, V. S. Mirrokni, and A. Skopalik. Fast convergence to nearly optimal
solutions in potential games. In EC ’08, pages 264–273.

[3] M. Babaioff, R. Lavi, and E. Pavlov. Single-value combinatorial auctions and algorithmic implementa-
tion in undominated strategies. Journal of the ACM, 56(1), 2009. Article 4.

[4] M. J. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of Transportation. Yale
University Press, 1956.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

[6] A. Blum, M. Hajiaghayi, K. Ligett, and A. Roth. Regret minimization and the price of total anarchy.
In STOC ’08, pages 373–382.

[7] D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung, 12:258–268, 1968.

[8] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of two-player Nash equilibria. Journal of
the ACM, 2009. To appear.

[9] S. Chien and A. Sinclair. Convergence to approximate Nash equilibria in congestion games. In SODA ’07,
pages 169–178.

[10] J. E. Cohen and P. Horowitz. Paradoxical behavior of mechanical and electrical networks. Nature,
352(8):699–701, 1991.

[11] P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT Press, 2006.

[12] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash equi-
libria. SIAM Journal on Computing, 2009. To appear.

[13] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity of computing a Nash equi-
libria. Communications of the ACM, 52(2):89–97, 2009.

[14] P. Dhangwatnotai, S. Dobzinski, S. Dughmi, and T. Roughgarden. Truthful approximation schemes for
single-parameter agents. In FOCS ’08, pages 15–24.

[15] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points. In
FOCS ’07, pages 113–123.

[16] A. Fabrikant and C. H. Papadimitriou. The complexity of game dynamics: BGP oscillations, sink
equlibria, and beyond. In SODA ’08, pages 844–853.

[17] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure Nash equilibria. In STOC ’04,
pages 604–612.

[18] J. Feigenbaum, D. C. Parkes, and D. M. Pennock. Computational challenges in e-commerce. Commu-
nications of the ACM, 52(1):70–74, 2009.

[19] M. X. Goemans, V. Mirrokni, and A. Vetta. Sink equilibria and convergence. In FOCS ’05, pages
142–151.

[20] M. O. Jackson. A crash course in implementation theory. Social Choice and Welfare, 18(4):655–708,
2001.

[21] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal of Computer
and System Sciences, 37(1):79–100, 1988.

[22] E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In STACS ’99, pages 404–413.

11

[23] R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial auctions. In
FOCS ’03, pages 574–583.

[24] C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. SIAM Journal, 12(2):413–423,
1964.

[25] N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and computational com-
plexity. Theoretical Computer Science, 81(2):317–324, 1991.

[26] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14(1):124–143, 1996.

[27] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–73, 1981.

[28] J. F. Nash, Jr. Equilibrium points in N -person games. Proceedings of the National Academy of Science,
36(1):48–49, 1950.

[29] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35(1/2):166–
196, 2001.

[30] N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors. Algorithmic Game Theory. Cambridge
University Press, 2007.

[31] N. Nisan, M. Schapira, G. Valiant, and A. Zohar. Best-reply mechanisms. Working paper, 2009.

[32] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence.
Journal of Computer and System Sciences, 48(3):498–532, 1994.

[33] C. H. Papadimitriou, M. Schapira, and Y. Singer. On the hardness of being truthful. In FOCS ’08,
pages 250–259.

[34] R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of
Game Theory, 2(1):65–67, 1973.

[35] T. Roughgarden. Algorithmic game theory: Some greatest hits and future directions. In TCS ’08, pages
21–42.

[36] T. Roughgarden. Intrinsic robustness of the price of anarchy. In STOC ’09.

[37] T. Roughgarden. The price of anarchy is independent of the network topology. Journal of Computer
and System Sciences, 67(2):341–364, 2003.

[38] T. Roughgarden. Computing equilibria: A computational complexity perspective. Economic Theory,
2009. To appear.

[39] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–259, 2002.

[40] Y. Shoham. Computer science and game theory. Communications of the ACM, 51(8):75–79, 2008.

[41] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game Theoretic and Logical
Foundations. Cambridge University Press, 2008.

[42] K. Steiglitz. Snipers, Shills, and Sharks: eBay and Human Behavior. Princeton University Press, 2007.

[43] W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of Finance, 16(1):8–
37, 1961.

12

