
Optimal Mechanisms for Combinatorial Auctions and

Combinatorial Public Projects via Convex Rounding∗

Shaddin Dughmi† Tim Roughgarden‡ Qiqi Yan§

March 10, 2014

Abstract

We design the first truthful-in-expectation, constant-factor approximation mechanisms for
NP -hard cases of the welfare maximization problem in combinatorial auctions with non-identical
items and in combinatorial public projects. Our results apply to bidders with valuations that
are nonnegative linear combinations of gross substitutes valuations, a class that encompasses
many of the most well-studied subclasses of submodular functions, including coverage functions
and weighted matroid rank functions. Our mechanisms have expected polynomial running time
and achieve an approximation factor of 1− 1/e. This approximation factor is the best possible
for both problems, even for known and explicitly given coverage valuations, assuming P 6= NP .
Recent impossibility results suggest that our results cannot be extended to a significantly larger
valuation class.

Both of our mechanisms are instantiations of a new framework for designing approximation
mechanisms based on randomized rounding algorithms. The high-level idea of this framework
is to optimize directly over the (random) output of the rounding algorithm, rather than the
usual (and rarely truthful) approach of optimizing over the input to the rounding algorithm.
This framework yields truthful-in-expectation mechanisms, and these mechanisms can be im-
plemented efficiently when the corresponding objective function is concave. For bidders with
valuations in the cone generated by gross substitutes valuations, we give novel randomized round-
ing algorithms that lead to both a concave objective function and a (1− 1/e)-approximation of
the optimal welfare.

∗Preliminary versions of this work appeared in Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC), June 2011 and Proceedings of the 12th ACM Conference on Electronic Commerce (EC), June 2011.

†Department of Computer Science, University of Southern California, SAL 234, 941 Bloom Walk, Los Angeles,
CA 90089. This work was done while the author was a PhD student at Stanford University, and was supported by
NSF Grant CCF-0448664 and a Siebel Foundation Scholarship. Email: shaddin@usc.edu.

‡Department of Computer Science, Stanford University, 462 Gates Building, 353 Serra Mall, Stanford, CA 94305.
Supported in part by NSF CAREER Award CCF-0448664, an ONR Young Investigator Award, an ONR PECASE
Award, an AFOSR MURI grant, and an Alfred P. Sloan Fellowship. Email: tim@cs.stanford.edu.

§Google Research, Mountain View, CA 94043. This work was done while the author was a PhD student at
Stanford University, and was supported by a Stanford Graduate Fellowship. Email: qiqiyan@cs.stanford.edu.

1 Introduction

1.1 Combinatorial Auctions and Combinatorial Public Projects

The overarching goal of algorithmic mechanism design is to design computationally efficient algo-
rithms that solve or approximate fundamental optimization problems in which the underlying data
is a priori unknown to the algorithm. The first problem that we study, which is central in both
theory and practice, is welfare maximization in combinatorial auctions (CAs). In a CA, there are
m items for sale and n bidders vying for them. Each bidder i has a private valuation vi(S) for
each subset S of the items.1 The welfare of an allocation S1, . . . , Sn of the items to the bidders is∑n

i=1 vi(Si). The second problem is welfare maximization in combinatorial public projects (CPPs).
Here, a public planner chooses a subset of m projects. Each player i has a private valuation vi(S)
for each subset S of projects. The welfare maximization problem is to compute a subset of at most
k projects that maximizes

∑n
i=1 vi(S).

2

We consider both problems with valuations that are initially unknown to the decision-maker, so
computing a near-optimal allocation requires eliciting information from the (self-interested) players,
for example via a bid. A mechanism is a protocol that extracts such information and computes
an allocation of the items or projects. We additionally allow mechanisms to charge payments to
players in order to incentivize the truthful reporting of valuations. We call a (possibly randomized)
mechanism “incentive-compatible” or “truthful” if every participant maximizes its expected payoff
by truthfully revealing its information to the mechanism, no matter how the other participants
behave (see Section 2.2 for formal definitions). A simple example of a truthful mechanism is the
second-price single-item auction, which sells a good to the highest bidder at a price equal to the
second-highest bid.

We seek mechanisms that run in time polynomial in n and m. If we drop the computational
efficiency requirement, then we can solve exactly the two welfare maximization problems above using
the incentive-compatible VCG mechanism (see e.g. [44]). They cannot be solved efficiently, however,
except for highly restricted classes of valuations. These problems are also highly inapproximable
for general valuations — even by non-truthful computationally efficient algorithms — so it is most
interesting to study them for restricted classes of valuations that at least admit good approximation
algorithms.

The “holy grail” of algorithmic mechanism design is to design polynomial-time truthful approxi-
mation mechanisms that match the approximation guarantee of the best (non-truthful) polynomial-
time approximation algorithms. Unfortunately, several recent impossibility results have shed serious
doubt on the possibility of this goal in general [15, 47, 7, 8, 12, 25, 20].3 This paper provides such
positive results for welfare maximization in CAs and CPPs for a fundamental class of valuations,
via a novel randomized mechanism design framework based on convex optimization.

1Each bidder has an exponential number of private values; we ignore the attendant representation issues for the
moment.

2This is sometimes called the flexible version of the CPP problem, as opposed to the exact version in which
the planner must choose exactly k projects. This distinction is uninteresting from an approximation algorithms
standpoint (assuming monotone valuations), but is quite important in algorithmic mechanism design; see [12] for a
detailed discussion.

3The impressively general positive results for implementations in Bayes-Nash equilibria that were recently obtained
in [32, 31, 2] do not apply to the stronger incentive-compatibility notion used here.

1

v

X

(a) Randomized rounding applied to an
optimal solution to LP

X

X

X

X

v

X

(b) Optimizing over output of random-
ized rounding algorithm.

Figure 1: Optimizing over the input of a rounding scheme vs its output

1.2 The Challenge of Algorithmic Mechanism Design

Algorithmic mechanism design is difficult because incentive compatibility severely limits how an al-
gorithm can compute an outcome, and this prohibits use of most of the ingenious approximation al-
gorithms that have been developed for different optimization problems. The incentive-compatibility
constraint necessitates the design of carefully crafted approximation algorithms, tailored specifi-
cally for truthfulness. Understanding the power of these truthful approximation mechanisms is
the central goal of algorithmic mechanism design. This research agenda was first advocated by
Nisan and Ronen [43]. Since then, combinatorial auctions and combinatorial public projects have
emerged as the paradigmatic “challenge problems” of the field, with much work in recent years
establishing upper and lower bounds on truthful polynomial-time mechanisms for these problems
(e.g. [36, 16, 18, 17, 15, 11, 19, 47, 7, 8, 12, 24, 21, 25, 20]).

The most general approach known for designing (randomized) truthful mechanisms is via
maximal-in-distributional range (MIDR) algorithms [13, 22]. An MIDR algorithm fixes a set of
distributions over feasible solutions — the distributional range — independently of the valuations
reported by the self-interested participants, and outputs a random sample from the distribution
that maximizes expected (reported) welfare. An analog of the payments of the VCG mechanism
can be used to extend an MIDR algorithm to a truthful (in expectation) mechanism.

Most approximation algorithms are not MIDR algorithms. Consider, as an example, a ran-
domized rounding algorithm for welfare maximization in combinatorial auctions (e.g. [26, 18]). We
can view such an algorithm as the composition of two algorithms, a relaxation algorithm and a
rounding algorithm (see Figure 1(a)). The relaxation algorithm is deterministic and takes as input
the problem data (players’ valuations v), and outputs the (fractional) solution to a linear program-
ming relaxation of the welfare-maximization problem that is optimal for the objective function
defined by v. The rounding algorithm is randomized and takes as input this fractional solution and
outputs a feasible allocation of the items to the players. Taken together, these algorithms assign

2

to each input v a probability distribution D(v) over integral allocations. For almost all known
randomized rounding algorithms, there is an input v such that the expected objective function
value Ey∼D(v)[v

T y] with the distribution D(v) is inferior to that Ey∼D(w)[v
T y] with a distribu-

tion D(w) that the algorithm would produce for a different input w — and this is a violation of the
MIDR property. Informally, such violations are inevitable unless a rounding algorithm is designed
explicitly to avoid them, on top of the usual approximation requirements.

The exception that proves the rule is the important and well-known mechanism design frame-
work of Lavi and Swamy [36]. Lavi and Swamy [36] begin with the foothold that the fractional
welfare maximization problem — the relaxation algorithm above — can be made truthful by charg-
ing appropriate VCG payments. Further, they identify a very special type of rounding algorithm
that preserves truthfulness: if the expected allocation produced by the rounding algorithm is al-
ways identical to the input to the rounding algorithm, component-wise, up to some universal scaling
factor α, then composing the two algorithms easily yields an α-approximate truthful-in-expectation
mechanism (after scaling the fractional VCG payments by α). Perhaps surprisingly, there are some
interesting problems, such as welfare maximization in CAs with general valuations, that admit such
a rounding algorithm with a best-possible approximation guarantee (assuming P 6= NP). However,
most NP -hard welfare maximization problems, including CAs and CPPs with restricted valuation
classes, do not seem to admit good randomized rounding algorithms of the rigid type required by
this design framework.

1.3 Our Contributions

We introduce a new approach to designing truthful-in-expectation approximation mechanisms based
on randomized rounding algorithms; we outline it here for the special case of welfare maximization
in combinatorial auctions. The high-level idea is to optimize directly on the outcome of the round-
ing algorithm, rather than merely on the outcome of the relaxation algorithm (the input to the
rounding algorithm). See also Figure 1(b). In other words, let r(x) denote a randomized rounding
algorithm, from fractional allocations to integer allocations. Given players’ valuations v, we com-
pute a fractional allocation x that maximizes the expected welfare Ey∼r(x)[v

T y] over all fractional
allocations x. This methodology evidently gives MIDR algorithms. This optimization problem is
often intractable, but when the rounding algorithm r and the space of valuations v are such that the
function Ey∼r(x)[v

T y] is always concave in x — in which case we call r a convex rounding algorithm
— it can be solved in polynomial time using convex programming (modulo numerical issues that
we address later).

For our first main result, we use this design framework to give an expected polynomial-time,
truthful-in-expectation, (1 − 1/e)-approximation mechanism for welfare maximization in CAs in
which every bidder’s valuation belongs to a rich subclass of submodular valuations.4 This subclass
consists of all nonnegative linear combinations of gross substitutes (GS) valuations, which we denote
by CGS (where C stands for “cone”); see Section 2.5 for formal definitions. In addition to all GS
valuations, this set encompasses many of the concrete examples of submodular functions that have
been studied in the combinatorial auctions literature, including coverage functions and matroid
weighted rank functions (see Appendix A.1 for formal definitions). Our mechanism treats valuations
as “black boxes,” and only assumes that they support a randomized analog of a “value oracle.” We

4A set function f : 2X → R is submodular if it exhibits diminishing marginal returns; i.e., f(T ∪ {j}) − f(T) ≤
f(S ∪ {j}) − f(S) whenever S ⊆ T .

3

also give an explicit (non-oracle-based) implementation of the mechanism for explicitly represented
coverage valuations.

Our approximation guarantee is optimal, assuming P 6= NP , even for the welfare maximization
problem with known and and explicitly presented coverage valuations [35]. Our mechanism is the
first truthful-in-expectation and polynomial-time mechanism to achieve a constant-factor approxi-
mation for an NP -hard class of CAs without assuming that there are a logarithmic (in m) number
of copies of every type of item. Recent negative results for truthful approximation mechanisms
for CAs with bidders with general submodular valuations [25, 20] suggest that our positive results
cannot be extended to a significantly larger valuation class.

Our second result is a (1 − 1/e)-approximate truthful-in-expectation mechanism for welfare
maximization for CPPs with CGS valuations that runs in expected polynomial-time. This is the
best approximation possible for this problem, even with only GS valuations and without truth-
fulness, unless P = NP . Therefore, ours is the first truthful mechanism for an NP-hard variant
of CPP that matches the approximation ratio of the best non-truthful algorithm. Again, recent
impossibility results [25, 20] suggest that this guarantee cannot be extended to significantly more
general valuations.

Both of our mechanisms are instantiations of our convex rounding framework. For CAs, we use
a randomized rounding algorithm that allocates each item independently. We show that standard
randomized rounding does not yield a convex rounding algorithm, but composing it with a suitable
transformation of the optimal fractional solution does (for CGS valuations). We also show that
at least a (1 − 1/e) fraction of the expected welfare of a fractional solution is preserved by this
transformation.

For CPPs, to respect the cardinality constraint of k on the set of chosen projects, our rounding
scheme cannot round different items independently. While the expected value of a submodular
function over a product distribution (i.e., with independent rounding) has been studied extensively,
and is closely related to the now well-understood multi-linear extension (see e.g. [9, 50]), proving the
necessary convexity and approximation results for our dependent distribution requires new ideas.
We address this technical challenge by combining ideas from combinatorics and convex analysis.

1.4 Additional Discussion of Related Work

1.4.1 Combinatorial Auctions

For combinatorial auctions, we discuss only the results most pertinent to this work; see [10] for an
introduction to the topic and [5] for a survey of truthful approximation mechanisms for combina-
torial auctions.

For the welfare maximization problem in CAs with general valuations (assuming only that
vi(∅) = 0 and that vi(S) ≤ vi(T) whenever S ⊆ T), the best approximation factor possible by a
polynomial-time approximation algorithm is roughly min{√m,n}, where n is the number of bidders
and m is the number of items. There are comparable unconditional lower bounds for polynomial
communication and unbounded computation [39] and hardness of approximation results for various
classes of succinctly represented valuations [38].

These strong negative results for welfare maximization with general valuations motivate the
study of important special cases. Numerous special cases have been considered (see [5, Fig 1.2]),
and the most well-studied one is for bidders with submodular valuations. Without incentive-
compatibility constraints, the welfare maximization problem with submodular bidder valuations is

4

completely solved. Vondrák [50] gave a (1− 1
e
)-approximation algorithm for the problem, improving

over the 1
2 -approximation given in [37]. The algorithm in [50] works in the value oracle model, where

each valuation v is modeled as a “black box” that returns the value v(S) of a queried set S in a
single operation. The approximation factor of 1− 1

e
is unconditionally optimal in the value-oracle

model (for polynomial communication) [39], and is also optimal (for polynomial time) for certain
succinctly represented submodular valuations, assuming P 6= NP [35]. The result of [35] implies
that 1− 1/e is the optimal approximation factor in our model as well, assuming P 6= NP .5

Despite intense study, prior to this work, there were no truthful-in-expectation and polynomial-
time constant-factor approximation mechanisms for welfare maximization in CAs with any non-
trivial subclass of submodular bidder valuations. The best previous results, which apply to all

submodular valuations, are a truthful-in-expectation O
(

logm
log logm

)
approximation mechanism in

the communication complexity model due to Dobzinski, Fu and Kleinberg [14], and a universally-
truthful6 O(logm log logm) approximation mechanism in the demand oracle model due to Dobzin-
ski [11].

The aforementioned works [14, 36] are precursors to our general design framework that opti-
mizes directly over the output of a randomized rounding algorithm. In the framework of Lavi and
Swamy [36], the input to and output of the rounding algorithm are assumed to coincide up to a
scaling factor, so optimizing over its input (as they do) is equivalent to optimizing over its output
(as we do). In the result of Dobzinski et al. [14], optimizing with respect to their “proxy bidders”
is equivalent to optimizing over the output of a particular randomized rounding algorithm.

1.4.2 Combinatorial Public Projects

Combinatorial Public Projects, in particular its exact variant, was first introduced by Papadim-
itriou, Schapira, and Singer [47]. They show that no deterministic truthful mechanism for exact
CPP with submodular valuations can guarantee better than a O(

√
m) approximation to the op-

timal social welfare. The non-strategic version of the problem, on the other hand, is equivalent
to maximizing a submodular function subject to a cardinality constraint, and admits a (1 − 1/e)-
approximation algorithm [41]. This is optimal, assuming P 6= NP [48].

Buchfuhrer, Schapira, and Singer [8] explored approximation algorithms and truthful mecha-
nisms for CPP with various classes of valuations in the submodular hierarchy. The most relevant
result of [8] to our paper is a lower-bound of O(

√
m) on deterministic truthful mechanisms for the

exact variant of CPP with coverage valuations — a class of valuations for which our randomized
mechanism for flexible CPP obtains a (1− 1/e) approximation.

Dobzinski [12] showed two lower bounds for CPP in the value oracle model: A lower bound
of O(

√
m) on universally truthful mechanisms for flexible CPP with submodular valuations, and

a lower bound of O(
√
m) on truthful-in-expectation mechanisms for exact CPP with submodular

valuations.

5We show in Appendix B.1 that our oracle model is no more powerful than polynomial-time computation in the
special case of explicitly represented coverage functions, for which 1 − 1/e is optimal assuming P 6= NP [35]. In
contrast, the work of [29] improves on the approximation factor of 1−1/e by using demand oracles, which for coverage
functions can encode the NP -hard Set Cover problem.

6A mechanism is universally-truthful if, for every realization of the mechanism’s coins, each player maximizes his
payoff by bidding truthfully. Universally truthful mechanisms are defined formally in Section 2.2.

5

1.4.3 More Recent Work

Since the initial publication of the work in the paper, impossibility results in [25, 20] have ruled
out polynomial-time constant-approximation truthful mechanisms for combinatorial auctions and
public projects with general submodular valuations. The results of [25] hold in the value oracle
model, and those of [20] hold in the computational complexity model assuming NP 6⊆ P/poly.
Moreover, the convex rounding framework has been employed in [33] to design truthful auctions
for secondary spectrum usage in wireless networks.

2 Preliminaries

2.1 Optimization Problems

We consider optimization problems Π of the following general form. Each instance of Π consists of
a feasible set S, and an objective function w : S → R. The solution to an instance of Π is given by
the following optimization problem.

maximize w(x)
subject to x ∈ S. (1)

2.2 Mechanism Design Basics

We consider mechanism design optimization problems of the form in (1). In such problems, there
are n players, where each player i has a valuation function vi : S → R. We are concerned with
welfare maximization problems, where the objective is w(x) =

∑n
i=1 vi(x).

We consider direct-revelation mechanisms for optimization mechanism design problems. Such
a mechanism comprises an allocation rule, which is a function from (hopefully truthfully) reported
valuation functions v1, . . . , vn to an outcome x ∈ S, and a payment rule, which is a function from
reported valuation functions to a required payment from each player. We allow the allocation and
payment rules to be randomized.

A mechanism with allocation and payment rulesA and p is truthful-in-expectation if every player
always maximizes its expected payoff by truthfully reporting its valuation function, meaning that

E[vi(A(v)) − pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v
′
i, v−i)] (2)

for every player i, (true) valuation function vi, (reported) valuation function v′i, and (reported)
valuation functions v−i of the other players. The expectation in (2) is over the coin flips of the
mechanism. If (2) holds for every flip of the coins, rather than merely in expectation, we call the
mechanism universally truthful.

The mechanisms that we design can be thought of as randomized variations on the classical
VCG mechanism, as we explain next. Recall that the VCG mechanism is defined by the (generally
intractable) allocation rule that selects the welfare-maximizing outcome with respect to the reported
valuation functions, and the payment rule that charges each player i a bid-independent “pivot term”
minus the reported welfare earned by other players in the selected outcome. This (deterministic)
mechanism is truthful; see e.g. [42].

6

Now let dist(S) denote the probability distributions over a feasible set S, and let D ⊆ dist(S) be
a compact subset of them. The corresponding Maximal in Distributional Range (MIDR) allocation
rule is defined as follows: given reported valuation functions v1, . . . , vn, return an outcome that is
sampled randomly from a distribution D∗ ∈ D that maximizes the expected welfare Ex∼D[

∑
i vi(x)]

over all distributions D ∈ D. Analogous to the VCG mechanism, there is a (randomized) payment
rule that can be coupled with this allocation rule to yield a truthful-in-expectation mechanism
(see [13]).

2.3 Combinatorial Auctions

In Combinatorial Auctions there is a set [m] = {1, 2, . . . ,m} of items, and a set [n] = {1, 2, . . . , n}
of players. Each player i has a valuation function vi : 2

[m] → R+ that is normalized (vi(∅) = 0) and
monotone (vi(A) ≤ vi(B) whenever A ⊆ B). A feasible solution is an allocation (S1, . . . , Sn), where
Si denotes the items assigned to player i, and {Si}i are mutually disjoint subsets of [m]. Player i’s
value for outcome (S1, . . . , Sn) is equal to vi(Si). The goal is to choose the allocation maximizing
social welfare:

∑
i vi(Si).

2.4 Combinatorial Public Projects

In Combinatorial Public Projects there is a set [m] = {1, . . . ,m} of projects, a cardinality bound k
such that 0 ≤ k ≤ m, and a set [n] = {1, . . . , n} of players. Each player i has a valuation function
vi : 2

[m] → R+ that is normalized (vi(∅) = 0) and monotone (vi(A) ≤ vi(B) whenever A ⊆ B). In
this paper, we consider the flexible variant of combinatorial public projects: a feasible solution is a
set S ⊆ [m] of projects with |S| ≤ k. Player i’s value for outcome S is equal to vi(S). The goal is
to choose the feasible set S maximizing social welfare:

∑
i vi(S).

2.5 Gross Substitutes and CGS Valuations

We now define the valuation class to which our results apply. We begin with the fundamental class
of gross substitutes (GS) valuations. For a valuation v : 2[m] → R+ and a price vector p : [m] → R,
the demand set D(v, p) is the set argmaxS⊆[m]{v(S) −

∑
j∈S p(j)} of utility-maximizing bundles

at the prices p. The usual definition of gross substitutes (GS) valuations states that increasing the
price of some goods can only increase the demand for other goods.

Definition 2.1 ([34]). A valuation v : 2[m] → R+ satisfies gross substitutes if for every pair
p, q : [m] → R of price vectors with q(j) ≥ p(j) for all j ∈ [m] and every bundle S ∈ D(v, p), there
exists a set T ∈ D(v, q) containing {j ∈ S : q(j) = p(j)}.

The following price-free characterization of GS valuations is more convenient for our purposes.
It follows from combining results in [37] and [4]; see also the survey [46].

Proposition 2.2. A valuation v : 2[m] → R+ is in GS if and only if

Fv
S(i, j) ≥ min{Fv

S(i, k),Fv
S (k, j)}

for every S ⊆ [m] and i, j, k ∈ S, where Fv
S(i, j) is the deficit in additivity of i and j given the set

S:
Fv
S(i, j) = (v(S ∪ {i}) − v(S)) + (v(S ∪ {j}) − v(S)) − (v(S ∪ {i, j}) − v(S)) . (3)

7

It was shown in [30] that GS valuations are submodular. One interesting subclass of GS val-
uations is the set of matroid weighted rank functions (see Appendix A.1 for a review of relevant
concepts from matroid theory). Welfare-maximization in combinatorial auctions with GS bidder
valuations can be solved in polynomial time [40].

GS valuations are not closed under addition; in fact, even the sum of matroid rank functions
may not be in GS — see [46] for an example. We therefore obtain a more general valuation class
by considering all nonnegative linear combinations of GS valuations — the cone generated by gross
substitutes valuations (CGS). Since submodular valuations are closed under nonnegative linear
combinations, CGS valuations are submodular. CGS valuations include most concrete examples
of monotone submodular valuations that appear in the literature, including coverage functions.7

Moreover, if P 6= NP and without regard to incentive-compatibility, 1−1/e is the best approxima-
tion possible in polynomial time for combinatorial auctions [35] when players have CGS valuations
and for combinatorial public projects [48] even when players have GS valuations.8 That said, we
note that some interesting submodular functions — such as some budget additive functions9 — are
not in the CGS family (see Appendix B.3).

2.6 Lotteries and Oracles

A value oracle for a valuation v : 2[m] → R takes as input a set S ⊆ [m], and returns v(S).
We define two analogous oracles, one for use in our mechanism for combinatorial auctions and the
other for combinatorial public projects, that each take as input a description of a simple lottery over
subsets of [m], and output the expectation of v over this lottery. While our “lottery oracles” can
not be implemented efficiently for all explicitly represented CGS functions, they nevertheless can
be approximated arbitrarily well with high probability using random sampling, and can efficiently
be implemented exactly for explicitly represented coverage valuations — we discuss the details in
Appendix B.1.

2.6.1 Product-lottery-value oracles

First, we define product-lottery-value oracles, which we will use in our mechanism for combinatorial
auctions. Given a vector x ∈ [0, 1]m of probabilities on the items, let Dx be the distribution over
S ⊆ [m] that includes each item j in S independently with probability xj . We use Fv(x) to denote
the expected value of v(S) over draws S ∼ Dx from this lottery.

Definition 2.3. A product-lottery-value oracle for set function v : 2[m] → R takes as input a
vector x ∈ [0, 1]m, and outputs

Fv(x) = E
S∼Dx

[v(S)] =
∑

S⊆[m]

v(S)
∏

j∈S

xj
∏

j 6=S

(1− xj). (4)

7A coverage function f on ground set [m] designates some set L of elements, and m subsets A1, . . . , Am ⊆ L, such
that f(S) = | ∪j∈S Aj |. We note that L may be an infinite, yet measurable, space. Coverage functions are arguably
the canonical example of a submodular function, particularly for combinatorial auctions. For more background, see
Appendix A.1.

8The result of [48] holds when the sum of players’ valuations in CPP may be an arbitrary coverage function. Since
a coverage function can be expressed as the sum of GS functions (see Appendix A.1), this implies hardness for CPP
with GS valuations.

9A set function f on ground set [m] is budgeted additive if there exists a constant B ≥ 0 (the budget) such that
f(S) = min(B,

∑
j∈S

f({j})).

8

We note that Fv is simply the well-studied multi-linear extension of v (see for example [9, 50]).

2.6.2 Bounded-lottery-value oracles

Our mechanism for combinatorial public projects requires evaluating a player’s expected value for
a different type of lotteries. Let k ∈ [m], let R ⊆ [m], and let x ∈ [0, 1]m be a vector such that∑

j xj ≤ 1. We interpret x as a probability distribution over [m] ∪ {∗}, where ∗ represents not
choosing a project. Specifically, project j ∈ [m] is chosen with probability xj , and ∗ is chosen
with probability 1−∑

j xj . We define a distribution DR
k (x) over 2

[m], and call this distribution the

k-bounded lottery with marginals x and promise R. We sample S ∼ DR
k (x) as follows: Let j1, . . . , jk

be independent draws from x, and let S = R ∪ {j1, . . . , jk} \ {∗}. Essentially, this lottery commits
to choosing projects R, and adds an additional k projects chosen randomly with replacement from
distribution x. When R = ∅, as will be the case through most of this paper, we omit mention of
the promised set.

Definition 2.4. A bounded-lottery-value oracle for set function v : 2[m] → R takes as input a vector
x ∈ [0, 1]m with

∑
j xj ≤ 1, a bound k ∈ [m], and a set R ⊆ [m], and outputs ES∼DR

k
(x)[v(S)].

3 The Convex Rounding Framework

3.1 Relaxations and Rounding Schemes

Let Π be an optimization problem. A relaxation Π′ of Π defines for every (S, w) ∈ Π a convex and
compact relaxed feasible set R ⊆ Rm that is independent of w (we suppress the dependence on S);
and an extension wR : R → R of the objective w to the relaxed feasible set R. This gives the
following relaxed optimization problem.

maximize wR(x)
subject to x ∈ R.

(5)

Generally, the extension is defined so that it is computationally tractable to find a point x ∈ R
that maximizes wR(x) (possibly approximately).

For example, S could be the allocations of m items to n bidders in a combinatorial auction,
w(x) the welfare of an allocation, R the feasible region of a linear programming relaxation, and
wR the natural linear extension of w to fractional allocations.

The solution x ∈ R to the relaxed problem need not be in S. A rounding scheme for relaxation
Π′ of Π defines for each feasible set S of Π, and its corresponding relaxed set R, a (possibly
randomized) function r : R → S. Since our rounding scheme will be randomized, we will frequently
use r(x) to denote the distribution over S resulting from rounding the point x ∈ R. Commonly,
the rounding scheme satisfies the following approximation guarantee: Ey∼r(x)[w(y)] ≥ α · wR(x)
for every x ∈ R. In this case, if x∗ maximizes wR over R and wR agrees with w on S, then
Ey∼r(x∗)[w(y)] ≥ α ·maxy∈S w(y).

3.2 Convex Rounding Schemes and MIDR

Our technique is motivated by the following observation: instead of solving the relaxed problem
and subsequently rounding the solution, why not optimize directly on the outcome of the rounding

9

scheme? In particular, consider the following relaxation of Π that “absorbs” rounding scheme r
into the objective.

maximize Ey∼r(x)[w(y)]

subject to x ∈ R.
(6)

The solution to this problem rounds to the best possible distribution in the range of the rounding
scheme, over all possible fractional solutions in R. While this problem is often intractable, it always
leads to an MIDR allocation rule.

Algorithm 1 MIDR Allocation Rule via Optimizing over Output of Rounding Scheme

Parameter: Feasible set S of Π.
Parameter: Relaxed feasible set R ⊆ Rm.
Parameter: (Randomized) rounding scheme r : R → S.
Input: Objective w : S → R satisfying (S, w) ∈ Π.
Output: Feasible solution z ∈ S.
1: Let x∗ maximize Ey∼r(x)[w(y)] over x ∈ R.
2: Let z ∼ r(x∗)

Lemma 3.1. Algorithm 1 is an MIDR allocation rule.

We say a rounding scheme r : R → S is α-approximate for α ≤ 1 if w(x) ≥ Ey∼r(x)[w(y)] ≥
α · w(x) for every x ∈ S. When r is α-approximate, so is the allocation rule of Algorithm 1.

Lemma 3.2. If r is an α-approximate rounding scheme, then Algorithm 1 returns an α-approximate
solution (in expectation) to the original optimization problem (1).

For most rounding schemes in the approximation algorithms literature, the optimization prob-
lem (6) cannot be solved in polynomial time (assuming P 6= NP). The reason is that for any
rounding scheme that always rounds a feasible solution to itself – i.e., r(x) = x for all x ∈ S — an
optimal solution to (6) is also optimal for (1). Thus, in this case, hardness of the original problem
(1) implies hardness of (6). We conclude that we need to design rounding schemes with the unusual
property that r(x) 6= x for some x ∈ S.

We call a (randomized) rounding scheme r : R → S convex if Ey∼r(x)[w(y)] is concave function
of x ∈ R. Convex rounding schemes induce convex optimization problems.

Lemma 3.3. When r is a convex rounding scheme, (6) is a convex optimization problem.

Under additional technical conditions, discussed in the context of combinatorial auctions in
Appendix C.1, and in the context of combinatorial public projects in Appendix C.2, the convex
program (6) can be solved efficiently (e.g., using the ellipsoid method). This reduces the design of
a polynomial-time α-approximate MIDR algorithm to designing a polynomial-time α-approximate
convex rounding scheme.

Summarizing, Lemmas 3.1, 3.2, and 3.3 give the following informal theorem.

Theorem 3.4. (Informal) Let Π be a welfare-maximization optimization problem, and let Π′ be a
relaxation of Π. If there exists a polynomial-time, α-approximate, convex rounding scheme for Π′,
then there exists a truthful-in-expectation, polynomial-time, α-approximate mechanism for Π.

Of course, there is no reason a priori to believe that useful convex rounding schemes – let alone
ones computable in polynomial time – exist for any important problems. We show in Sections 4
and 5 that they do in fact exist for combinatorial auctions and public projects with CGS valuations.

10

4 Combinatorial Auctions

In this section, we use the framework of Section 3 to prove our result for combinatorial auctions.

Theorem 4.1. There is a (1− 1/e)-approximate, truthful-in-expectation mechanism for combina-
torial auctions with CGS valuations in the product-lottery-value oracle model, running in expected
poly(n,m) time.

We formulate welfare maximization in combinatorial auctions as an optimization problem as
follows. An instance (S, w) of combinatorial auctions is given by the following integer program
with feasible set S contained in {0, 1}n×m. Variable xij indicates whether item j is allocated to
player i, and w(x) denotes the social welfare of allocation x.

maximize w(x) =
∑

i vi({j : xij = 1})
subject to

∑
i xij ≤ 1, for j ∈ [m].

xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].
(7)

We let the relaxed feasible set R = R(S) be the result of relaxing the constraints xij ∈ {0, 1} of
(7) to 0 ≤ xij ≤ 1.

We structure the proof of Theorem 4.1 as follows. We define the Poisson rounding scheme, which
we denote by rpoiss, in Section 4.1. We prove that rpoiss is (1 − 1/e)-approximate (Lemma 4.3),
and convex (Lemma 4.2). Lemmas 3.1, 3.2 and 4.3, taken together, imply that Algorithm 1 when
instantiated for combinatorial auctions with r = rpoiss, is a (1−1/e)-approximate MIDR allocation
rule. Lemma 4.2 reduces implementing this allocation rule to solving a convex program.

In Appendix C, we handle the technical and numerical issues related to solving convex programs.
First, we prove that our instantiation of Algorithm 1 for combinatorial auctions can be implemented
in expected polynomial-time using the ellipsoid method under a simplifying assumption on the
numerical conditioning of our convex program (Lemma C.2). Then we show in Section C.1.3 that
the previous assumption can be removed by slightly modifying our rounding scheme.

Finally, Proposition B.3 in Appendix B.2 shows that we truth-telling VCG payments for our
mechanism can be computed efficiently. This completes the proof of Theorem 4.1.

4.1 The Poisson Rounding Scheme

In this section we define the Poisson rounding scheme, which we denote by rpoiss. When instantiated
for combinatorial auctions with r = rpoiss, Algorithm 1 reduces to solving the following optimization
problem.

maximize f(x) = Ey∼rpoiss(x)[w(y)]

subject to
∑

i xij ≤ 1, for j ∈ [m].
0 ≤ xij ≤ 1, for i ∈ [n], j ∈ [m].

(8)

We define the Poisson rounding scheme as follows. Given a fractional solution x to (8), do the
following independently for each item j: assign j to player i with probability 1−e−xij . (This is well
defined since 1− e−xij ≤ xij for all players i and items j, and

∑
i xij ≤ 1 for all items j.) We make

this more precise in Algorithm 2. For clarity, we represent an allocation as a function from items
to players, with an additional null player ∗ reserved for items that are left unassigned. The Poisson
rounding scheme is (1−1/e)-approximate and convex. The proof of Lemma 4.3 is not difficult, and
is included below. We prove Lemma 4.2 in Section 4.3. As a warm-up, we first present a simplified
proof of Lemma 4.2 for the special case of coverage valuations in Section 4.2.

11

Algorithm 2 The Poisson Rounding Scheme rpoiss

Input: Fractional allocation x with
∑

i xij ≤ 1 for all j, and 0 ≤ xij ≤ 1 for all i, j.
Output: Feasible allocation a : [m] → [n] ∪ {∗}.
1: for j = 1, . . . ,m do
2: Draw pj uniformly at random from [0, 1].
3: if

∑
i(1− e−xij) ≥ pj then

4: Let a(j) be the minimum index such that
∑

i≤a(j)(1− e−xij) ≥ pj.
5: else
6: a(j) = ∗
7: end if
8: end for

Lemma 4.2. The Poisson rounding scheme is convex when player valuations are in CGS.

Lemma 4.3. The Poisson rounding scheme is (1 − 1/e)-approximate when player valuations are
submodular.

Proof. Let S1, . . . , Sn be an allocation, and let x be an the integer point of (8) corresponding to
S1, . . . , Sn. Let (S

′
1, . . . , S

′
n) ∼ rpoiss(x). It suffices to show that E[

∑
i vi(S

′
i)] ≥ (1−1/e) ·∑i vi(Si).

By definition of the Poisson rounding scheme, S′
i includes each j ∈ Si with probability 1− 1/e.

Submodularity implies that E[vi(S
′
i)] ≥ (1−1/e) ·vi(Si) — this can be proved by a simple induction

on |Si|, and has been previously shown in many contexts: see for example [28, Lemma 2.2], and
the earlier related result in [26, Proposition 2.3]. This completes the proof.

4.2 Warm-up: Convexity for Coverage Valuations

In this section, we prove the special case of Lemma 4.2 for coverage valuations, as defined in
Section 2.5. Fix n, m, and coverage valuations {vi}ni=1, and let R denote the feasible set of
mathematical program (8). Let (S1, . . . , Sn) ∼ rpoiss(x) be the (random) allocation computed by
the Poisson rounding scheme for point x ∈ R. The expected welfare E[w(rpoiss(x))] can be written
as E[

∑n
i=1 vi(Si)], where the expectation is taken over the internal random coins of the rounding

scheme. By linearity of expectation, as well as the fact that the sum of concave functions is concave,
it suffices to show that E[vi(Si)] is a concave function of x for an arbitrary player i with coverage
valuation vi.

Fix player i, and use xj, v, and S as short-hand for xij, vi, and Si respectively. Recall that v
is a coverage function; let L be a ground set and A1, . . . , Am ⊆ L be such that vi(T) = | ∪j∈T Aj |
for each T ⊆ [m]. The Poisson rounding scheme includes each item j in S independently with
probability 1− e−xj . The expected value of player i can be written as follows.

E [v(S)] = E[| ∪j∈S Aj |]
=

∑

ℓ∈L

Pr[ℓ ∈ ∪j∈SAj]

Since the sum of concave functions is concave, it suffices to show that Pr[ℓ ∈ ∪j∈SAj] is concave in
x for each ℓ ∈ L. We can interpret Pr[ℓ ∈ ∪j∈SAj] as the probability that element ℓ is covered by
an item in S, where j ∈ [m] covers ℓ ∈ L if ℓ ∈ Aj . For each ℓ ∈ L, let Cℓ be the set of items that

12

cover ℓ. Element ℓ ∈ L is covered by S precisely when Cℓ ∩ S 6= ∅. Each item j ∈ Cℓ is included
in S independently with probability 1− e−xj . Therefore, the probability ℓ ∈ L is covered by S can
be re-written as follows:

Pr[ℓ ∈ ∪j∈SAj] = 1−
∏

j∈Cℓ

e−xj

= 1− exp

−

∑

j∈Cℓ

xj

 . (9)

Expression (9) is the composition of the concave function g(y) = 1 − e−y with the affine function
y → ∑

j∈Cℓ
xj. It is well known that composing a concave function with an affine function yields

another concave function (see e.g. [6]). Therefore, Pr[ℓ ∈ ∪j∈SAj] is concave in x for each ℓ ∈ L,
as needed. This completes the proof.

4.3 Convexity for CGS Valuations

In this section, we will prove Lemma 4.2 in its full generality. First, we define a discrete analogue of
a Hessian matrix for set functions, and show that these discrete Hessians are negative semi-definite
for CGS functions.

Definition 4.4. Let v : 2[m] → R be a set function. For S ⊆ [m], we define the discrete Hessian
matrix Hv

S ∈ Rm×m of v at S as follows:

Hv
S(j, k) = v(S ∪ {j, k})− v(S ∪ {j})− v(S ∪ {k}) + v(S) (10)

for j, k ∈ [m].

Naturally, Hv
S is a symmetric matrix. Moreover, −Hv

S(j, k) is the deficit in additivity of j and
k given the set S, as defined in Equation (3).

Claim 4.5. If v : 2[m] → R+ is a CGS function, then Hv
S is negative semi-definite for each S ⊆ [m].

Proof. We observe that Hv
S is linear in v, and recall that a non-negative weighted sum of negative

semi-definite matrices is negative semi-definite. Therefore, it is sufficient to prove this claim when
v is a gross substitutes function.

We assume v is in GS, and let Fv
S ∈ Rm×m be as defined in Equation (3). Since Fv

S = −Hv
S ,

we prove that Fv
S is positive semi-definite, using only the characterization of GS functions from

Proposition 2.2. We fix v and S, and use F as shorthand for Fv
S . Let a1, . . . , aτ be the (distinct)

real numbers appearing in F , and assume a1 < a2 < . . . < aτ . We write F as a nonnegative
weighted sum of {0, 1} matrices as follows.

F = a1F1 +

τ∑

t=2

(at − at−1)F t,

where F t ∈ {0, 1}m×m, and F t
jk = 1 if and only if Fjk ≥ at.

Since a nonnegative weighted sum of positive semi-definite matrices is positive semi-definite, it
suffices to show that each F t is positive semi-definite. First, note that each matrix F t is symmetric

13

by definition, since F is symmetric. Proposition 2.2 implies that whenever Fjk ≥ at and Fkℓ ≥ at,
it is the case that Fjℓ ≥ at. Therefore, by definition of F t, whenever F t

jk = 1 and F t
kℓ = 1, we

have Fjℓ = 1. Therefore, each F t encodes a transitive relation on [m]. Moreover, the relation is
symmetric since F t is symmetric.

A binary matrix encoding a symmetric and transitive relation is a block diagonal matrix where
each diagonal block is an all-ones or all-zeros sub-matrix. It is known, and easy to prove, that
such a matrix is positive semi-definite. Therefore Fv

S is positive semi-definite, and Hv
S is negative

semi-definite.

We now return to Lemma 4.2. Fix n, m, and CGS valuations {vi}ni=1, and let R denote the
feasible set of mathematical program (8). Let (S1, . . . , Sn) ∼ rpoiss(x) be the (random) allocation
computed by the Poisson rounding scheme for point x ∈ R. The expected welfare E[w(rpoiss(x))]
can be written as E[

∑n
i=1 vi(Si)], where the expectation is taken over the internal random coins

of the rounding scheme. By linearity of expectation, as well as the fact that the sum of concave
functions is concave, it suffices to show that E[vi(Si)] is a concave function of x for an arbitrary
player i with CGS valuation vi.

Fix player i, and use xj, v, S as short-hand for xij , vi, Si respectively. The Poisson rounding
scheme includes each item j in S independently with probability 1 − e−xj . We can now write the
expected value of player i as the following function Gv : Rm → R:

Gv(x1, . . . , xm) =
∑

S⊆[m]

v(S)
∏

j∈S

(1− e−xj)
∏

j 6=S

e−xj (11)

The following claim, combined with Claim 4.5, completes the proof of Lemma 4.2.

Claim 4.6. If all discrete Hessians of v are negative semi-definite, then Gv is concave.

Proof. Assume Hv
S is negative semi-definite for each S ⊆ [m]. We work with Gv as expressed in

Equation (11). We will show that the Hessian matrix of Gv at an arbitrary x ∈ Rm is negative
semi-definite, which is a sufficient condition for concavity. We take the mixed-derivative of Gv with
respect to xj and xk (possibly j = k).

∂2Gv(x)

∂xj∂xk
=

∑

S⊆[m]\{j,k}

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(
v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k})

)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(
v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k})

)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S(j, k)

The first equality follows by grouping the terms of Equation (11) by the projection of S onto
[m] \ {i, j}, and then differentiating. The second equality follows from the fact that v(S) − v(S ∪
{j})− v(S ∪ {k}) + v(S ∪ {j, k}) = 0 when S includes either of j and k. The last equality follows
by definition of Hv

S.
The above derivation immediately implies that we can write the Hessian matrix of Gv(x) as a

non-negative weighted sum of discrete Hessian matrices.

▽2Gv(x) =
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S (12)

14

A non-negative weighted sum of negative semi-definite matrices is negative semi-definite. This
completes the proof of the claim.

5 Combinatorial Public Projects

In this section, we prove our result for combinatorial public projects.

Theorem 5.1. There is a (1− 1/e)-approximate, truthful-in-expectation mechanism for combina-
torial public projects with CGS valuations in the bounded-lottery-value oracle model, running in
expected poly(n,m) time.

We formulate welfare maximization in combinatorial public projects as an optimization problem
as follows. An instance (S, w) is given by the following integer program with feasible set S contained
in {0, 1}m. Variable xj indicates whether project j is selected, and w(x) denotes the social welfare
of allocation x.

maximize w(x) =
∑

i vi({j : xj = 1})
subject to

∑m
j=1 xj ≤ k

xj ∈ {0, 1} , for j ∈ [m].

(13)

We let the relaxed feasible set R = R(S) be the result of relaxing the constraints xj ∈ {0, 1} of
(7) to 0 ≤ xj ≤ 1.

We structure the proof of Theorem 5.1 similarly to the proof of Theorem 4.1. We define the
k-bounded-lottery rounding scheme, which we denote by rk, in Section 5.1. We prove that rk is
(1 − 1/e)-approximate (Lemma 5.3), and convex (Lemma 5.2). Lemmas 3.1, 3.2 and 5.3, taken
together, imply that Algorithm 1, when instantiated for combinatorial public projects with r = rk,
is a (1− 1/e)-approximate MIDR allocation rule. Lemma 5.2 reduces implementing this allocation
rule to solving a convex program.

The rest of the proof of Theorem 5.1 proceeds as for Theorem 4.1. Specifically, we handle
technical and numerical issues related to solving convex programs in Appendix C, and Proposition
B.3 shows that truth-telling VCG payments can be computed in efficiently.

5.1 The k-Bounded-Lottery Rounding Scheme

We now define the k-bounded-lottery rounding scheme for combinatorial public projects, which we
denote by rk. When instantiated for combinatorial public projects with r = rk, Algorithm 1 reduces
to solving the following optimization problem.

maximize ES∼rk(x)[
∑

i vi(S)]

subject to
∑m

j=1 xj ≤ k

0 ≤ xj ≤ 1, for j = 1, . . . ,m.

(14)

Given a feasible solution x for mathematical program (14), we let distribution rk(x) be the
k-bounded-lottery with marginals x/k (and promise ∅), as defined in Section 2.6. We make this
more explicit in Algorithm 3.

The k-bounded-lottery rounding scheme is (1 − 1/e) approximate and convex. We prove the
approximation lemma below, and convexity in Section 5.2.

Lemma 5.2. The k-bounded-lottery rounding scheme is convex for CPP with CGS valuations.

15

Algorithm 3 The k-Bounded-Lottery Rounding Scheme rk
Input: Fractional solution x ∈ Rm with

∑
j xj ≤ k, and 0 ≤ xj ≤ 1 for all j.

Output: S ⊆ [m] with |S| ≤ k
1: For each j ∈ [m] designate the interval Ij = [1

k

∑
j′<j xj′ ,

1
k

∑
j′≤j xj′] of length

xj

k

2: Draw p1, . . . , pk independently and uniformly from [0, 1]
3: Let S = {j ∈ [m] : {p1, . . . , pk} ∩ Ij 6= ∅}

Lemma 5.3. The k-bounded-lottery rounding scheme is (1−1/e)-approximate when valuations are
submodular.

Proof. Fix n,m, k and {vi}ni=1. Let S ⊆ [m] be a feasible solution to CPP — i.e. |S| ≤ k. Let 1S
be the vector with 1 in indices corresponding to S, and 0 otherwise. Let T ∼ rk(1S). We will first
show that each element of j ∈ S is included in T with probability at least 1−1/e. Observe that T is
the union of k independent draws from a distribution on [m]∪{∗}, where each time the probability
of j ∈ S is 1/k. Therefore, the probability that j is included in T is 1− (1− 1/k)k ≥ 1− 1/e.

As in the proof of Lemma 4.3, submodularity implies that E[vi(T)] ≥ (1− 1/e) · vi(S) for each
player i. This completes the proof.

5.2 Convexity for CGS Valuations

In this section, we will prove Lemma 5.2. We note that the special case of Lemma 5.2 for coverage
valuations admits a simpler proof similar to that in Section 4.2, with the the function 1− (1− y

k
)k

playing the role of the function 1− e−y.
Fix n and m. For each cardinality bound k ∈ [m], let Pk denote the polytope of fractional

solutions to CPP as given in (14). For a set of CGS valuations v1, . . . , vn, we observe that the
social welfare v(S) =

∑n
i=1 vi(S) is — by the (obvious) fact that the sum of CGS functions is a

CGS function — also a CGS function. Therefore, we will prove Lemma 5.2 by showing that, for
each k ∈ [m] and CGS function v : 2[m] → R, the following function of x ∈ Pk is concave in x.

Gv
k(x) = E

S∼rk(x)
[v(S)]

=
∑

S⊆[m]

v(S) Pr[rk(x) = S]
(15)

We use techniques from combinatorics to write Pr[rk(x) = S] in a form that will be easier to
work with. For T ⊆ [m], we use xT as short-hand for

∑
j∈T xj, and T as short-hand for [m] \ T .

Claim 5.4. For each k ∈ [m], x ∈ Pk, and S ⊆ [m]

Pr[rk(x) = S] = −1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k

(16)

Proof. First, we observe that Pr[rk(x) ⊆ R] can be expressed as a simple closed form in x for every
set R ⊆ [m]. Let p1, . . . , pk and I1, . . . , Im be as in Algorithm 3. The event rk(x) ⊆ R occurs
exactly when none of p1, . . . , pk land in the intervals corresponding to projects R. Recalling that

16

the interval Ij of project j has length xj/k, we get that the probability of any particular pt falling
in ∪j∈RIj is exactly xR/k. Therefore, by the independence of the variables p1, . . . , pk, we get that

Pr[rk(x) ⊆ R] =
(
1− xR

k

)k

(17)

Next, we express Pr[rk(x) = S] in terms of the expressions Pr[rk(x) ⊆ R] for sets R ⊆ S. It is
easy to see that Pr[rk(x) = S] is equal to:

Pr[rk(x) ⊆ S]− Pr[
∨

j∈S

rk(x) ⊆ S \ {j}] (18)

Using the inclusion-exclusion principle, we can rewrite (18) as follows:

Pr[rk(x) ⊆ S]−
∑

∅6=T⊆S

−1|T |−1Pr[rk(x) ⊆ S \ T] (19)

Letting R = S \ T in (19), we get

Pr[rk(x) ⊆ S]−
∑

R(S

−1|S|−|R|−1Pr[rk(x) ⊆ R] (20)

We can easily simplify (20) to conclude that

Pr[rk(x) = S] =
∑

R⊆S

−1|S|−|R|Pr[rk(x) ⊆ R] (21)

Combining (21) and (17) completes the proof.

Recall the discrete Hessian matrices from Definition 4.4. Building on Claim 5.4, we now express
the Hessian matrix of Gv

k as a non-negative weighted sum of discrete Hessian matrices of v. We
note that when x ∈ Pk, it is easy to verify that k−2

k
· x ∈ Pk−2, and therefore (22) is well defined.

Claim 5.5. For each k ∈ [m], x ∈ Pk, and v : 2[m] → R, we have

▽2Gv
k(x) =

k − 1

k

∑

S⊆[m]

Pr

[
rk−2

(
k − 2

k
· x

)
= S

]
Hv

S (22)

where Hv
S is as in Definition 4.4.

Proof. Fix i, j ∈ [m], possibly with i = j. We work with Gv
k as defined in Equation (15), and plug

in expression (16).

Gv
k(x) =

∑

S⊆[m]

v(S) · −1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k

Differentiating with respect to xi and xj gives:

∂2Gv
k(x)

∂xi∂xj
=

k − 1

k

∑

S⊆[m]

v(S) · −1|S|
∑

R⊆S\{i,j}

−1|R|
(
1− xR

k

)k−2

17

We group the terms by projecting S onto [m]\{i, j}, and then we simplify the resulting expression.

∂2Gv
k(x)

∂xi∂xj
=
k − 1

k

∑

S⊆[m]\{i,j}

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2
(v(S) − v(S ∪ {i})− v(S ∪ {j}) + v(S ∪ {i, j}))

=
k − 1

k

∑

S⊆[m]

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2
(v(S) − v(S ∪ {i})− v(S ∪ {j}) + v(S ∪ {i, j}))

=
k − 1

k

∑

S⊆[m]

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2
Hv

S(i, j) (23)

The second equality follows from the fact that v(S) − v(S ∪ {i}) − v(S ∪ {j}) + v(S ∪ {i, j}) = 0
when S includes either of i and j. The last equality follows by definition of Hv

S .
Invoking Claim 5.4 with k′ = k− 2 and x′ = k−2

k
· x, and plugging the resulting expression into

into (23), we conclude that

∂2Gv
k(x)

∂xi∂xj
=
k − 1

k

∑

S⊆[m]

Pr

[
rk−2

(
k − 2

k
· x

)
= S

]
Hv

S(i, j).

Claims 4.5 and 5.5 establish that, when v is in CGS and k ∈ [m], ▽2Gv
k(x) is a non-negative

weighted sum of negative semi-definite matrices for each x ∈ Pk. A non-negative weighted sum
of negative semi-definite matrices is negative semi-definite. Therefore, the Hessian matrix of Gv

k is
negative semi-definite at each x ∈ Pk, and we conclude that Gv

k is a concave function on Pk. This
completes the proof of Lemma 5.2.

6 Conclusions and Open Problems

In this paper we introduced the convex rounding mechanism design framework, and used it to
design computationally tractable truthful-in-expectation approximation mechanisms for welfare
maximization in combinatorial auctions and combinatorial public projects. Our guarantees apply
to bidders with valuations that are in the cone generated by gross substitutes valuations, are the
best possible assuming P 6= NP , and are the first such guarantees for natural NP-hard variants of
these problems.

Since initial publication of the work in this paper, the convex rounding framework has been
applied to other problems in mechanism design in at least one instance ([33]), and we anticipate
more. In particular, an attractive potential application is to combinatorial auctions with valuations
exhibiting limited complementarity, as defined in [1] and [27]. More generally, a characterization of
the family of problems and linear programming relaxations which admit optimal (or near optimal)
convex rounding algorithms would open the door to understanding the power and limitations of
our technique.

Other open questions and potential extensions of our results remain. Can our mechanisms
be “de-randomized”, i.e. converted to deterministic or at least universally-truthful mechanisms
attaining the same guarantees for CGS valuations? Can our lottery oracle models be relaxed to the
traditional value oracle model, without sacrificing any of our guarantees? What about extensions
to other natural classes of valuations, such as budgeted additive valuations?

18

Finally, our result for combinatorial auctions can be thought of as extending the tractability of
truthful combinatorial auctions from gross substitutes valuations to CGS valuations at the cost of
a constant factor loss in the approximation ratio. More generally, noting that gross substitutes val-
uations have many attractive economic properties (e.g. permitting Walrasian equilibria in markets
with discrete goods), do these properties admit approximate generalizations to CGS valuations?
A more thorough understanding the cone of gross substitutes valuations, and its economic and
algorithmic implications, appears worthy of pursuit.

Acknowledgments

We thank Ittai Abraham, Moshe Babaioff, Bobby Kleinberg, and Jan Vondrák for helpful dis-
cussions and comments. Specifically, we thank Bobby Kleinberg for insights into the algebraic
properties of set functions that were useful in guiding the early stages of this work, and we thank
Jan Vondrák for pointing out that the proof of Lemma 4.2 can be simplified in the special case
of coverage functions (Section 4.2). Finally, we thank the anonymous STOC and EC referees for
helpful suggestions.

References

[1] Ittai Abraham, Moshe Babaioff, Shaddin Dughmi, and Tim Roughgarden, Combinatorial auc-
tions with restricted complements, Proceedings of the 13th ACM Conference on Electronic
Commerce (EC), 2012, pp. 3–16.

[2] Xiaohui Bei and Zhiyi Huang, Towards optimal Bayesian algorithmic mechanism design, Pro-
ceedings of the 22nd ACM Symposium on Discrete Algorithms (SODA), 2011, pp. 720–733.

[3] Aharon Ben-Tal and Arkadi Nemirovski, Lectures on modern convex optimization: Analysis,
algorithms, and engineering applications, SIAM, 2001.

[4] Meir Bing, Daniel J. Lehmann, and Paul Milgrom, Presentation and structure of substitutes
valuations, Proceedings of the 5th ACM Conference on Electronic Commerce (EC), 2004,
pp. 238–239.

[5] Liad Blumrosen and Noam Nisan, Combinatorial auctions (a survey), Algorithmic Game The-
ory (Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani, eds.), Cambridge Uni-
versity Press, 2007.

[6] Stephen Boyd and Lieven Vandenberghe, Convex optimization, Cambridge University Press,
2004.

[7] Dave Buchfuhrer, Shaddin Dughmi, Hu Fu, Robert Kleinberg, Elchanan Mossel, Christos
Papadimitriou, Michael Schapira, Yaron Singer, and Chris Umans, Inapproximability for VCG-
based combinatorial auctions, Proceedings of the 21st ACM Symposium on Discrete Algorithms
(SODA), 2010, pp. 518–536.

[8] David Buchfuhrer, Michael Schapira, and Yaron Singer, Computation and incentives in com-
binatorial public projects, Proceedings of the 11th ACM Conference on Electronic Commerce
(EC), 2010, pp. 33–42.

19

[9] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák, Maximizing a submodular
set function subject to a matroid constraint, Proceedings of the 12th International Conference
on Integer Programming and Combinatorial Optimization (IPCO), 2007, pp. 182–196.

[10] Peter Cramton, Yoav Shoham, and Richard Steinberg (eds.), Combinatorial auctions, MIT
Press., 2006.

[11] Shahar Dobzinski, Two randomized mechanisms for combinatorial auctions, Proceedings of the
10th International Workshop on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX) (2007), 89–103.

[12] Shahar Dobzinski, An impossibility result for truthful combinatorial auctions with submodular
valuations, Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), 2011,
pp. 139–148.

[13] Shahar Dobzinski and Shaddin Dughmi, On the power of randomization in algorithmic mech-
anism design, Proceedings of the 50th IEEE Symposium on Foundations of Computer Science
(FOCS), 2009, pp. 505–514.

[14] Shahar Dobzinski, Hu Fu, and Robert Kleinberg, Truthfulness via proxies, arXiv:1011.3232
(2010).

[15] Shahar Dobzinski and Noam Nisan, Limitations of VCG-based mechanisms, Proceedings of
the 38th ACM Symposium on Theory of Computing (STOC), 2007, pp. 338–344.

[16] Shahar Dobzinski, Noam Nisan, and Michael Schapira, Approximation algorithms for combi-
natorial auctions with complement-free bidders, Proceedings of the 36th ACM Symposium on
Theory of Computing (STOC), 2005, pp. 610–618.

[17] , Truthful randomized mechanisms for combinatorial auctions, Proceedings of the 37th
ACM Symposium on Theory of Computing (STOC), 2006, pp. 644–652.

[18] Shahar Dobzinski and Michael Schapira, An improved approximation algorithm for combinato-
rial auctions with submodular bidders, Proceedings of the 17th ACM Symposium on Discrete
Algorithms (SODA), 2006, pp. 1064–1073.

[19] Shahar Dobzinski and Mukund Sundararajan, On characterizations of truthful mechanisms for
combinatorial auctions and scheduling, Proceedings of the 9th ACM Conference on Electronic
Commerce (EC), 2008.

[20] Shahar Dobzinski and Jan Vondrák, The computational complexity of truthfulness in combi-
natorial auctions, Proceedings of the 13th ACM Conference on Electronic Commerce (EC),
2012, pp. 405–422.

[21] Shaddin Dughmi, A truthful randomized mechanism for combinatorial public projects via con-
vex optimization, Proceedings of the 12th ACM Conference on Electronic Commerce (EC),
2011, pp. 263–272.

[22] Shaddin Dughmi and Tim Roughgarden, Black-box randomized reductions in algorithmic mech-
anism design, Proceedings of the 51st IEEE Symposium on Foundations of Computer Science
(FOCS), 2010, pp. 775–784.

20

[23] Shaddin Dughmi, Tim Roughgarden, Jan Vondrák, and Qiqi Yan, An approximately
truthful-in-expectation mechanism for combinatorial auctions using value queries, CoRR
abs/1109.1053 (2011).

[24] Shaddin Dughmi, Tim Roughgarden, and Qiqi Yan, From convex optimization to randomized
mechanisms: toward optimal combinatorial auctions, Proceedings of the 42nd ACM Sympo-
sium on Theory of Computing (STOC), 2011, pp. 149–158.

[25] Shaddin Dughmi and Jan Vondrák, Limitations of randomized mechanisms for combinatorial
auctions, Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science
(FOCS), 2011.

[26] Uriel Feige, On maximizing welfare where the utility functions are subadditive, Proceedings of
the 37th ACM Symposium on Theory of Computing (STOC), 2006, pp. 122–142.

[27] Uriel Feige and Rani Izsak, Welfare maximization and the supermodular degree, Proceedings
of the 4th Conference on Innovations in Theoretical Computer Science, 2013, pp. 247–256.

[28] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák, Maximizing non-monotone submodular
functions, Proceedings of the 48th IEEE Symposium on Foundations of Computer Science
(FOCS), 2007, pp. 461–471.

[29] Uriel Feige and Jan Vondrák, Approximation algorithms for allocation problems: Improving
the factor of 1-1/e, Proceedings of the 47th IEEE Symposium on Foundations of Computer
Science (FOCS), 2006.

[30] Faruk Gul and Ennio Stacchetti, Walrasian equilibrium with gross substitutes, Journal of Eco-
nomic Theory 87 (1999), 95 – 124.

[31] Jason Hartline, Robert Kleinberg, and Azarakhsh Malekian, Multi-parameter Bayesian algo-
rithmic mechanism design, Proceedings of the 22nd ACM Symposium on Discrete Algorithms
(SODA), 2011, pp. 734–747.

[32] Jason D. Hartline and Brendan Lucier, Bayesian algorithmic mechanism design, Proceedings
of the 41st ACM Symposium on Theory of Computing (STOC), 2010, pp. 301–310.

[33] Martin Hoefer and Thomas Kesselheim, Secondary spectrum auctions for symmetric and sub-
modular bidders, Proceedings of the 13th ACM Conference on Electronic Commerce, ACM,
2012, pp. 657–671.

[34] A. S. Kelso, Jr. and V. P. Crawford, Job matching, coalition formation, and gross substitutes,
Econometrica 50 (1982), no. 6.

[35] Subhash Khot, Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta, Inapproximability
results for combinatorial auctions with submodular utility functions, Algorithmica 52 (2008),
no. 1, 3–18.

[36] Ron Lavi and Chaitanya Swamy, Truthful and near-optimal mechanism design via linear pro-
gramming, Proceedings of the 46th IEEE Symposium on Foundations of Computer Science
(FOCS), 2005, pp. 595–604.

21

[37] B. Lehmann, D. Lehmann, and N. Nisan, Combinatorial auctions with decreasing marginal
utilities, Games and Economic Behavior 55 (2006), no. 2, 270–296.

[38] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham, Truth revelation in approximately
efficient combinatorial auctions, Journal of the ACM (JACM) 49 (2002), no. 5, 577–602.

[39] Vahab Mirrokni, Michael Schapira, and Jan Vondrák, Tight information-theoretic lower bounds
for welfare maximization in combinatorial auctions, Proceedings of the 9th ACM Conference
on Electronic Commerce (EC), 2008.

[40] K. Murota, Valuated matroid intersection II: Algorithms, SIAM Journal on Discrete Mathe-
matics 9 (1996), no. 4, 562–576.

[41] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations for maxi-
mizing submodular set functions – I., Mathematical Programming 14 (1978), no. 3, 265–294.

[42] Noam Nisan, Introduction to mechanism design (for computer scientists), Algorithmic Game
Theory (Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay Vazirani, eds.), Cambridge
University Press, 2007.

[43] Noam Nisan and Amir Ronen, Algorithmic mechanism design, Games and Economic Behaviour
35 (2001), 166 – 196.

[44] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, Algorithmic game theory,
Cambridge University Press, New York, NY, USA, 2007.

[45] J. G. Oxley, Matroid theory, Oxford University Press, 1992.

[46] R. Paes Leme, Gross substitutability: an algorithmic survey, Working paper, 2013.

[47] Christos Papadimitriou, Michael Schapira, and Yaron Singer, On the hardness of being truthful,
Proceedings of the 49th IEEE Symposium on Foundations of Computer Science (FOCS), 2008,
pp. 250–259.

[48] Ran Raz and Shmuel Safra, A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP, Proceedings of the 29th ACM Symposium on
Theory of Computing (STOC), 1997, pp. 475–484.

[49] Alexander Schrijver, Combinatorial optimization, Springer, 2003.

[50] Jan Vondrák, Optimal approximation for the submodular welfare problem in the value oracle
model, Proceedings of the 39th ACM Symposium on Theory of Computing (STOC), 2008,
pp. 67–74.

22

A Additional Preliminaries

A.1 Matroids and Related Set Functions

In this section, we review some basics of matroid theory, and related CGS functions. For a more
comprehensive reference on matroid theory we refer the reader to [45]. For their connection to gross
substitutes, we refer the reader to the survey in [46].

A matroid M is a pair (X ,I), where X is a finite ground set, and I is a non-empty family of
subsets of X satisfying the following two properties. (1) Downward closure: If S belongs to I, then
so do all subsets of S. (2) The Exchange Property: Whenever T, S ∈ I with |T | < |S|, there is
some x ∈ S \ T such that T ∪ {x} ∈ I. Elements of I are often referred to as the independent sets
of the matroid. Subsets of X that are not in I are often called dependent.

We associate with matroid M a set function rankM : 2X → N, known as the rank function of
M , defined as follows: rankM(A) = maxS∈I |S ∩ A|. Equivalently, the rank of set A in matroid
M is the maximum size of an independent set contained in A. More generally, given a matroid
M = (X ,I) and a weight vector w ∈ RX , the associated weighted rank function is defined as
follows: rankwM (A) = maxS∈I

∑
i∈S∩Awi. A set function f on a ground set X is a matroid rank

function if there exists a matroid M on the same ground set such that f = rankM , and is a
matroid weighted rank function if there exists M and w such that f = rankwM . It is known,
and easy to check, that a matroid weighted rank function can be expressed as a nonnegative
weighted sum of (unweighted) matroid rank functions. Both weighted and unweighted matroid
rank functions are monotone (f(S) ≤ f(T) when S ⊆ T), normalized (f(∅) = 0), and submodular
(f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T) for all S and T). In fact, they are in GS (see [46]).

Recall that a a coverage function f on ground set [m] designates some set L of elements, and
m subsets A1, . . . , Am ⊆ L, such that f(S) = | ∪j∈S Aj |. We note that coverage functions can
be expressed as a sum of matroid rank functions. In particular, for each ℓ ∈ L, let fℓ(S) = 1 if
ℓ ∈ ∪j∈SAS , and fℓ(S) = 0 otherwise. It is easy to check that fℓ is a matroid rank function, and
moreover f(S) =

∑
ℓ∈L fℓ(S) for all S ⊆ [m]. As a consequence, coverage functions are in CGS.

A.2 Convex Optimization

In this section, we distill some basics of convex optimization. For more details, see [3].

Definition A.1. A maximization problem is given by a set Π of instances (P, c), where P is a
subset of some euclidean space, c : P → R, and the goal is to maximize c(x) over x ∈ P. We say Π
is a convex maximization problem if for every (P, c) ∈ Π, P is a compact convex set, and c : P → R

is concave. If c : P → R+ for every instance of Π, we say Π is non-negative.

Definition A.2. We say a non-negative maximization problem Π is R-solvable in polynomial time
if there is an algorithm that takes as input the representation of an instance I = (P, c) ∈ Π — where
we use |I| to denote the number of bits in the representation — and an approximation parameter
ǫ, and in time poly(|I|, log(1/ǫ)) outputs x ∈ P such that c(x) ≥ (1− ǫ)maxy∈P c(y).

Fact A.3. Consider a non-negative convex maximization problem Π. If the following are satisfied,
then Π is R-solvable in polynomial time using the ellipsoid method. We let I = (P, c) denote an
instance of Π, and let m denote the dimension of the ambient euclidean space.

1. Polynomial Dimension: m is polynomial in |I|.

23

2. Starting ellipsoid: There is an algorithm that computes, in time poly(|I|), a point c ∈ Rm,
a matrix A ∈ Rm×m, and a number V ∈ R such that the following hold. We use E(c,A) to
denote the ellipsoid given by center c and linear transformation A.

(a) E(c,A) ⊇ P
(b) V ≤ volume(P)

(c) volume(E(c,A))
V ≤ 2poly(|I|)

3. Separation oracle for P: There is an algorithm that takes takes input I and x ∈ Rm, and
in time poly(|I|, |x|) where |x| denotes the size of the representation of x, outputs “yes” if
x ∈ P, otherwise outputs h ∈ Rm such that hTx < hT y for every y ∈ P.

4. First order oracle for c: There is an algorithm that takes input I and x ∈ Rm, and in time
poly(|I|, |x|) outputs c(x) ∈ R and ▽c(x) ∈ Rm.

B Additional Technical Details and Commentary

B.1 Relaxing the Oracle Model

Both of our mechanisms assumed the existence of a “lottery value” oracle for evaluating a player’s
expected value on a distribution. As argued in [23], these oracles can not always be implemented
efficiently — in fact, doing so is #P-hard for some matroid rank functions. Nevertheless, we justify
employing these oracles on two grounds: First, our lottery-value oracles are easily implemented for
the most interesting example of CGS valuations, specifically explicit coverage functions. Second, our
lottery-value oracles can be approximated arbitrarily well with high probability using a polynomial
number of value oracle queries (see [50]). Even though we are not able to reconcile the incurred
sampling errors — small as they may be — with the requirement that our mechanisms be exactly
truthful, it was shown in in [23] that relaxing our solution concept to approximate truthfulness
– also known as ǫ-truthfulness – removes this difficulty for combinatorial auctions, allowing us to
relax our oracle model to the more traditional value oracles. Next, we show that our oracles can
be implemented efficiently for explicit coverage functions.

Coverage Valuations

An explicit coverage valuation v is represented as follows. There is a finite set L, and a family
A1, . . . , Am of subsets of L. The valuation v is defined by vi(S) = | ∪j∈S Aj |. The set system(
L, {Aj}mj=1

)
is encoded explicitly as a bipartite graph. Next, we show that both our lottery

oracles can be implemented in time polynomial in the size of the representation of such a valuation,
implying that the mechanisms of Theorems 4.1 and 5.1 can be implemented in polynomial time
when players have explicit coverage valuations.

Claim B.1. Let v be a coverage valuation represented explicitly. Product-lottery-value queries on
v can be answered in time polynomial in the size of the representation of v.

Proof. Let (L, {Aj}mj=1) be the set system defining v, and let x ∈ [0, 1]m. Let S be a random set
that includes each j ∈ [m] independently with probability xj. The outcome of the product-lottery-
value oracle of v evaluated at x is equal to the sum, over all ℓ ∈ L, of the probability that ℓ is

24

“covered” by S – specifically,
∑

ℓ∈L Pr[ℓ ∈ ∪j∈SAj]. It is easy to verify that a term of this sum can
be expressed as the following closed form expression.

Pr[ℓ ∈ ∪j∈SAj] = 1−
∏

j:Aj∋ℓ

(1− xj)

It is simple to check this expression can be evaluated in time polynomial in the representation of
the set system. This completes the proof.

Claim B.2. Let v be a coverage valuation represented explicitly. Bounded-lottery-value queries on
v can be answered in time polynomial in the size of the representation of v.

Proof. Let (L, {Aj}mj=1) be the set system defining v. Consider R ⊆ [m], k ∈ [m], and x ∈ [0, 1]m

with
∑m

i=1 xi ≤ 1. For ℓ ∈ L, let Tℓ = {j ∈ [m] : ℓ ∈ Aj} be the set of projects that “cover” ℓ.
The output of the k-bounded-lottery-value oracle on marginals x and promise R can be written as
follows:

v(R) +
∑

ℓ∈L\∪j∈RAj

1−

1−

∑

j∈Tℓ

xj

k

 .

It is simple to check that this expression can be evaluated in time polynomial in the representation
of the set system. This completes the proof.

B.2 Computing Payments

In this section, we show how to efficiently compute truth-telling payments for our mechanisms. In
fact, as shown below, this is possible for any maximal in distributional range allocation rule for
combinatorial auctions or public projects, given as a black box.

Proposition B.3. Let A be an MIDR allocation rule for either combinatorial auctions or com-
binatorial public projects. Let R denote the distributional range of A. There exists a randomized
payment rule p, implementable in poly(n) time given black-box access to A, such that the resulting
mechanism (A, p) is truthful in expectation, individually rational in expectation, and its payments
are non-negative in expectation.

Proof. This theorem applies to any mechanism design problem where players have non-negative
valuations, and where the zero valuation (i.e. the valuation assigning 0 to each outcome) is a
feasible report for each player. Both properties hold for combinatorial auctions and combinatorial
public projects.

Let pvcg denote the (deterministic) VCG payment scheme for the problem of expected welfare
maximization over R. We can write pvcg as follows.

pvcgi (v1, . . . , vn) = E
T∼A(0,v−i)

∑

j 6=i

vj(T)

− E

S∼A(v1,...,vn)

∑

j 6=i

vj(S)

 . (24)

Combining A with pvcg yields a mechanism that is in expectation truthful, individually rational,
and has non-negative payments. However, payment scheme pvcg may not be implementable effi-
ciently, due to the difficulty in exactly evaluating the expectations in expression (24). Nevertheless,

25

it is an easy observation that any payment scheme p with E[pi(v)] = pvcgi (v) for each i and v yields
the same guarantees in expectation.

To complete the proof, we show how to compute such a payment rule p using only a polynomial
number of invocations of A as a black box. We sample random variable pi(v) as follows: Let
T be a sample from lottery A(v), let T−i be a sample from lottery A(v−i, 0), and let pi(v) =∑

j 6=i vj(T−i) −
∑

j 6=i vj(T). Using Equation (24) and the fact that A is MIDR with range R, we
conclude that E[pi(v)] = pvcgi (v) for each i and v. This completes the proof.

We note that the mechanism resulting from Proposition B.3 is individually rational in expecta-
tion, and each payment is non-negative in expectation. We leave open the question of whether it
is possible to enforce individual rationality and non-negative payments for our mechanism ex-post.

B.3 Beyond CGS Valuations

In this section, we discuss the prospect of extending our results beyond CGS valuations. First,
we argue that our restriction to a subset of submodular functions is not merely an artifact of our
analysis. Specifically, we exhibit a submodular function that is not in the CGS family, and moreover
both the Poisson and k-bounded-lottery rounding schemes can be non-convex when a player has
this function as their valuation. Then, we briefly argue that our mechanism may yet apply to some
valuations that are not in CGS. Finally, we discuss recent results that rule out extending our results
to all submodular functions.

We define a budget additive (and therefore submodular) function v on four items {1, 2, 3, 4}.
Three of the items are “small”, one item is “big”, and the budget equals the value of the big item.

v(S) =

1 if S = {j} for j ∈ {1, 2, 3} ,
2 if S = {4} ,
min

(∑
j∈S v({j}), 2

)
otherwise

We can show that v is not a CGS function by invoking Claim 4.5. Specifically, one can manually
check that the discrete Hessian matrix Hv

∅ of v at ∅ (see Definition 4.4) is not negative semi-
definite. Moreover, for a player with valuation v, Poisson rounding renders the player’s expected
value function Gv(x) (Equation (11)) non-concave in x: By Equation (12), the Hessian matrix
of Gv(x) approaches the discrete Hessian Hv

∅ as x tends to zero. Since Hv
∅ is not negative semi-

definite, Gv(x) is non-concave for x near zero. We note that we can construct a large family of
similar counter examples by simply increasing the number of “small items” in v. Similar difficulties
hold for the k-bounded-lottery rounding scheme as well.

We observe that our mechanisms may yet apply to some valuations that are not in CGS. Our
results only used two properties of CGS functions: their discrete Hessian matrices are negative
semi-definite (Claim 4.5, which is used to prove Lemmas 4.2 and 5.2), and they are submodular
(used to prove Lemmas 4.3 and 5.3). Therefore, our results extends directly to the class of all set
functions satisfying both of these properties. We leave open the question of whether there exist
interesting functions in this class that are not in CGS. More generally, understanding the class of
set functions with negative semi-definite discrete Hessian matrices — in particular the relationship
of this class to other classes of set functions studied in the literature — may be an interesting
direction for future inquiry.

26

Finally, as noted in the introduction, recent impossibility results [25, 20] have ruled out polynomial-
time and constant-approximate truthful mechanisms for combinatorial auctions and public projects
with general submodular valuations. The proofs in [25, 20] exploit double-peaked submodular valu-
ations, which are evidently not in CGS and do not admit negative semi-definite discrete Hessians.

C Solving The Convex Programs

In this section, we overcome some technical difficulties related to the solvability of convex programs
for both combinatorial auctions and public projects. Since both combinatorial auctions and public
projects are similar in this respect, we first present these ideas in the context of combinatorial
auctions, and later discuss the necessary modifications for combinatorial public projects.

C.1 Combinatorial Auctions

We show in Section C.1.1 that, in the product-lottery-value oracle model, the four conditions for
“solvability” of convex programs, as stated in Fact A.3, are easily satisfied for convex program (8).
However, an additional challenge remains: “solving” a convex program – as in Definition A.2 –
returns an approximately optimal solution. Indeed the optimal solution of a convex program may
be irrational in general, so this is unavoidable.

We show how to overcome this difficulty if we settle for polynomial runtime in expectation.
While the optimal solution x∗ of (8) cannot be computed explicitly, the random variable rpoiss(x

∗)
can be sampled in expected polynomial-time. The key idea is the following: sampling the random
variable rpoiss(x

∗) rarely requires precise knowledge of x∗. Depending on the coin flips of rpoiss, we
decide how accurately we need to solve convex program (8) in order compute rpoiss(x

∗). Roughly
speaking, we show that the probability of requiring a (1 − ǫ)-approximation falls exponentially in
1
ǫ
. As a result, we can sample rpoiss(x

∗) in expected polynomial-time. We implement this plan in
Section C.1.2 under the simplifying assumption that convex program (8) is well-conditioned – i.e.
is “sufficiently concave” everywhere. In Section C.1.3, we show how to remove that assumption by
slightly modifying our algorithm.

C.1.1 Approximating the Convex Program

Claim C.1. There is an algorithm for Combinatorial Auctions with CGS valuations in the product-
lottery-value oracle model that takes as input an instance of the problem and an approximation
parameter ǫ > 0, runs in poly(n,m, log(1/ǫ)) time, and returns a (1 − ǫ)-approximate solution to
convex program (8).

It suffices to show that the four conditions of Fact A.3 are satisfied in our setting. The first
three are immediate from elementary combinatorial optimization (see for example [49]). It remains
to show that the first-order oracle, as defined in Fact A.3, can be implemented in polynomial-
time in the product-lottery-value oracle model. The objective f(x) of convex program (8) can, by
definition, be written as

f(x) =
∑

i

Gvi(xi),

where vi is the valuation function of player i, xi is the vector (xi1, . . . , xim), and and Gvi is as
defined in (11). By definition, Gvi(xi) is the outcome of querying the product-lottery-value oracle

27

of player i with (1−e−xi1 , . . . , 1−e−xim) . Therefore, we can evaluate f(x) using n product-lottery-
value query, one for each player. It remains to show that we can also evaluate the (multi-variate)
derivative ▽f(x) of f(x). Using definition (11), we take the partial derivative corresponding to xij .
By rearranging the sum appropriately, we get that

∂f

∂xij
(x) = e−xij

(
Fvi

(
(1− e−xi1 , . . . , 1− e−xim) ∨ 1j

)
− Fvi

(
(1− e−xi1 , . . . , 1− e−xim) ∧ 0j

))
,

where Fvi is as defined in Equation (4). Here, ∨ and ∧ denote entry-wise minimum and maximum
respectively, 1j denotes the vector with all entries equal to 0 except for a 1 at position j, and 0j
denotes the vector with all entries equal to 1 except for a 0 at position j. It is clear that this entry
of the gradient of f can be evaluated using two product-lottery-value queries. Therefore, ▽f(x) can
be evaluated using 2n product-lottery-value queries, 2 for each player. This completes the proof of
Claim C.1.

C.1.2 The Well-Conditioned Case

In this section, we make the following simplifying assumptions on convex program (8): We are given
C, λ ≥ 0 with λ = C

exp(poly(n,m)) such that C upperbounds the optimal value f(x∗), and λ lower-

bounds the magnitude of the second-derivative of f(x) when restricted to any line in the feasible
set. For the former condition, the reader may think of C as

∑n
i=1 vi([m]). The latter condition is

equivalent to requiring that every eigenvalue of the Hessian matrix of f(x) has magnitude at least
λ when evaluated at any point in the feasible set. Under these assumptions, we prove Lemma C.2.

Lemma C.2. Assume we are given C ≥ f(x∗), and a lowerbound λ = C
exp(poly(n,m)) on the magni-

tude of the second derivative of f(x) everywhere in the feasible set. Algorithm 1, instantiated for
combinatorial auctions with r = rpoiss, can be simulated in expected time polynomial in n and m.

Algorithm 1 allocates items according to the distribution rpoiss(x
∗). The Poisson rounding

scheme, as described in Algorithm 2, requires making m independent decisions, one for each item
j. Consider how to simulate this decision for an individual item j. It suffices to do the following
in expected polynomial-time: flip uniform coin pj ∈ [0, 1], and find the minimum index a(j) (if
any) such that

∑
i≤a(j)(1 − e−x∗ij) ≥ pj. For most realizations of pj, this can be decided using

only coarse estimates x̃ij to x∗ij . Assume we have an estimation oracle for x∗ that takes as input
a parameter δ > 0, and returns a δ-estimate x̃ of x∗: specifically, satisfying x̃ij − x∗ij ≤ δ for each

i. When pj falls outside the “uncertainty regions” of x̃, such as when |pj −
∑

i′≤i(1− e−x̃i′j)| > δn
for each i ∈ [n], it is easy to see that we can correctly determine a(j) by using x̃ in lieu of x. The
total measure of these regions is at most 2n2δ, therefore pj lands outside the uncertainty regions
with probability at least 1− 2n2δ. By the union bound, p1, . . . , pm all fall outside the uncertainty
regions of x̃ with probability at least 1− 2mn2δ.

The following claim shows that if the estimation oracle for x∗ can be implemented in time polyno-
mial in log(1/δ), then we can simulate the Poisson rounding procedure in expected polynomial-time.
It hinges on the fact that the required precision log(1

δ
) follows a distribution with exponentially

small tails.

Claim C.3. Let x∗ be the optimal solution of convex program (8). Assume access to a subroutine
B(δ) that returns a δ-estimate of x∗ in time poly(n,m, log(1/δ)). Algorithm (1) with r = rpoiss can
be simulated in expected poly(n,m) time.

28

Proof. Let the random variables p1, . . . , pm ∈ [0, 1] be as in Algorithm (2). Let δ = δ(p1, . . . , pm) be
the largest value such that |pj−

∑
i′≤i(1−e−x̃i′j)| > δn for i ∈ [n] and j ∈ [m]. Any δ-estimate x̃ of

x∗ suffices to simulate Algorithm (2) for these draws of p1, . . . , pm. We compute such an estimate
by invoking B(δ), which takes time poly(n,m, log(1/δ)), and simulate Algorithm (2) accordingly.

To bound the expected running time of the above-described simulation, we need to bound the
tail probability of the random variable 1

δ
. As argued above, Pr[δ(p) ≥ δ0] ≥ 1 − 2mn2δ0 = 1 −

poly(n,m)δ0 for every δ0. Therefore, the tail probability of 1
δ(p) satisfies Pr

[
1

δ(p) ≥ c
]
≤ poly(n,m)

c
.

Since the runtime of B(δ(p)) grows only logarithmically in 1
δ(p) , a simple geometric summation

shows that the expected runtime is bounded by a polynomial in n and m.

It remains to show that the estimation oracle B(δ) can be implemented in poly(n,m, log(1/δ))
time. At first blush, one may expect that the ellipsoid method can be used in the usual manner
here. However, there is one complication: we require an estimate x̃ that is close to x∗ in solution
space rather than in terms of objective value. Using our assumption on the curvature of f(x),
we will reduce finding a δ-estimate of x∗ to finding an 1 − ǫ(δ) approximate solution to convex
program (8). The dependence of ǫ on δ will be such that ǫ ≥ poly(δ)/ exp(poly(n,m)), therefore
we can invoke Claim C.1 to deduce that B(δ) can be implemented in poly(n,m, log(1/δ)) time.

Let ǫ = ǫ(δ) = δ2λ
2C . Plugging in the definition of λ, we deduce that ǫ ≥ δ2/ exp(poly(n,m)),

which is the desired dependence. It remains to show that if x̃ is (1 − ǫ)-approximate solution to
(8), then x̃ is also a δ-estimate of x∗. Using the fact that f(x) is concave, and moreover its second
derivative has magnitude at least λ, it a simple exercise to bound distance of any point x from the
optimal point x∗ in terms of its sub-optimality f(x∗)− f(x), as follows:

f(x∗)− f(x) ≥ λ

2
||x− x∗||22. (25)

Assume x̃ is a (1− ǫ)-approximate solution to (8). Equation (25) implies that

||x̃− x∗||22 ≤
2

λ
ǫf(x∗) =

δ2

C
f(x∗) ≤ δ2

Therefore, ||x−x∗||2 ≤ δ, implying that x is a δ-estimate. This completes the proof of Lemma C.2.

C.1.3 Guaranteeing Good Conditioning

In this section, we propose a modification r+poiss of the Poisson rounding scheme rpoiss. We will

argue that r+poiss satisfies all the properties of rpoiss established so far, with one exception: the

approximation guarantee of Lemma 4.3 is reduced to 1− 1
e
− 2−mn. Then we will show that r+poiss

satisfies the curvature assumption of Lemma C.2, demonstrating that said assumption may be
removed. Therefore Algorithm 1, instantiated with r = r+poiss for combinatorial auctions with CGS

valuations in the product-lottery-value oracle model, is a (1 − 1/e − 2−mn) approximate and can
be implemented in expected poly(n,m) time. Finally, we show in Remark C.4 how to recover the
2−mn term to get a clean 1− 1/e approximation ratio, as claimed in Theorem 4.1.

We define r+poiss in Algorithm 4. Intuitively, r+poiss allocates as in rpoiss with probability 1 − µ.
Otherwise, with probability β(x) it allocates all items to a player chosen at random. β is chosen
to be a concave function of x, and can be thought of as adding “concave noise” to rpoiss.

29

Algorithm 4 Modified Poisson Rounding Scheme r+poiss

Input: Fractional allocation x with
∑

i xij ≤ 1 for all j, and 0 ≤ xij ≤ 1 for all i, j.
Output: Feasible allocation (S1, . . . , Sn).
1: Let µ = 2−nm and β = 1

nm

∑
ij(1− x2ij)

2: Draw q ∈ [0, 1] uniformly at random.
3: if q ≥ µ then
4: Let (S1, . . . , Sn) ∼ rpoiss(x).
5: else if q ≤ µβ then
6: Choose a player i∗ uniformly at random.
7: Let Si∗ = [m], and Si = ∅ for all i 6= i∗.
8: else
9: Let (S1, . . . , Sn) = (∅, . . . , ∅).

10: end if

We can write the expected welfare E[w(r+poiss(x))] as follows.

E[w(r+poiss(x))] = (1− µ) E[w(rpoiss(x))] + µβ

∑
i vi([m])

n

= (1− 2−mn) E[w(rpoiss(x))] +

∑
i vi([m])

mn22−mn

∑

i,j

(1− x2ij). (26)

It is clear that the expected welfare when using r = r+poiss is within 1 − µ = 1 − 2−mn of the
expected welfare when using r = rpoiss in the instantiation of Algorithm 1. Using Lemma 4.3,
we conclude that r+poiss is a (1 − 1/e − 2−2mn)-approximate rounding scheme. Moreover, using

Lemma 4.2, as well as the fact that
∑

i,j(1−x2ij) is a concave function of x, we conclude that r+poiss
is a convex rounding scheme. Therefore, this establishes the analogues of Lemmas 4.3 and 4.2 for
r+poiss. It is elementary to verify that our proof of Lemma C.2 extends to r+poiss without change.

It remains to show that the well-conditioning assumptions of Section C.1.2 are unnecessary

for r+poiss. Let C =
∑n

i=1 vi([m]) and λ =
∑n

i=1 vi([m])
mn22mn . Clearly, C is an upperbound on the opti-

mal welfare. Moreover, since both terms in (26) are concave, the curvature of E[w(r+poiss(x))] is

lowerbounded by λ times the curvature of the function
∑

i,j(1− x2ij), which is 2 everywhere.

Remark C.4. In this section, we sacrificed 2−mn in the approximation ratio in order to guar-
antee expected polynomial runtime of our algorithm even when convex program (8) is not well-
conditioned. This loss can be recovered to get a clean 1 − 1/e approximation as follows. Given
our (1−1/e−2−mn)-approximate MIDR algorithm A, construct the following algorithm A′: Given
an instance of combinatorial auctions, A′ runs A on the instance with probability 1 − e2−mn, and
with the remaining probability solves the instance optimally by brute force enumeration in time
2mn poly(m,n). It was shown in [22] that a random composition of MIDR mechanisms is MIDR,
therefore A′ is MIDR. The expected runtime of A′ is bounded by the expected runtime of A plus
e2−mn · 2mn poly(m,n) = O(poly(n,m)). Finally, the expected approximation of A′ is the weighted
average of the approximation ratio of A and the optimal approximation ratio 1, and is at least
(1− e2−mn) · (1− 1/e− 2−mn) + e2−mn · 1 ≥ 1− 1/e.

30

C.2 Combinatorial Public Projects

We now adapt the techniques of Section C.1 to combinatorial public projects.

C.2.1 Approximating the Convex Program

Claim C.5. There is an algorithm for Combinatorial Public Projects with CGS valuations in the
bounded-lottery-value oracle model that takes as input an instance of the problem and an approxima-
tion parameter ǫ > 0, runs in poly(n,m, log(1/ǫ)) time, and returns a (1− ǫ)-approximate solution
to convex program (14).

As in combinatorial auctions, the first three conditions of Fact A.3 follow from elementary
combinatorial optimization. It remains to show that a first-order oracle, as defined in Fact A.3, can
be implemented in polynomial-time in the bounded-lottery-value oracle model. We let f(x) denote
the objective function of convex program (6) when r = rk. This objective can, by definition, be
written as follows.

f(x) = E
S∼rk(x)

[
∑

i

vi(S)

]
=

∑

i

Gvi
k (x)

where vi is the valuation function of player i and Gvi
k is as defined in (15). By definition, Gvi

k (x)
is the outcome of querying the bounded-lottery-value oracle of vi with bound k and marginals
x/k. Therefore, we can evaluate f(x) using n bounded-lottery-value queries, one for each player.
It remains to show that we can also evaluate the (multi-variate) derivative ▽f(x) of f(x). Using
definition (15) and Claim 5.4, we take the partial derivative of Gvi

k with respect to xj and simplify
the resulting expression.

∂Gvi
k

∂xj
(x) =

∑

S⊆[m]

−1|S|vi(S)
∑

R⊆S\{j}

−1|R|+1
(
1− xR

k

)k−1

=
∑

S⊆[m]\{j}

−1|S| (vi(S ∪ {j})− vi(S))
∑

R⊆S

−1|R|
(
1− xR

k

)k−1

=
∑

S⊆[m]

−1|S| (vi(S ∪ {j})− vi(S))
∑

R⊆S

−1|R|
(
1− xR

k

)k−1

=
∑

S⊆[m]

vi(S ∪ {j}) Pr
[
rk−1

(
k − 1

k
x

)
= S

]
−

∑

S⊆[m]

vi(S) Pr

[
rk−1

(
k − 1

k
x

)
= S

]
.

(27)

The second equality follows by grouping the terms of the summation by the projection of S onto
[m] \ {j}. The third equality follows from the observation that v(S ∪ {j}) − v(S) = 0 when S
includes j. The fourth equality follows by a simple re-arrangement and application of Claim 5.4.

Inspect the final form (27) in light of the definition of bounded-lottery-value oracles (Definition
2.4) and the definition of rk (Section 5.1). Notice that the first term is the expected value of vi over
the (k−1)-bounded-lottery with marginals k−1

k
x and promise {j}. The second term is the expected

value of vi over the same lottery without the promise. Therefore, we can evaluate
∂G

vi
k

∂xj
(x) using

two queries to the bounded-lottery-value oracle of player i. This completes the proof of Claim C.5.

31

C.2.2 The Well-Conditioned Case

Analogous to Section C.1.2, we prove the following.

Lemma C.6. Assume we are given C ≥ f(x∗), and a lowerbound λ = C
exp(poly(n,m)) on the magni-

tude of the second derivative of f(x) everywhere in the feasible set. Algorithm 1, instantiated for
combinatorial public projects with r = rk, can be simulated in expected time polynomial in n and
m.

The k-bounded-lottery rounding scheme (Algorithm 3) requires making k independent random
decisions. For ℓ ∈ {1, . . . , k}, we draw pℓ uniformly from [0, 1] and decide which interval Ij , if any,
pℓ falls into. In other words, we find the minimum index jℓ (if any) such that

∑
j≤jℓ

x∗j/k ≥ pℓ.
As in Section C.1.2, an estimate of x∗ suffices to make this decision for most realizations of pℓ.
Specifically, given a δ-estimate x̃ of x∗, i.e. satisfying x̃j − x∗j ≤ δ for each j ∈ [m], we can safely
use x̃ in lieu of x∗ when |pℓ −

∑
j′≤j x̃j′/k| > δm/k for each j ∈ [m]. This occurs with probability

at least 1 − 2m2δ for an individual pℓ, and therefore with probability at least 1 − 2km2δ for all
p1, . . . , pk simultaneously. The proof of the following claim is essentially identical to the proof of
Claim C.3, and therefore omitted.

Claim C.7. Let x∗ be the optimal solution of convex program (14). Assume access to a subroutine
B(δ) that returns a δ-estimate of x∗ in time poly(n,m, log(1/δ)). Algorithm (1) with r = rk can
be simulated in expected poly(n,m) time.

Finally, the proof that the estimation oracle B(δ) can be implemented in poly(n,m, log(1/δ))
time is identical to that in Section C.1.2. This completes the proof of Lemma C.6.

C.2.3 Guaranteeing Good Conditioning

Analogous to Section C.1.3, we present a modification r+k of the k-bounded-lottery rounding which
adds “concave noise” to rk. This is given in Algorithm 5.

Algorithm 5 Modified k-bounded-lottery Rounding Scheme r+k
Input: Fractional solution x ∈ Rm with

∑
j xj ≤ k, and 0 ≤ xj ≤ 1 for all j.

Output: Feasible solution S ⊆ [m] with |S| ≤ k
1: Let µ = 2−nm and β = 1

m

∑m
j=1(1− x2j)

2: Draw q ∈ [0, 1] uniformly at random.
3: if q ≥ µ then
4: Let S ∼ rk(x).
5: else if q ≤ µβ then
6: Choose project j∗ ∈ [m] uniformly at random.
7: Let S = {j∗}
8: else
9: Let S = ∅.

10: end if

32

We can write the expected welfare E[w(r+k (x)))] as follows.

E[w(r+k (x))] = (1− µ) E[w(rk(x))] + µβ

∑m
j=1

∑n
i=1 vi({j})
m

= (1− 2−mn) E[w(rk(x))] +

∑m
j=1

∑n
i=1 vi({j})

m22−mn

m∑

j=1

(1− x2j). (28)

As in Section C.1.3, Lemma 5.3 with a reduced approximation ratio of 1− 1
e
− 2−mn holds for

r+k , and Lemmas 5.2 and C.6 extend to r+k without change.
It remains to show that the well-conditioning assumptions of Section C.2.2 are unnecessary for

r+k . Let C = m
∑m

j=1

∑n
i=1 vi({j}) and λ = C

m32mn . By submodularity of each vi, we have that C is

an upperbound on the optimal welfare. Moreover, as in Section C.1.3, the curvature of E[w(r+k (x))]
is lowerbounded by λ times the curvature of the function

∑
j(1− x2j), which is 2 everywhere.

Finally, we note that the approximation guarantee can be improved to a clean 1 − 1
e
by an

essentially identical argument to that in Remark C.4.

33

