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This paper presents the first polynomial-time algorithm for position and matroid auction environments that
learns, from samples from an unknown distribution, an auction with expected revenue arbitrarily close to
the maximum possible. In contrast to most previous work, our results do not assume that the unknown
distribution is regular, and require only that the distribution does not have an extremely heavy tail (a nec-
essary assumption for any non-trivial results). Our performance guarantee is with respect to the strongest
possible benchmark, the Myerson-optimal auction. Learning a near-optimal auction for an irregular distri-
bution is technically challenging because it requires learning the appropriate “ironed intervals,” a delicate
global property of the distribution.

1. INTRODUCTION
The traditional economic approach to revenue-maximizing auction design, exemplified
by Myerson [1981], posits a known prior distribution over what bidders are willing
to pay, and then solves for the auction that maximizes the seller’s expected revenue
with respect to this distribution. Recently, there has been an explosion of work in com-
puter science that strives to make the classical theory more “data-driven,” replacing
the assumption of a known prior distribution with that of access to relevant data, in
the form of samples from an unknown distribution. In this paper, we study the prob-
lem of learning a near-optimal auction from samples, adopting the formalism of Cole
and Roughgarden [2014]. The idea of the model, inspired by PAC-learning [Valiant
1984], is to parameterize through samples the “amount of knowledge” that the seller
has about bidders’ valuation distributions.

We consider single-parameter settings, where each of n bidders has a private val-
uation (i.e., willingness to pay) for “winning” and valuation 0 for “losing.” Feasible
outcomes correspond to subsets of bidders that can simultaneously win; the feasible
subsets are known in advance.1 We assume that bidders’ valuations are drawn i.i.d.
from a distribution F that is unknown to the seller. However, we assume that the
seller has access to m i.i.d. samples from the distribution F — for example, bids that
were observed in comparable auctions in the past. The goal is to design a polynomial-
time algorithm A(v1, . . . , vm), mapping samples vi ∼ F to truthful auctions, such that,
for every distribution F , the expected revenue is at least 1 − ε times the optimal ex-

1For example, in auction with k copies of an item, where each bidder only wants one copy, feasible outcomes
correspond to subsets of at most k bidders.
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pected revenue.2 The sample complexity of achieving a given approximation factor 1−ε
is then the minimum number of samples m such that there exists a learning algorithm
A with the desired approximation. This model serves as a potential “sweet spot” be-
tween worst-case and average-case analysis, inheriting much of the robustness of the
worst-case model (since we demand guarantees for every underlying distribution F )
while allowing very good approximation guarantees.

1.1. Our Results
We give polynomial-time algorithms for learning a (1 − ε)-approximate auction from
samples, for arbitrary matroid (or position) auction environments and valuation dis-
tributions that satisfy minimal assumptions.

For example, for valuation distributions with support in [0, H], we provide a
polynomial-time algorithm that, given a matroid environment with n bidders and m
i.i.d. samples from an arbitrary distribution F , with probability 1−δ, approximates the
maximum-possible expected revenue up to an additive loss of at most 3n

√
ln 2δ−1

2m · H.
Thus for every ε > 0, the additive loss is at most ε (with probability at least 1 − δ)
provided m = Ω(n2H2ε−2 log δ−1). Whenever the optimal expected revenue is bounded
away from 0, this result immediately implies a comparable sample complexity bound
for learning a (1− ε)-(multiplicative) approximate auction. Our main result can also be
used to give a no-regret guarantee in a stochastic learning setting (Section 5).

A lower bound of Cesa-Bianchi et al. [2013] implies that, already for simpler settings,
the quadratic dependence of our sample complexity bound on 1

ε is optimal. A lower
bound of Huang et al. [2015] implies that, already with a single bidder, the sample
complexity must depend polynomially on H. Whether or not the sample complexity
needs to depend on n is an interesting open question.

Our technical approach is based on a “switching trick” (Proposition 2.1) and we be-
lieve it will lead to further applications. A key idea is to express the difference in
expected revenue between an optimal and a learned auction in a matroid or position
environment purely in terms of a difference in area under the true and estimated rev-
enue curves. This “global” analysis avoids having to compare explicitly the true and
estimated virtual valuations or the optimal and learned allocation rules. With this ap-
proach, there is clear motivation behind each of the steps of the learning algorithm,
and the error analysis, while non-trivial, remains tractable in settings more general
than those studied in most previous works.

The assumption of bounded valuations is not necessary for our results to hold. More
generally, the only assumption required is that the optimal auction does not obtain
a constant fraction of its expected revenue from valuation profiles with at least one
extremely high-valued bidder (with valuation bigger than a parameter H). This as-
sumption is trivially satisfied by any distribution with support in [0, H], and is also
satisfied (for a suitable H) by many (irregular) distributions with infinite support (this
is demonstrated in the full version of the paper). Some assumption of this type is nec-
essary to preclude pathological distributions that are impossible for any algorithm to
learn.3

2By a truthful auction, we mean one in which truthful bidding is a dominant strategy for every bidder. The
restriction to dominant strategies is natural given our assumption of an unknown distribution. Given this,
the restriction to truthful auctions is without loss of generality (by the “Revelation Principle,” see e.g. Nisan
[2007]). Also, for the single-parameter problems that we study, there is always an optimal auction in which
all bidders have dominant strategies [Myerson 1981].
3To appreciate this issue, consider a single-bidder problem and all distributions that take on a value M2

with probability 1
M

and 0 with probability 1− 1
M

. The optimal auction for such a distribution earns expected
revenue at least M . It is not difficult to prove that, for every m, there is no way to use m samples to achieve



1.2. Why Irregular Distributions Are Interesting
A majority of the literature on approximation guarantees for revenue maximization
(via learning algorithms or otherwise) restricts attention to “regular” valuation dis-
tributions or subclasses thereof; see related work below for examples and exceptions.
Formally, a distribution F with density f is regular if

ϕ(v) = v − 1− F (v)

f(v)
(1)

is a nondecreasing function of v. ϕ is also called the virtual valuation function. Intu-
itively, regularity is a logconcavity-type assumption that provides control over the tail
of the distribution. While many important distributions are regular, plenty of natural
distributions are not. For example, Sivan and Syrgkanis [2013] point out that mix-
tures of distributions (even of uniform distributions) tend to be irregular, and yet are
obviously prevalent in the real world.

1.3. Why Irregular Distributions Are Hard
To understand why irregular distributions are so much more technically challenging
than regular distributions, we need to review some classical optimal auction theory.
We can illustrate the important points already in single-item auctions. Myerson [1981]
proved that, for every regular distribution F , the optimal auction is simply a second-
price auction supplemented with a reserve price of ϕ−1(0), where ϕ denotes the virtual
valuation function in (1). (The winner, if any, pays the higher of the reserve price and
the second-highest bid.) Thus, learning the optimal auction reduces to learning the
optimal reserve price, a single statistic of the unknown distribution. And indeed, for an
unknown regular distribution F , there is a polynomial-time learning algorithm that
needs only poly( 1

ε ) samples to compute a (1− ε)-approximate auction [Dhangwatnotai
et al. 2010; Huang et al. 2015].

The technical challenge of irregular distributions is the need to iron. When the vir-
tual valuation function ϕ of the distribution F is not nondecreasing, Myerson [1981]
gave a recipe for transforming ϕ into a nondecreasing “ironed” virtual valuation func-
tion ϕ such that the optimal single-item auction awards the item to the bidder with
the highest positive ironed virtual valuation (if any), breaking ties randomly (or lexico-
graphically). Intuitively, this ironing procedure identifies intervals of non-monotonicity
in ϕ and changes the value of the function to be constant on each of these intervals.
(See also below and the exposition by Hartline [2014].)

The point is that the appropriate ironing intervals of a distribution are a global
property of the distribution and its (unironed) virtual valuation function. Estimating
the virtual valuation function at a single point — all that is needed in the regular
case — would appear much easier than estimating the right intervals to iron in the
irregular case.

We present two examples to drive this point home. The first, which is standard,
shows that foregoing all ironing can lead to a constant-factor loss in expected revenue,
even in single-item auctions. (Reserve prices are still worse in matroid environments,
see Devanur et al. [2014].) The second example shows that tiny mistakes in the choice
of ironing intervals can lead to a large loss of expected revenue.

Example 1.1 (Ironing Is Necessary for Near-Optimal Revenue). The distribution is
as follows: with probability 1/H the value is H (for a large H) and it is 1 otherwise. The
optimal auction irons the interval [1, H) for expected revenue of 2− 1

n [Hartline 2014],

near-optimal revenue for every such distribution — for sufficiently large M , all m samples are 0 w.h.p. and
the algorithm has to resort to an uneducated guess for M .



which approaches 2 with many bidders n. Auctions that do not implicitly or explicitly
iron obtain expected revenue only 1.

Example 1.2 (Small Mistakes Matter). Let F be 5 with probability 1/10 and 1 oth-
erwise, and consider a single-item auction with 10 bidders. The optimal auction irons
the interval [1, 5) and has no reserve price. If there are at least two bidders with value
5 one of them will get the item at price 5; if all bidders have value 1, one of them
will receive it at price 1. If there is exactly one bidder with value 5, then her price is
1
10 · 1 + 9

10 · 5 = 46
10 .

Now consider an algorithm that slightly overestimated the end of the ironing interval
to be [1, 5 + ε) with ε > 0. (Imagine F actually has small but non-zero density above 5,
so that this mistake could conceivably occur.) Now all bids always fall in the ironing
interval and therefore the item is always awarded to one of the players at price 1. Not
only do we lose revenue when there is exactly one high bidder, but additionally we
lose revenue for auctions with at least two bidders with value 5. This auction has even
worse revenue than a Vickrey (second-price) auction, so the attempt to iron did more
harm than good.

Now consider the same setting as Example 1.2, with the exception that we slightly
underestimate the ironing interval as [1, 5− ε), instead of overestimating. We still lose
some revenue compared to the optimal ironing interval —namely when there is one
high bidder, she pays 46

50 − 9
10ε instead of 46

50— but the revenue is much closer to optimal
than when the end point of the ironing interval was too high. This phenomenon, that
underestimation is better than overestimation, is true more generally. Our learning
algorithm deliberately reports ironing intervals (and a reserve price) that are slightly
lower than the data would suggest, to guarantee that with high probability the start
and end points of ironing intervals do not exceed the optimal such points.

1.4. Related Work
Elkind [2007] gives a polynomial-time learning algorithm for the restricted case of
single-item auctions with discrete distributions with known finite supports but with
unknown probabilities. Learning is done using an oracle that compares the expected
revenue of pairs of auctions, and O(n2K2) oracle calls suffice to determine the optimal
auction (where n is the number of bidders and K is the support size of the distribu-
tions). Elkind [2007] notes that such oracle calls can be implemented approximately by
sampling (with high probability), but no specific sample complexity bounds are stated.

Cole and Roughgarden [2014] also give a polynomial-time algorithm for learning a
(1 − ε)-approximate auction for single-item auctions with non-identical bidders, un-
der incomparable assumptions to Elkind [2007]: valuation distributions that can be
unbounded but must be regular. It is necessary and sufficient to have m = poly(n, 1ε )
samples, however in the analysis in Cole and Roughgarden [2014] the exponent in the
upper bound is large (currently, 10). These sample complexity results were recently
generalized and improved dramatically by Devanur et al. [2016], although all of their
results still require the valuation distributions to be regular.

The papers of Cesa-Bianchi et al. [2015] and Medina and Mohri [2014] give algo-
rithms for learning the optimal reserve-price-based single-item auction. Recall from
Example 1.1 that, with irregular distributions, the expected revenue of the best
reserve-price-based auction might be only half that of an optimal auction.

Dughmi et al. [2014] proved negative results (exponential sample complexity) for
learning near-optimal mechanisms in multi-parameter settings that are much more
complex than the single-parameter settings studied here. The paper also contains pos-
itive results for restricted classes of mechanisms.



Huang et al. [2015] give optimal sample complexity bounds for the special case of
a single bidder under several different distributional assumptions, including for the
case of bounded irregular distributions where they need O(H · ε−2 · log(Hε−1)) samples.

Morgenstern and Roughgarden [2015] recently gave general sample complexity up-
per bounds which are similar to ours and cover all single-parameter settings (matroid
and otherwise), although their (brute-force) learning algorithms are not computation-
ally efficient.

Our learning algorithm is in the spirit of the Random Sampling Empirical Myerson
mechanism [Devanur et al. 2014] and its precursors, though different in a number
of details. Previous work used the approach to construct a revenue curve from bid-
ders in an auction and prove constant-factor approximations in prior-free settings. The
present work seeks (1− ε)-approximations in settings with an unknown distribution.

For previously studied models about revenue-maximization with an unknown dis-
tribution, which differ in various respects from the model of Cole and Roughgar-
den [2014], see Babaioff et al. [2011], Cesa-Bianchi et al. [2013], and Kleinberg and
Leighton [2003]. For other ways to parameterize partial knowledge about valuations,
see e.g. Azar et al. [2013] and Chiesa et al. [2012]. For other ways to parameterize
a distribution by its “degree of irregularity” see Hartline [2014], Huang et al. [2015],
and Sivan and Syrgkanis [2013]. For other uses of samples in auction design that dif-
fer from ours, see Fu et al. [2014], who use samples to extend the Crémer-McLean
theorem [Crémer and McLean 1985] to partially known valuation distributions, and
Chawla et al. [2014], which is discussed further below. For asymptotic optimality re-
sults in various symmetric settings (single-item auctions, digital goods), which identify
conditions under which the expected revenue of some auction of interest (e.g., second-
price) approaches the optimal with an increasing number of i.i.d. bidders, see Neeman
[2003], Segal [2003], Baliga and Vohra [2003], and Goldberg et al. [2006]. For appli-
cations of learning theory concepts to prior-free auction design in unlimited-supply
settings, see Balcan et al. [2008].

Finally, the technical issue of ironing from samples comes up also in Ha and Hart-
line [2013] and Chawla et al. [2014], in models incomparable to the one studied here.
The setting of Ha and Hartline [2013] is constant-factor approximation guarantees
for prior-free revenue maximization, where the goal is input-by-input rather than
distribution-by-distribution guarantees. Chawla et al. [2014] study non-truthful auc-
tions, where bidders’ true valuations need to be inferred from equilibrium bids, and
aim to learn the optimal “rank-based auction,” which can have expected revenue a
constant factor less than that of an optimal auction. Our goal of obtaining a (1 − ε)-
approximation of the maximum revenue achieved by any auction is impossible in both
of these settings.

Summarizing, this paper gives the first polynomial-time algorithm for position and
matroid environments that learns, from samples from an unknown irregular valua-
tion distribution, an auction with expected revenue arbitrarily close to the maximum
possible.

2. PRELIMINARIES
2.1. The Empirical Cumulative Distribution Function and the DKW Inequality
Let X = {Xi}mi=1 be a set of m samples, and let X(i) be the ith order statistic. We
use the standard notion of the empirical cumulative distribution function (empirical
CDF): F̂m(v) = 1

m · |{Xi : Xi ≤ v}|. The empirical CDF is an estimator for the quantile
of a given value. The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [Dvoretzky et al.
1956; Massart 1990] states that the difference between the empirical CDF and the
actual CDF decreases quickly in the number of samples. Let εm,δ =

√
ln 2δ−1

2m , then
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(a) Revenue curve R(q) and the optimal
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(b) Virtual value function ϕ(q) and the in-
duced virtual value function ϕ?(q).

Fig. 1: The dashed gray line is the revenue curve R(q) and its derivative, the virtual
value function ϕ(q), for a irregular bimodal distribution. In black we have the curves
ϕopt and Ropt corresponding to the optimal ironing interval, and optimal reserve price
for this distribution. This example taken from [Hartline 2014, Chapter 3].

Pr
[
supv∈R

∣∣∣F (v)− F̂m(v)
∣∣∣ ≤ εm,δ

]
≥ 1 − δ. So the largest error in the empirical CDF

shrinks in O(m−1/2). For our purposes we will not need the CDF F , but rather its
inverse F−1. Define F̂−1m (x) as X(max(1,dx·me)) for x ∈ [0, 1]. (For convenience, define
F̂−1m (x) as 0 if x < 0 and H if x > 1.) By definition, for all v ∈ [0, H]:

F̂−1m

(
F̂m(v)

)
≤ v ≤ F̂−1m

(
F̂m(v) +

1

m

)
. (2)

In the remainder of this paper, we will use F̂ , F̂−1, and ε without explicitly referring
to the number of samples m and confidence parameter δ.

2.2. Optimal Auctions using the Revenue Curve
Revenue Curve and Quantile Space. For a value v and a distribution F , we define

the corresponding quantile as 1−F (v).4 The quantile of v corresponds to the sale prob-
ability for a single bidder with valuation drawn from F who faces a posted price v.
Note that higher values v correspond to lower quantiles. The revenue curve R of a val-
uation distribution F is the curve, in quantile space, defined by R(q) = q · F−1(1 − q)
(Figure 1a). Myerson [1981] showed that the ex ante expected revenue for a bidder
in a truthful auction is Eq∼U [0,1][−R(q) · y′(q)], where y is the interim allocation func-
tion (defined formally below) for that auction. The derivative of R is the virtual value
function ϕ(.) — recall (1) — in quantile space, see Figure 1b. For regular distributions
the revenue curve is concave and the virtual value function non-increasing, but for
irregular distributions this is not the case.

Myerson [1981] showed that for any non-concave revenue curve R, one can create
an allocation rule that will yield the same revenue as R’s convex hull CH(R). This
procedure is called ironing, and for each interval whereR differs from CH(R), we define
the ironed virtual value to be slope of the convex hull over this interval. This means
the virtual values are equal in this interval, and hence any two bids in that range are

4This is for consistency with recent literature; “reversed quantile” might be a more accurate term.



interchangeable, and so an iron-based allocation function is constant on this interval.5
The resulting ironed revenue curve R? will be concave and the corresponding ironed
virtual value function ϕ? will be non-decreasing. It is also useful to think of a reserve
price r (with corresponding quantile qr) in a similar way, as effectively changing the
virtual valuation function so that ϕ?(q) = 0 whenever q ≥ qr (Figure 1b), with the
corresponding revenue curve R? constant in that region (Figure 1a).6

More generally, given any set of disjoint ironing intervals I and reserve price r, both
in value space, we can imagine the effect on the revenue curve as follows. (For now this
is a thought experiment; Proposition 2.1 connects these revenue curve modifications
back to allocation rule modifications.) Let R be the revenue curve without ironing or
a reserve price, and define R(I,r) as the revenue curve induced by a set I of ironing
intervals and reserve price r. This curve is defined by

R(I,r)(q) =





R(F (r)) if q > F (r)

R(qa) + q−qa
qb−qa (R(qb)−R(qa)) if q ∈ (qa, qb]

with [F−1(1− qb), F−1(1− qa)) ∈ I
R(q) otherwise.

(3)

Given I and r as above, we define the auction A(I,r) as follows: given a bid profile:
(i) reject every bid with bi < r; (ii) for each ironing interval [a, b) ∈ I, treat all bids
{bj : a ≤ bj < b} as identical (equal to some common number between a and b); (iii)
among the remaining bidders, maximize the sum of the ironed bids of the winners;
(iv) charge payments so that losers always pay 0 and so that truthful bidding is a
dominant strategy for every player. This auction is well defined (i.e., independent of
the choice of the common numbers in (ii)) in settings where the computation in (iii)
depends only on the ordering of the ironed bids, and not on their numerical values. In
this case, the payments in (iv) are uniquely defined (by standard mechanism design
results). This is the case in every matroid environment7 and also in position auctions.8
In such a setting, we use A to denote the set of all auctions of the form A(I,r). We
restrict attention to such settings in the remainder of the paper.

The Switching Trick. Given a distribution F , we explained two ways to use ironing
intervals I and a reserve price r: (i) to define a modified revenue curveR(I,r) (and hence
virtual valuations); or (ii) to define an auction A(I,r). The “switching trick” formalizes
the connection between them: the expected maximum virtual welfare with the modi-
fied virtual valuations (corresponding to the derivative of R(I,r)) equals the expected
virtual welfare of the modified auction A(I,r) with the original virtual valuations.

More formally, let xi : Rn+ → R+ be the ex-post allocation function of the welfare
maximizing truthful auction that takes the bids b of all players and results in the
allocation to bidder i. The interim allocation function yi : [0, 1] → R+ is the expected

5It takes some effort to show that keeping the allocation probability constant on an interval has exactly the
effect we described here [Myerson 1981].
6Most of the existing literature would not consider the effect of the reserve price on the revenue curve, in
which case the black and dashed lines would coincide after the second peak. However, by including its effect
as we did, we’ll be able to apply the Switching Trick described below.
7In a matroid environment, the set F of feasible outcomes satisfies: (i) (downward-closed) T ∈ F and S ⊆ T
implies S ∈ F ; and (ii) (exchange property) whenever S, T ∈ I with |T | < |S|, there is some i ∈ S \ T such
that T ∪ {i} ∈ I.
8In a position auction, n bidders vie for k “slots,” with at most one bidder assigned to each slot and at
most one slot assigned to each bidder. Being assigned slot j corresponds to an allocation amount αj , which
historically corresponds to a “click-through rate.” See Edelman et al. [2007] and Varian [2007] for details.



allocation to bidder iwhen her quantile is q, where the expectation is over the quantiles
of the other bidders: yi(qi) = Eq−i∼U [0,1]n−1 [x(F−1(1− qi), F−1(1−q−i))] where F−1(1−
q−i) is b−i for which each bj = F (1− qj). For example, in the standard Vickrey (single-
item) auction with n bidders, every bidder i has the interim allocation function yi(q) =
(1− q)n−1.9

For every auction of the form A(I,r), the interim allocation function y(I,r)i of a bidder i
can be expressed in terms of the interim allocation function yi without ironing and
reserve price (see also Figure 1b):

y
(I,r)
i (q) =





0 if q > F (r)
1

qb−qa
∫ qb
qa
y(q)dq if q ∈ [qa, qb) with [F−1(1− qb), F−1(1− qa)) ∈ I

yi(q) otherwise.
(4)

PROPOSITION 2.1 (SWITCHING TRICK). Consider a matroid or position auction
setting, as above. For every valuation distribution F , every reserve price r, every set
I of disjoint ironing intervals, and every bidder i,

Eq∼U [0,1][R(q) · (y(I,r)i )′(q)] = Eq∼U [0,1][R
(I,r)(q) · y′i(q)].

PROOF. Fix F , I, r, and y. Let y(I,r) be the interim allocation rule from running
auction A(I,r). Let R be the revenue curve of F and let R(I,r) denote the revenue curve
induced by I and r.

— Define a distribution F (I,r) (which is not equal to F unless I = ∅ and r = 0) that has
the property that its revenue curve q · F (I,r)(1 − q) is R(I,r). To see that this is well-
defined, observe the following. Any line ` through the origin only intersects R(I,r)

once (if there are point masses in F then a line through the origin intersects R in
a single interval). This means that we can use R(I,r) to construct F (I,r): F (I,r)(v) is
the q for which q · v intersects with R(I,r)(q) (if there are any point masses then there
will be a range of q for which this is the case; in that case take the largest such q).
Alternatively, see Hartline and Roughgarden [2008] for an explicit formula for F (I,r).

— If we run the same auction A(I,r) on bidders with values drawn from F (I,r), the ex-
pected revenue is identical to the auction with bidder values drawn from F :

Eq∼U [0,1][R(q) ·
(
y(I,r)

)′
(q)] = Eq∼U [0,1][R

(I,r)(q) ·
(
y(I,r)

)′
(q)].

This can easily be seen by filling in the definitions from (3) and (4).
— If the bidders have distribution F (I,r), then we might as well not iron or have a

reserve price at all; so

Eq∼U [0,1][R
(I,r)(q) ·

(
y(I,r)

)′
(q)] = Eq∼U [0,1][R

(I,r)(q) · y′(q)].

This is also easily seen by filling in the definitions.

2.3. Notation
In the remainder of this paper, our analysis will rely on bounding the difference in
revenue of an auction with respect to the optimal auction in terms of their revenue
curves. We will use the following conventions, see Table I. The unaltered revenue curve

9In general matroid settings, different bidders can have different interim allocation functions (even though
valuations are i.i.d.).



Revenue Curve Description
R q · F−1(1− q)
R̂min q · F̂−1(1− q − ε)
R̂max q · F̂−1(1− q + ε+ 1

m )

Table I: Overview of notation for revenue curves.

for distribution F is denoted by R(q) = q · F−1(1 − q). To denote when we use an
estimator for a revenue, i.e. a revenue curve that is constructed based on samples,
we use a hat: R̂(q) = q · F̂−1(1 − q). Based on the available samples we construct
high-probability upper and lower bounds for R, that are thus denoted as R̂max(q) =

q · F̂−1(1− q + ε+ 1
m ) and R̂min(q) = q · F̂−1(1− q − ε).

We use a superscript to denote when a revenue curve is ironed and has a reserve
price. For a general set of ironing intervals I and reserve price r, R(I,r) is the revenue
curve induced by it, see (3). The superscript ? denotes that the revenue curve is opti-
mally ironed and reserved, i.e. R? is the revenue curve of Myerson’s auction using F ,
and R̂?max is the revenue curve corresponding to the convex hull of R̂max that addition-
ally stays constant after the highest point. Finally, we use Ralg and Ropt to denote an
algorithm ALG’s revenue curve and the optimal revenue curve for F respectively (thus
Ropt = R?, but when appropriate we use Ropt to emphasize its relation to Ralg).

For the ironing intervals I (and reserve price r) we use Iq (resp. rq) when it is im-
portant that the ironing intervals are defined in quantile space. Finally, Iopt, Ialg, and
Imax (and similarly for reserve price r) refer to the ironing intervals of the optimal
auction, algorithm ALG and the optimal ironing intervals for R̂max respectively.

3. ADDITIVE LOSS IN REVENUE FOR SINGLE-ITEM AUCTIONS
For ease of exposition, most of the technical sections focus on an unknown distribution
with support in [0, H]. The full version of this paper explains how our results extend
to all distributions for which the optimal auction does not obtain a constant fraction of
its expected revenue from valuation profiles with at least one extremely high-valued
bidder.

This section describes an algorithm that takes a setX ofm samples, and a confidence
parameter δ as input, and outputs a set I of ironing intervals and a reserve price r,
both in value space. This section focuses on the case where I and r are used in a single-
item auction A

(I,r)
(1) ∈ A (recall the notation in Section 2) and shows that the additive

loss in revenue of A(I,r)
(1) with respect to the revenue of the optimal auction Aopt(1) for

single-item auctions is O(ε ·n ·H), with ε =
√

ln 2δ−1

2m . In section 4 we extend the results
to matroid and position auctions.

THEOREM 3.1 (MAIN THEOREM). For a single-parameter environment with opti-
mal auction of the form A(I,r) with n i.i.d. bidders with values from unknown irregular
distribution F , with m i.i.d. samples from F , the additive loss in expected revenue of
Algorithm 2 compared to the optimal expected revenue is at most 3 ·n ·H ·

√
ln 2δ−1

2m with
probability at least 1− δ.
3.1. The Empirical Myerson Auction
We run a variant of the Empirical Myerson auction, which we have divided into two
parts: the first is a learning algorithm ALG (Algorithm 1) that computes ironing in-



Algorithm 1 Compute the ironing intervals I and reserve price r.

COMPUTEAUCTION(X, δ)

1 Construct F̂−1 from X; let ε =
√

ln 2·δ−1

2|X| .

2 Construct R̂min(q) = q · F̂−1(1− q − ε).
3 Compute the convex hull CH(R̂min), of R̂min.
4 Let Iq be the set of intervals where R̂min and CH(R̂min) differ.
5 for each quantile ironing interval (ai, bi) ∈ Iq
6 Add [F̂−1(1− bi − ε), F̂−1(1− ai − ε)) to I.
7 Let the reserve quantile be rq = arg maxq R̂min(q).
8 Let the reserve price be r = F̂−1(1− rq − ε).
9 return (I, r)

Algorithm 2 Empirical Myerson.

EMPIRICALMYERSON(X, δ,b)

1 I, r ← COMPUTEAUCTION(X, δ)

2 return AI,r(1) (b)

tervals I and a reserve price r based on samples X and confidence parameter δ. The
second step is to run the welfare-maximizing auction subject to ironing and reserva-
tion (Algorithm 2). In this section we focus on analyzing the single-item auction, but
the only place this is used is in line 2 of Algorithm 2. Auctions for position auctions
and matroid environments use the same learning algorithm (Algorithm 1) but then
run the welfare-maximizing auction for position auctions or matroid environments re-
spectively; we return to this in Section 4.

The Empirical Myerson auction takes an estimator for the quantile function F̂−1

and constructs its revenue curve. From this, the convex hull CH(R) is computed and
wherever CH(R) and R disagree, an ironing interval is placed. Then, the highest point
on R is used to obtain the reserve price quantile qr = arg maxq R(q). Note that this is all
done in quantile space, but we need to specify the reserve price and ironing intervals
in value space. So the last step is to use the empirical CDF F̂ to obtain the values at
which to place the reserve price and ironing intervals.

Our learning algorithm follows that approach, with the exception that in line 2 of
COMPUTEAUCTION, we take the empirical quantile function to be F̂−1(1−q−ε) rather
than the arguably more natural choice of F̂−1(1− q). The motivation here is to protect
against overestimation — recall the cautionary tale of Example 1.2. From the DKW
inequality we can derive that F̂−1(1−q−ε) ≤ F−1(1−q) with probability 1−δ (we prove
this in Lemma 3.3), so we would hope that using this will sufficiently protect against
overestimation, while incurring only a modest loss in revenue due to underestimation.
That this approach indeed leads to good revenue guarantees is shown in the remainder
of this section.



3.2. Additive Revenue Loss in Terms of Revenue Curves
We start with a technical lemma that reduces bounding the loss in revenue to bounding
the estimation error due to using samples as opposed to the true distribution F .

LEMMA 3.2. For a distribution F , let Ralg be the revenue curve induced by an algo-
rithm ALG ∈ A and let Ropt be the optimal induced revenue curve. The additive revenue
loss of ALG with respect to OPT is at most:

n · max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
.

PROOF. First, to calculate the ex ante expected revenue of a bidder i with interim
allocation function yi,10 revenue curve R, ironing intervals I and reserve price r, we
have by Myerson [1981]:

Rev[R, I, r] = −Eq∼U [0,1][R(q) · (y(I,r))′(q)]. (5)

Next, we apply the Switching Trick of Proposition 2.1. Let Ialg, Iopt be the sets of iron-
ing intervals and ralg, ropt be the reserve prices of ALG and OPT respectively. This
yields total revenues:

Rev[F, Ialg, ralg] =

n∑

i=1

∫ 1

0

−Ralg(q)y′i(q)dq, Rev[F, Iopt, ropt] =

n∑

i=1

∫ 1

0

−Ropt(q)y′i(q)dq.

Note that the interim allocation function yi for bidder i is the same one in both equa-
tions; the only difference between y

(Iopt,ropt)
i and y

(Ialg,ralg)
i was the ironing intervals

and reserve price, so after applying the switching trick, yi is simply the welfare-
maximizing interim allocation rule for bidder i.11 This is the key point in our analysis,
and it allows us to compare the expected revenue of both auctions directly:

Rev[F, Iopt, ropt]−Rev[F, Ialg, ralg] =

n∑

i=1

(
−
∫ 1

0

Ropt(q)y′i(q)dq +

∫ 1

0

Ralg(q)y′i(q)dq

)

=

n∑

i=1

∫ 1

0

(
Ropt(q)−Ralg(q)

)
(−y′i(q)) dq

≤ max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
·
n∑

i=1

∫ 1

0

−y′i(q)dq

= max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
·
n∑

i=1

(−yi(1) + yi(0))

≤ n · max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
.

The inequality holds as −y′i is non-negative. The last inequality holds because yi al-
ways lies between 0 and 1. Rearranging the terms yields the claim.

This is significant progress: the additive loss in revenue can be bounded in terms
of the induced revenue curves of an algorithm ALG and the optimal algorithm, two
objects that we have some hope of getting a handle on. Of course, we still need to show

10For single-item auctions with i.i.d. bidders, all bidders share the same interim allocation function. We
write yi to facilitate our extension to matroid environments in the next section.
11E.g., for single-item auctions, this is just the probability that bidder i has the largest valuation (given its
quantile).



R̂max = q · F̂−1(1− q + ε+ 1
m )

R(q) = q · F−1(1− q)
R̂min(q) = q · F̂−1(1− q − ε)R(q)

q10

Fig. 2: We can sandwich R between two estimated revenue curves R̂min and R̂max.

that the ironed revenue curve of Algorithm 1 is pointwise close to the ironed revenue
curve induced by the optimal auction (Section 3.3).

3.3. Bounding the Error in the Revenue Curve
We implement the following steps to prove that the error in the learning algorithm’s
estimation of the revenue curve is small. The proofs of this section appear in the full
version.

— (Lemma 3.3) We show that we can sandwich the actual revenue curve (without iron-
ing or reserve price) R between two empirical revenue curves, R̂min and R̂max that are
defined using the empirical quantile function.

— (Lemma 3.4 and Lemma 3.5) Let R̂?max (resp. R̂?min) be the optimally induced revenue
curve for R̂max (resp. R̂min). The revenue curve induced by Algorithm 1, Ralg, is point-
wise higher than the optimal induced revenue curve of the lower bound R̂?min, and the
optimal induced revenue curve for the upper bound, R̂?max, is pointwise higher than
Ropt.

— (Lemma 3.7) Finally, we show that R̂?max(q)− R̂?min(q) is small for all q, and therefore
the additive loss is small.

LEMMA 3.3. For a distribution F and m samples from F . Let R̂min(q) = q · F̂−1(1−
q− ε) and R̂max(q) = q · F̂−1(1−q+ ε+ 1

m ). With probability at least 1−δ for all q ∈ [0, 1]:

R̂min(q) ≤ R(q) ≤ R̂max(q).

So while the the algorithm does not know the exact revenue curve R, it can be upper
bounded by R̂max and lower bounded by R̂min. We’ll use R̂min to give a lower bound on
the revenue curve Ralg induced by Algorithm 1, and R̂max to give an upper bound on
the revenue curve Ropt induced by Myerson’s optimal auction. We start with the latter.

LEMMA 3.4. Let Ropt be the optimal induced revenue curve of R, and let R̂?max be the
optimal induced revenue curve for R̂max. Then with probability 1− δ for all q ∈ [0, 1]:

Ropt(q) ≤ R̂?max(q).

So with high probability R̂?max is pointwise higher than Ropt. Proving that R̂?min is a
lower bound for Ralg is slightly more involved since the ironing intervals and reserve



Ralg(q)

R̂min(q) = q · F̂−1(1− q − ε)

R(q)

q10

R(q) = q · F−1(1− q)

va vb vr

Fig. 3: When we pick a value range to iron based on R̂min, its effect on the actual
revenue curve can be seen. The quantiles of the start and end point of the ironing
procedure are given by the line that intersects the start and end point on R̂min and the
origin.

price are given by Algorithm 1, and may not be optimal. Therefore, the induced rev-
enue curve Ralg is in general not concave, and the reserve quantile may not be at the
highest point of the curve. In the following lemma, we use the fact that that the ironing
intervals and reserve price of Ralg were chosen based on R̂min.

LEMMA 3.5. Let Ralg be the revenue curve induced by Algorithm 1 and let R̂?min be
the optimal induced revenue curve for R̂min. Then with probability 1− δ for all q ∈ [0, 1]:

R̂?min(q) ≤ Ralg(q).

First we show that to prove pointwise dominance of curve Ralg over R̂min, it is suf-
ficient to show that any ray from the origin that intersects the revenue curves, first
intersects with R̂min and then Ralg.

PROPOSITION 3.6 (RAY DOMINANCE). For two (potentially ironed) revenue curves
R and R′, if all rays from the origin that intersect with R or R′ intersect R before R′,
then it must be that R(q) ≤ R′(q) for q ∈ [0, 1].

PROOF. Fix R,R′. WLOG assume that R and R′ are not ironed.12 First observe that
a revenue curve S consists of the set of points {(1 − F (v), v · (1 − F (v))) : v ∈ R+},
where F is the CDF corresponding to S. Therefore a ray from the origin with slope v′
intersects S on the set of points {(1− F (v), v · (1− F (v))) : 1− F (v) = 1− F (v′)}. Since
1− F (v) is non-increasing, this can only happen in either a single point, or single line
segment.

We prove the contrapositive. If R is not dominated by R′, then by continuity there is
an interval (q1, q2) with q1 < q2 where R is above the graph of R′. Let q′ = q1+q2

2 be the
midpoint. Take the ray that starts at the origin and has slope R′(q′)

q′ . This ray intersects
R′ in the point (q′, R′(q′)). Since R′(q) > R(q) for q ∈ (q1, q2), and R′ is continuous, the
ray must intersect with R′ after it intersected with R. Since rays from the origin only
intersect a revenue curve once, it could not have intersected R′ before R either.

12Recall that from the Switching Trick, any ironed revenue curve can be written as the revenue curve for
an unironed, different CDF.



To complete the proof of Lemma 3.5, We still need to show that every ray through
the origin intersects R̂min before Ralg. This part of the proof appears in the full version
of the paper.

We now have our upper bound and lower bounds in terms of F̂−1. Finally we show
that the difference between the two is small.

LEMMA 3.7. For a distribution F , let Ralg be the revenue curve induced by Algo-
rithm 1 and Ropt the optimal induced revenue curve. Using m samples from F , with
probability 1− δ and ε =

√
ln 2·δ−1

2m for all q:

Ropt(q)−Ralg(q) ≤ R̂?max(q)− R̂?min(q) ≤
(

2ε+
1

m

)
H ≤ 3ε ·H.

Theorem 3.1 now follows by combining Lemmas 3.2 and 3.7. The additive loss in ex-
pected revenue of Algorithm 2 is at most 3ε · n ·H.

Proof of Theorem 3.1: By Lemma 3.2 we can express the total additive error of the
expected revenue of an algorithm that yields ironing intervals Ialg and reserve price
ralg with respect to the optimal auction as:

Rev[F, Iopt, ropt]−Rev[F, Ialg, ralg]
n

≤ max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
.

By Lemma 3.7, Algorithm 2 yields

max
q∈[0,1]

(
Ropt(q)−Ralg(q)

)
≤
(

2ε+
1

m

)
H.

The theorem follows. �

When the optimal revenue is bounded away from zero, we get an analogous sam-
ple complexity bound for learning (efficiently) a (1 − ε)-(multiplicative) approximate
auction.

4. MATROID AND POSITION ENVIRONMENTS
The results of the previous section extend to matroid and position auction environ-
ments.

THEOREM 4.1. For position and matroid auctions with n i.i.d. bidders with values
from unknown distribution F , m i.i.d. samples from F , with probability 1− δ, the addi-
tive loss in expected revenue of running the welfare-maximizing auction using ironing
intervals and reserve price from Algorithm 1 compared to the optimal expected revenue
is at most 3 · n ·H ·

√
ln 2δ−1

2m .

The learning algorithm uses the same subroutine (Algorithm 1) to learn ironed in-
tervals and a reserve price, and returns the auction that first deletes all bidders not
meeting the reserve and then chooses the feasible outcome maximizing the ironed vir-
tual welfare. The proof follows from Proposition 4.2 and Proposition 4.3, which show
that the optimal auctions for matroid and position auction environments are in A (i.e.,
have the form A(I,r) for a suitable choice of ironed intervals I and reserve price r), and
from Lemmas 3.2–3.7, which rely only on this property.

4.1. Position Auctions
A position auction [Varian 2007] is one where the winners are given a position, and
position i comes with a certain quantity xi of the good. The canonical example is that



of ad slot auctions for sponsored search, where the best slot has the highest click-
through-rate, and subsequent slots have lower and lower click-through-rates. In an
optimal auction, the bidder with the highest ironed virtual value gets the best slot, the
second highest ironed virtual value the second slot, and so on.

PROPOSITION 4.2. The optimal auction Aopt(pos) for position auctions can be ex-
pressed as an auction with ironing and reserve price in value space: Aopt(pos) ∈ A.

PROOF. In the optimal auction, the bidder with the highest ironed virtual value
is awarded the first position (with allocation x1), the bidder with the second highest
ironed virtual value the second position with x2, and so on. Since the ironed virtual
value is monotonically non-decreasing in the value of a bidder, and identical in ironing
intervals, this can equivalently be described by an auction in A.

4.2. Matroid Environments
In a matroid environment, the feasible allocations are given by matroid M = (E, I),
where E are the players and I are independent sets. The auction can simultaneously
serve only sets S of players that form an independent set of the matroid S ∈ I. A
special case of this is the rank k uniform matroid, which accepts all subsets of size at
most k, i.e. it is a k-unit auction environment.

In matroid environments, the ex-post allocation function xi(b) and interim allocation
function yi(q) are no longer the same for each player, e.g. imagine a player i who is not
part of any independent set, then y(q) = 0 everywhere. However, the optimal allocation
can still be expressed in terms of an auction A ∈ A.

PROPOSITION 4.3. The optimal auction Aopt(mat) for matroid auctions can be ex-
pressed as an auction with ironing and reserve price in value space: Aopt(mat) ∈ A.

Proof of Proposition 4.3: A property of matroids is that the following simple greedy
algorithm yields the optimal solution:

GREEDY(E, I)

1 S ← ∅
2 while {i : i 6∈ S ∧ S ∪ {i} ∈ I} 6= ∅
3 add arg max{vi : i 6∈ S ∧ S ∪ {i} ∈ I} to S
4 return S

where vi is the (ironed virtual) value associated with bidder i. Since the order of largest
values is the same for both virtual values and bids (up to ties), the allocation of the
optimal auction is identical to the auction that irons on Iopt and has reserve price ropt
(up to tie-braking); hence Aopt(mat) ∈ A. �

5. NO-REGRET ALGORITHM
So far we assumed access to a batch of samples before having to choose an auction.
In this section we show that running the algorithm in a repeated setting, using past
bidding behavior as the samples, leads to a no regret algorithm. The goal here is to
achieve total additive error o(T ) ·O(poly(n,H, δ)) — the error can be polynomial in all
parameters except the time horizon T , for which it should be sublinear. We show that
for Algorithm 3 the total loss grows as Õ(

√
T
√
n
√

log(δ−1)H) and hence results in a
no-regret algorithm.

We run Algorithm 3. Invoking Theorem 3.1 with confidence parameter δ/T and tak-
ing a union bound over the rounds, we have the following fact.



Algorithm 3 A no-regret algorithm for optimal auctions.

NO-REGRET-AUCTION(δ, T )

1 � Round 0:
2 Collect a set of bids b, run an arbitrary mechanism
3 X ← b
4 for round t = 1...T
5 Collect a set of bids b
6 EMPIRICALMYERSON(X, δ/T,b)
7 X ← X ∪ b

PROPOSITION 5.1. With probability 1−δ, for all rounds simultaneously, each round

t ∈ [1, T ] of Algorithm 3 has additive loss at most 3
√

ln(2Tδ−1)
2nt · n ·H.

This leads to the following no-regret bound.

THEOREM 5.2. With probability 1 − δ, the total additive loss of Algorithm 3 is
O(
√
n
√
T log T

√
log δ−1 ·H), which is Õ(T 1/2) with respect to T .

PROOF. By Proposition 5.1 with probability 1− δ for all rounds simultaneously, the

additive loss for round t is bounded by 3
√

ln(2Tδ−1)
2nt · n ·H. The loss of day 0 is at most

H · n. The total loss can then be bounded by:

(n ·H) ·
(

1 + 3

T∑

t=1

√
ln(2Tδ−1)

2nt

)

We can rewrite the sum:
T∑

t=1

√
ln(2T/δ)

2nt
=

√
ln(2T/δ)

2n
·
T∑

t=1

√
1

t

≤
√

ln(2T/δ)

2n
· 2
√
T

=

√
2T ln(2T/δ)

n

Hence the total loss is

(n ·H) ·
(

1 + 3

√
2T ln(4T/δ)

n

)
= O(

√
n
√
T log T

√
log δ−1 ·H);

the dependence on T is O(
√
T log T ) = Õ(

√
T ).

The bound of O(
√
T log T ) is almost tight, as there is a lower bound of Ω(

√
T ) given

by [Cesa-Bianchi et al. 2013]. Also note that if we do not know T a priori, we can use a
standard doubling argument to obtain the same asymptotic guarantee.
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